
ECE 661 - HW4
Bhavya Patel - pate1539@purdue.edu

9/23/24

1



Theory Question

Theory Question: What is the theoretical reason for why

the LoG of an image can be computed as a DoG?

For a given image f(x,y), let ff(x,y,σ) represent its σ-smoothed version.

ff(x,y, σ) =

∫ ∫ ∞

−∞
f(x′, y′) · g(x− x′, y − y′) dx′ dy′

where the gaussian, g(x,y), is

g(x,y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
The LoG also has the laplacian applied to it after the gaussian smoothing,

so we can write the laplacian as

∇2 =
∂2

∂x2
+

∂2

∂y2

Now that we have all the equations necessary we can rewrite the LoG as

∇2ff(x, y, σ) = f(x, y) · h(x, y, σ)

where h(x,y,σ) can be written as

h(x,y, σ) =
1

2πσ4
(2− x2 + y2

σ2
) exp

(
−x2 + y2

2σ2

)
After some simplification, you will find that

∂

∂σ
ff(x, y, σ) = σ · f(x, y) · h(x, y, σ)

which turns in

∂

∂σ
ff(x, y, σ) = σ · ∇2f(x, y, σ)

The last equation shows that the LoG of an image can be found by taking

the difference between the (σ + δσ) smoothed version of the f(x,y) from the σ

smoothed version. This difference is known as the DoG.



Theory Question

Theory Question: Explain in your own words why comput-

ing the LoG of an image as a DoG is computationally much

more efficient for the same value of σ.

To compute the LoG with σ, you must calculate a 2nd-order derivative. How-

ever, when calculating DoG you can use the fact that in the gaussian, g(x,y)

defined in the section above, is separable in x and y. Then you can do the

1-D smoothing along the x and y, which is much more computationally efficient

then doing just one 2-D smoothing. This does not work for the LoG operator

of h(x,y) because x and y are not separable.
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Logic 4.1.1 - Harris Corner Detector

Some background on the Harris Corner Detection is it was the world’s most

popular intersect point detector, before SIFT and SURF. Its main use in today’s

world is if your application does not require a scale-space analysis or if the value

of the scale is fixed and known in advance. The steps to implement the Harris

Corner Detection are discussed below.

First, you turn the image into gray-scale because Harris Detector identifies if

a pixel is a corner by changes in pixel intensity. This means you do not need

to have color in the image, so we changed the image to gray-scale. Then you

will use the Haar Wavelet Filter to calculate the first derivative based on x and

y. These derivatives will be denoted as dx and dy respectively and will be used

later.

I will expand on the Haar Wavelet Filters. The most basic form of the Haar

Wavlets is (-1, 1) for x and (1, -1)T for y. These are scaled up to an MxM

operator where M is the smallest even integer greater than 4 times σ. The

gray-scale image will be convolved with both x and y Haar Wavelet to get dx

and dy. Then using those calculated values you will create matrix C.

C =

( ∑
d2x

∑
dxdy∑

dxdy
∑

d2y

)

Matrix C is in a 5σx5σ neighborhood of the pixel where we wish to determine

the presence or absence of a corner. All the summations are over all the pixels

in the 5σx5σ neighborhood. Then λ1 and λ2 are the eigenvalues of C, where we

assume λ1 ≤ λ2. To be called a corner we need to find the ratio between the

eigenvalues λ2

λ1
. Below I will do some calculations to find the ratio, R, of the

eigenvalues.

We know,

Tr(C) =
∑

d2x +
∑

d2y = λ1 + λ2

and,

det(C) =
∑

d2x
∑

d2y − (
∑

dxdy)
2 = λ1λ2
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so,
det(C)

[Tr(C)]2
=

λ1λ2

λ1 + λ2
=

R

(1 +R)2

We can rewrite the ratio, R, using the Harris Response Calculation. which is

R = det(C)− k(Tr(C))2

where k is a constant that is always between the values of 0.04 and 0.06. With

a larger k, you get fewer false corners but miss more real corners. Then with

a smaller k, you get more corners but will get lots of false corners. In my

implementation, I found that the optimal k value was very dependent on the

image and sigma value, so I keep it as a constant k = 0.5. The larger the R

value the more likely the point is going to be a corner point.

With all the chosen corner points, you will apply non-max suppression. This is

done because multiple pixels could be detected for some corners, so we will only

pick the max R-value within a specified window. I decided that the window

could be 15*σ and I automatically removed all R values that were less than the

mean of the ratio values.

Logic 4.1.1 - Establishing Correspondences Between Image

Pairs

You can establish correspondences between image pairs by directly comparing

the gray level in a window, (m+1)x(m+1), around the corner pixel in one image

with the gray levels in a similar window around the corresponding pixel in the

other image. In my implementation, I used m = 29. We will achieve this by two

methods. Normalized Cross-Correlation (NSS) and Sum of Squared Differences

(SDD).

Logic 4.1.1 - NCC

NCC can be written as
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NCC =

∑∑
(f1(i, j)−m1)(f2(i, j)−m2)√

[
∑∑

(f1(i, j)−m1)2][
∑∑

(f2(i, j)−m2)2]

where f1 = image 1, f2 = image 2, and mi = mean of the fi in the window.

The value of NCC is always between 1 and 0. The closer the value is to 1 the

better the match. So in my implementation, I just take the value closest to one

as the final value.

Logic 4.1.1 - SSD

SSD can be written as

SSD =
∑
i

∑
j

|f1(i, j)− f2(i, j)|2

where f1 is image 1 and f2 is image 2. The SSD in other words just finds

the corner points which have the smallest distance between them. So in my

implementation, I chose the corner points by choosing the min of all the SSD

values.

Logic 4.1.2 - SIFT

The first step when using SIFT is to create a DoG pyramid. A DoG pyramid

is represented with D(x,y,σ) where σ is the scale value. The structure is there

is σ0, 2σ0, 4σ0, etc. where each sigma value is called an octave. Then for each

octave you need to find an σ = xδ+σ0 where x = 1,2,3. So there will be 4 σ-

smoothed images in each octave. This results in 3 DoG images for each octave

when you take the difference between the adjacent 4 σ-smoothed images.

Then you can find the local extrema in the DoG pyramid by comparing the

middle DoG image pixels with the 26 neighboring pixel values. Where eight of

them will be the surround pixels in the same DoG image, 9 will be from the

above DoG image, and 9 will be from the below DoG image.

At the higher octaves, like 4σ0, the extrema are calculated based on a down-
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sampled image,so the corresponding pixel is not exact. You can improve the

location of the extremum in the DoG pyramid by taking the 2nd-order deriva-

tive of D at the sampling points in the DoG pyramid. The true location of the

extremum is given by

x⃗ = −H−1(x⃗0) · J(x0)

where

x⃗ = (x0, y0, σ0)
T

and

J(x0) =

(
∂D

∂x
,
∂D

∂y
,
∂D

∂σ

)

Then you can weed out extrema by thresholding |D(x⃗)| where an extremum

is rejected if |D(x⃗)| ≤ 0.03. You now can find the dominant local orientation

by calculating the gradient vector of the Gaussian-Smoothed Image ff(x,y,σ)

at the scale value, σ, of the extremum. You compute the gradient magnitude,

m(x,y), and gradient orientation, θ(x,y), at each point in a KxK neighborhood

around the extremum. Then after weighting θ(x,y) with m(x,y), we construct

a histogram of θ(x,y) values using 36 separate bins that span 360 degrees. The

bin that is the largest gives the dominant local orientation.

Finally SIFT creates a 128-dimensional vector at each extremum in the DoG

pyramid called the feature vector. This vector allows you to know the image’s

dominant orientation, so you can match point pairs through in-planar rotation.

So SIFT is invariant to in-planar rotation.



Task 1 Results

Original Images for Temple Image

Harris Corner Points Results - Task 1 Temple Image

In the images below I will display what my Harris Corner Point Detector found

for the sigma values of 1, 1.2, 1.6, 2 for the Temple Image.
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Harris Corner Points for Sigma = 1

Harris Corner Points for Sigma = 1.2
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Harris Corner Points for Sigma = 1.6

Harris Corner Points for Sigma = 2



Task 1 Results

NCC Results - Task 1 Temple Image

In the images below I will display the NCC Point Correspondences for the sigma

values of 1, 1.2, 1.6, 2 for the Temple Image.

NCC Point Correspondences for Sigma = 1

NCC Point Correspondences for Sigma = 1.2
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NCC Point Correspondences for Sigma = 1.6

NCC Point Correspondences for Sigma = 2



Task 1 Results

SSD Results - Task 1 Temple Image

In the images below I will display the SSD Point Correspondences for the sigma

values of 1, 1.2, 1.6, 2 for the Temple Image.

SSD Point Correspondences for Sigma = 1

SSD Point Correspondences for Sigma = 1.2
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SSD Point Correspondences for Sigma = 1.6

SSD Point Correspondences for Sigma = 2



Task 1 Results

Original Images for Hovde Image

Harris Corner Points Results - Task 1 Hovde Image

In the images below I will display what my Harris Corner Point Detector found

for the sigma values of 1, 1.2, 1.6, 2 for the Hovde Image.



Task 1 Results

Harris Corner Points for Sigma = 1

Harris Corner Points for Sigma = 1.2



Task 1 Results

Harris Corner Points for Sigma = 1.6

Harris Corner Points for Sigma = 2



Task 1 Results

NCC Results - Task 1 Hovde Image

In the images below I will display the NCC Point Correspondences for the sigma

values of 1, 1.2, 1.6, 2 for the Hovde Image.

NCC Point Correspondences for Sigma = 1

NCC Point Correspondences for Sigma = 1.2
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NCC Point Correspondences for Sigma = 1.6

NCC Point Correspondences for Sigma = 2



Task 1 Results

SSD Results - Task 1 Hovde Image

In the images below I will display the SSD Point Correspondences for the sigma

values of 1, 1.2, 1.6, 2 for the Hovde Image.

SSD Point Correspondences for Sigma = 1

SSD Point Correspondences for Sigma = 1.2
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SSD Point Correspondences for Sigma = 1.6

SSD Point Correspondences for Sigma = 2



Task 1 Results

SIFT Results - Task 1 Temple Image

In the image below, I will display the SIFT algorithm result for the Temple

Image.

SIFT Result for Temple Image

SIFT Results - Task 1 Hovde Image

In the image below, I will display the SIFT algorithm result for the Hovde

Image.

SIFT Result for Hovde Image



Task 1 Results

SuperPoint and SuperGlue Results - Task 1 Temple Image

In the image below, I will display the Superpoint and Superglue result for the

Temple Image.

Superpoint and Superglue Result for Temple Image

SuperPoint and SuperGlue Results - Task 1 Hovde Image

In the image below, I will display the Superpoint and Superglue result for the

Hovde Image.

Superpoint and Superglue Result for Hovde Image



Task 2 Results

Original Images for My Image 1

Harris Corner Points Results - Task 2 My Image 1

In the images below I will display what my Harris Corner Point Detector found

for the sigma values of 1, 1.2, 1.6, 2 for My Image 1.
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Harris Corner Points for Sigma = 1

Harris Corner Points for Sigma = 1.2
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Harris Corner Points for Sigma = 1.6

Harris Corner Points for Sigma = 2
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NCC Results - Task 2 My Image 1

In the images below I will display the NCC Point Correspondences for the sigma

values of 1, 1.2, 1.6, 2 for My Image 1.

NCC Point Correspondences for Sigma = 1

NCC Point Correspondences for Sigma = 1.2
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NCC Point Correspondences for Sigma = 1.6

NCC Point Correspondences for Sigma = 2



Task 2 Results

SSD Results - Task 2 My Image 1

In the images below I will display the SSD Point Correspondences for the sigma

values of 1, 1.2, 1.6, 2 for My Image 1.

SSD Point Correspondences for Sigma = 1

SSD Point Correspondences for Sigma = 1.2
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SSD Point Correspondences for Sigma = 1.6

SSD Point Correspondences for Sigma = 2



Task 2 Results

Original Images for My Image 2

Harris Corner Points Results - Task 2 My Image 2

In the images below I will display what my Harris Corner Point Detector found

for the sigma values of 1, 1.2, 1.6, 2 for My Image 2.
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Harris Corner Points for Sigma = 1

Harris Corner Points for Sigma = 1.2
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Harris Corner Points for Sigma = 1.6

Harris Corner Points for Sigma = 2
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NCC Results - Task 2 My Image 2

In the images below I will display the NCC Point Correspondences for the sigma

values of 1, 1.2, 1.6, 2 for My Image 2.

NCC Point Correspondences for Sigma = 1

NCC Point Correspondences for Sigma = 1.2
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NCC Point Correspondences for Sigma = 1.6

NCC Point Correspondences for Sigma = 2



Task 2 Results

SSD Results - Task 2 My Image 2

In the images below I will display the SSD Point Correspondences for the sigma

values of 1, 1.2, 1.6, 2 for My Image 2.

SSD Point Correspondences for Sigma = 1

SSD Point Correspondences for Sigma = 1.2
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SSD Point Correspondences for Sigma = 1.6

SSD Point Correspondences for Sigma = 2



Task 2 Results

SIFT Results - Task 2 My Image 1

In the image below, I will display the SIFT algorithm result for My Image 1.

SIFT Result for My Image 1

SIFT Results - Task 2 My Image 2

In the image below, I will display the SIFT algorithm result for My Image 2.

SIFT Result for My Image 2



Task 2 Results

SuperPoint and SuperGlue Results - Task 2 My Image 1

In the image below, I will display the Superpoint and Superglue result for the

My Image 1.

Superpoint and Superglue Result for My Image 1

SuperPoint and SuperGlue Results - Task 2 My Image 2

In the image below, I will display the Superpoint and Superglue result for the

My Image 2.

Superpoint and Superglue Result for My Image 2



Results Disccusion

Results Discussion

First I will talk about my results on the Harris Corner Detector. The most

obvious observation is that as the omega value increased less amount of interest

points were detected. In almost all of the images, you can see that at the lowest

omega value of one, many interest points were being detected. The interest

points being detected were very sensitive because they would find even the

smallest change in grayscale to be a corner. Now the results shown have been

through some point suppression, so you do not see all of the points, but this

pattern of many points in the lower sigma values is still evident.

A side note concerning the images that I took. Initially, the resolution of the

images I took was much greater than the images that were given to us in the

assignment. When I put the higher-resolution image through my Harris Corner

detector there were many more interest points than when I reduced the resolu-

tion to something similar to the given images. So, if the resolution of the image

is higher then you can increase the sigma value and get a similar amount of

interest points if you had a lower sigma value and lower resolution image. This

conclusion in hindsight is not a surprise because in the Gaussian pyramid, we

know that when you double the sigma the size of the image decreases by 2 fold.

The next point of discussion is the difference in finding corresponding points

using SSD versus NCC. I observed that SSD yielded slightly better results than

NCC, as there were fewer incorrect matches between points in the Hovde Image

and My Image 1. However, the difference in quality between the two methods

was less noticeable in the Temple Image and My Image 2. Despite SSD generally

producing better results in the images used for the report, neither method was

sufficient for accurately identifying corresponding points. In all the images there

were portions of them where an object was not present in the other image, but

there still were interest points being mapped to the other image. This was the

largest cause of the false assignments of corresponding points. This problem is

mostly fixed in the SIFT and SuperPoint and SuperGlue implementations.

The SIFT implementation was much better than the Harris Corner Detector. It

eliminated many of the false corresponding point allocations which was caused

because of the angle of the image having a portion of the building/object not

in the other image. For example, looking at the SIFT Result of the Temple
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Image we can see in the left image, half of the picture is not visible in the right

image. So, the SIFT implementation will stop mapping interest points in that

region which is a huge improvement from the Harris Corner Detection Method.

Not only that it seems that the SIFT algorithm only maps one interest point

to another, unlike the Harris Corner Detection method which had many one-to-

many corner mappings. This highlights the limitation of SSD and NCC because

they only look at the distance between points, which is not extensive enough of

a mapping technique.

SIFT is more successful than Harris Corner Detection because it calculates a

dominant local orientation, making it easier to map points under planar rotation.

While Harris Corner Detection can successfully identify interest points when the

correct sigma value is chosen, it struggles with accurate point mapping.

The final method implemented in this report is the SuperPoint and SuperGlue

approach, which proved to be the most effective in identifying matching point

pairs. To illustrate why this method excels, let’s examine My Image 1. In pre-

vious implementations, including SIFT, the algorithms struggled to correctly

match points on the building behind the brown building. Both Harris Corner

Detection and SIFT mistakenly mapped points from the top of this building

in the left image to the far right side of the same building in the right image.

However, SuperPoint and SuperGlue recognized that the images were showing

different parts of the building and correctly flagged these points in red, indicat-

ing no valid corresponding points. This level of accuracy sets SuperPoint and

SuperGlue apart from the classical methods.

The best parameters for the best feature extraction and matching is very de-

pendent on the image. However, I found general success with using the window

size, M, equal to 29, a sigma value of 1.6, k value of 0.5 (for Harris Response

Calculation function), and a non-max suppression window of 15*σ.
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import cv2

import numpy as np

def g e t h a a r w a v e l e t f i l t e r ( sigma ) :

#get M value for s i z e of matrix

M = int (np . c e i l (4∗ sigma ) )

i f (M % 2 == 1 ) :

M += 1

#create haar matrix for x

h a a r x l e f t = −np . ones ( (M, M // 2) )

haa r x r i gh t = np . ones ( (M, M // 2) )

haar x = np . concatenate ( ( h a a r x l e f t , h a a r x r i gh t ) , ax i s=1)

#create haar matrix for y

haar y top = np . ones ( (M //2 , M) )

haar y bottom = −np . ones ( (M //2 , M) )

haar y = np . concatenate ( ( haar y top , haar y bottom ) , ax i s=0)

return haar x , haar y

def h a r r i s c o r n e r d e t e c t i o n ( img1 , img2 , sigma , f i l e name ) :

#convert images to graysca le

img1 graysca l e = cv2 . cvtColor ( img1 , cv2 .COLORBGR2GRAY) / 255

img2 graysca l e = cv2 . cvtColor ( img2 , cv2 .COLORBGR2GRAY) / 255

#Use Haar Waveler F i l t e r to ge t d e r i v a t i v e

haar x , haar y = g e t h a a r w a v e l e t f i l t e r ( sigma )

#convolve the haar matrix on each image

img1 dx = cv2 . f i l t e r 2D ( img1 graysca le , ddepth=−1, k e rne l=haar x )

img1 dy = cv2 . f i l t e r 2D ( img1 graysca le , ddepth=−1, k e rne l=haar y )

img2 dx = cv2 . f i l t e r 2D ( img2 graysca le , ddepth=−1, k e rne l=haar x )

img2 dy = cv2 . f i l t e r 2D ( img2 graysca le , ddepth=−1, k e rne l=haar y )

#get va lues without the summation in c matrix

img1 dx 2 = np . square ( img1 dx )

img1 dy 2 = np . square ( img1 dy )

img1 dx dy = img1 dx ∗ img1 dy

img2 dx 2 = np . square ( img2 dx )

img2 dy 2 = np . square ( img2 dy )

img2 dx dy = img2 dx ∗ img2 dy

#apply summation to the va lues in c matrix

f i v e s i gma = int (np . c e i l (5∗ sigma ) )

f i v e s i gma mat r i x = np . ones ( ( f i v e s i gma , f i v e s i gma ) )

img1 dx 2 summation = cv2 . f i l t e r 2D ( img1 dx 2 , ddepth=−1, k e rne l=f i v e s i gma mat r i x )

img1 dy 2 summation = cv2 . f i l t e r 2D ( img1 dy 2 , ddepth=−1, k e rne l=f i v e s i gma mat r i x )
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img1 dx dy summation = cv2 . f i l t e r 2D ( img1 dx dy , ddepth=−1, k e rne l=f i v e s i gma mat r i x )

img2 dx 2 summation = cv2 . f i l t e r 2D ( img2 dx 2 , ddepth=−1, k e rne l=f i v e s i gma mat r i x )

img2 dy 2 summation = cv2 . f i l t e r 2D ( img2 dy 2 , ddepth=−1, k e rne l=f i v e s i gma mat r i x )

img2 dx dy summation = cv2 . f i l t e r 2D ( img2 dx dy , ddepth=−1, k e rne l=f i v e s i gma mat r i x )

#using the summation va lues you can f ind trace and determinant

img1 determiant = ( img1 dx 2 summation∗ img1 dy 2 summation ) − ( img1 dx dy summation )∗∗2
img1 trace = img1 dx 2 summation + img1 dy 2 summation

img2 determiant = ( img2 dx 2 summation∗ img2 dy 2 summation ) − ( img2 dx dy summation )∗∗2
img2 trace = img2 dx 2 summation + img2 dy 2 summation

#make Harris Response Calcu la t ion

k = 0.05 #picked the middle of a l lowed range

img1 R = img1 determiant − ( k∗( img1 trace ∗∗2))
img2 R = img2 determiant − ( k∗( img2 trace ∗∗2))

#now f i l t e r out the non−corner or weak corners by ca l cua l t ed thresho ld

img1 thresho ld = np .mean(np . abs ( img1 R ) )

img2 thresho ld = np .mean(np . abs ( img2 R ) )

#Do no maximum suppression with area of f i v e ∗sigma

img 1 c o r n e r l i s t = [ ]

img 2 c o r n e r l i s t = [ ]

f i v e s i gma = f i v e s i gma ∗3

for x in range ( f i ve s i gma , img1 . shape [ 1 ] − f i v e s i gma ) :

for y in range ( f i ve s i gma , img1 . shape [ 0 ] − f i v e s i gma ) :

img1 R window = img1 R [ y−f i v e s i gma : y+f ive s i gma , x−f i v e s i gma : x+f i v e s i gma ]

# Check i f the current response i s the maximum and exceeds the thresho ld

i f img1 R [ y , x ] == img1 R window .max( ) and img1 R [ y , x ] > img1 thresho ld :

img 1 c o r n e r l i s t . append ( ( x , y ) )

for x in range ( f i ve s i gma , img2 . shape [ 1 ] − f i v e s i gma ) :

for y in range ( f i ve s i gma , img2 . shape [ 0 ] − f i v e s i gma ) :

img2 R window = img2 R [ y−f i v e s i gma : y+f ive s i gma , x−f i v e s i gma : x+f i v e s i gma ]

# Check i f the current response i s the maximum and exceeds the thresho ld

i f img2 R [ y , x ] == img2 R window .max( ) and img2 R [ y , x ] > img2 thresho ld :

img 2 c o r n e r l i s t . append ( ( x , y ) )

# Convert the l i s t to a NumPy array

img 1 c o r n e r l i s t = np . array ( img 1 c o r n e r l i s t )

img 2 c o r n e r l i s t = np . array ( img 2 c o r n e r l i s t )

#create image with a l l po ints

img1 output = np . copy ( img1 )

img2 output = np . copy ( img2 )

for x , y in img 1 c o r n e r l i s t :

cv2 . c i r c l e ( img1 output , (x , y ) , r ad iu s =3, c o l o r =(0 , 255 , 0) , t h i ckne s s=−1)

cv2 . imwrite ( f i l e name + ’ ’ + str ( sigma ) + ’ img1 po int s . jpeg ’ , img1 output )

for x , y in img 2 c o r n e r l i s t :

cv2 . c i r c l e ( img2 output , (x , y ) , r ad iu s =3, c o l o r =(0 , 255 , 0) , t h i ckne s s=−1)
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cv2 . imwrite ( f i l e name + ’ ’ + str ( sigma ) + ’ img2 po int s . jpeg ’ , img2 output )

return img1 c o r n e r l i s t , img 2 c o r n e r l i s t

def ha r r i s c o r n e r d e t e c t i o n w i t h n c c ( img1 , img2 , corner1 , corner2 , sigma , M, f i l e name ) :

#convert images to graysca le

img1 graysca l e = cv2 . cvtColor ( img1 , cv2 .COLORBGR2GRAY) / 255

img2 graysca l e = cv2 . cvtColor ( img2 , cv2 .COLORBGR2GRAY) / 255

#add boarder to images

img1 border = cv2 . copyMakeBorder ( img1 graysca le ,M,M,M,M, cv2 .BORDERCONSTANT, value=0)

img2 border = cv2 . copyMakeBorder ( img2 graysca le ,M,M,M,M, cv2 .BORDERCONSTANT, value=0)

po i n t p a i r s = [ ]

for window1 in corner1 :

d i s t a n c e l i s t = np . z e ro s ( ( len ( corner2 ) , 2 ) )

for i , window2 in enumerate ( corner2 ) :

#get window

img1 window = img1 border [ window1 [1 ]+M−M//2 : window1 [1 ]+M+M//2 ,

window1 [0 ]+M−M//2 : window1 [0 ]+M+M//2 ]

img2 window = img2 border [ window2 [1 ]+M−M//2 : window2 [1 ]+M+M//2 ,

window2 [0 ]+M−M//2 : window2 [0 ]+M+M//2 ]

#get NCC

mean 1 = np .mean( img1 window )

mean 2 = np .mean( img2 window )

d i s t a n c e l i s t [ i ] = np . array ( [ ( np .sum( ( img1 window − mean 1 ) ∗
( img2 window − mean 2 ) ) ) /

(np . sq r t ( ( np .sum( ( img1 window − mean 1 ) ∗∗ 2) )

∗ (np .sum( ( img2 window − mean 2 ) ∗∗ 2 ) ) ) ) , i ] )

#in a l l NCC f ind the l a r g e s t one

max val = np . argmax ( d i s t a n c e l i s t [ : , 0 ] , ax i s=0)

p o i n t p a i r s . append ( ( window1 , corner2 [ max val ] ) )

#put points and l i n e s on a p ic ture

img1 co lo r = cv2 . copyMakeBorder ( img1 ,M,M,M,M, cv2 .BORDERCONSTANT, value=0)

img2 co lo r = cv2 . copyMakeBorder ( img2 ,M,M,M,M, cv2 .BORDERCONSTANT, value=0)

image combined = np . concatenate ( ( img1 co lor , img2 co lo r ) , ax i s=1)

width img1 = img1 . shape [ 1 ]

for i , j in po i n t p a i r s :

img1 plot = ( i [ 0 ] + M, i [ 1 ] + M)

img2 plot = ( j [ 0 ] + M∗3 + width img1 , j [ 1 ] + M)

# draw poins and l i n e s

cv2 . c i r c l e ( image combined , img1 plot , r ad iu s =5, c o l o r =(0 ,0 ,255) , t h i ckne s s=−1)

cv2 . c i r c l e ( image combined , img2 plot , r ad iu s =5, c o l o r =(0 ,0 ,255) , t h i ckne s s=−1)

cv2 . l i n e ( image combined , img1 plot , img2 plot , c o l o r =(0 ,255 ,0) , t h i ckne s s=1)

cv2 . imwrite ( f i l e name + ’ ’ + str ( sigma ) + ’ img ncc . jpeg ’ , image combined )

return
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def ha r r i s c o r n e r d e t e c t i o n w i t h s s d ( img1 , img2 , corner1 , corner2 , sigma , M, f i l e name ) :

#convert images to graysca le

img1 graysca l e = cv2 . cvtColor ( img1 , cv2 .COLORBGR2GRAY) / 255

img2 graysca l e = cv2 . cvtColor ( img2 , cv2 .COLORBGR2GRAY) / 255

#add boarder to images

img1 border = cv2 . copyMakeBorder ( img1 graysca le ,M,M,M,M, cv2 .BORDERCONSTANT, value=0)

img2 border = cv2 . copyMakeBorder ( img2 graysca le ,M,M,M,M, cv2 .BORDERCONSTANT, value=0)

po i n t p a i r s = [ ]

#loop thorugh a l l po ints and ca l cu l a t e the min dis tance

for window1 in corner1 :

d i s t a n c e l i s t = np . z e ro s ( ( len ( corner2 ) , 2 ) )

for j , window2 in enumerate ( corner2 ) :

#get window

img1 window = img1 border [ window1 [1 ]+M−M//2 : window1 [1 ]+M+M//2 ,

window1 [0 ]+M−M//2 : window1 [0 ]+M+M//2 ]

img2 window = img2 border [ window2 [1 ]+M−M//2 : window2 [1 ]+M+M//2 ,

window2 [0 ]+M−M//2 : window2 [0 ]+M+M//2 ]

#get SSD

d i s t a n c e l i s t [ j ] = np . array ( [ np .sum( ( img1 window − img2 window ) ∗∗ 2) , j ] )

#in a l l the SSD f ind the sma l l e s t one

min di s tance = int (np . argmin ( d i s t a n c e l i s t [ : , 0 ] ) )

p o i n t p a i r s . append ( ( window1 , corner2 [ min d i s tance ] ) )

#put points and l i n e s on a p ic ture

img1 co lo r = cv2 . copyMakeBorder ( img1 ,M,M,M,M, cv2 .BORDERCONSTANT, value=0)

img2 co lo r = cv2 . copyMakeBorder ( img2 ,M,M,M,M, cv2 .BORDERCONSTANT, value=0)

image combined = np . concatenate ( ( img1 co lor , img2 co lo r ) , ax i s=1)

width img1 = img1 . shape [ 1 ]

for i , j in po i n t p a i r s :

img1 plot = ( i [ 0 ] + M, i [ 1 ] + M)

img2 plot = ( j [ 0 ] + M∗3 + width img1 , j [ 1 ] + M)

#points and l i n e s

cv2 . c i r c l e ( image combined , img1 plot , r ad iu s =5, c o l o r =(0 ,255 ,0) , t h i ckne s s=−1)

cv2 . c i r c l e ( image combined , img2 plot , r ad iu s =5, c o l o r =(0 ,255 ,0) , t h i ckne s s=−1)

cv2 . l i n e ( image combined , img1 plot , img2 plot , c o l o r =(0 ,0 ,255) , t h i ckne s s=1)

cv2 . imwrite ( f i l e name + ’ ’ + str ( sigma ) + ’ img ssd . jpeg ’ , image combined )

return

def SIFT( img1 , img2 , f i l e name ) :

#convert images to graysca le

img1 graysca l e = cv2 . cvtColor ( img1 , cv2 .COLORBGR2GRAY)

img2 graysca l e = cv2 . cvtColor ( img2 , cv2 .COLORBGR2GRAY)

#make s i f t
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s i f t = cv2 . SIFT create ( )

#get keypoints and desc r ip to r s

kp1 , d e s c r i p t o r s 1 = s i f t . detectAndCompute ( img1 graysca le , None )

kp2 , d e s c r i p t o r s 2 = s i f t . detectAndCompute ( img2 graysca le , None )

#create matcher

bf = cv2 . BFMatcher ( )

#match de s c r i p t o t s and get lowest d i s tances matches

matches = matches = bf . match ( de s c r i p t o r s 1 , d e s c r i p t o r s 2 )

matches = sorted (matches , key=lambda va l : va l . d i s t ance )

#draw the f i r s t 50 matches

out = cv2 . drawMatches ( img1 , kp1 , img2 , kp2 , matches [ : 2 0 0 ] , None , f l a g s =2)

#save the image

cv2 . imwrite ( f i l e name + ’ SIFT . jpeg ’ , out )

return

def main ( ) :

#load a l l the task 1 images

temple 1 = cv2 . imread ( ’ temple 1 . jpg ’ )

temple 2 = cv2 . imread ( ’ temple 2 . jpg ’ )

hovde 1 = cv2 . imread ( ’ hovde 2 . jpg ’ )

hovde 2 = cv2 . imread ( ’ hovde 3 . jpg ’ )

######## Harris Corner Detector #############

#l i s t of a l l 4 sigma va lues

s i gma l i s t = [ 1 , 1 . 2 , 1 . 6 , 2 ]

for i in s i gma l i s t :

# get corners

temple img1 points , t emple img2 po ints = ha r r i s c o r n e r d e t e c t i o n (

temple 1 , temple 2 , i , ’ temple ’ )

hovde img1 points , hovde img2 points = ha r r i s c o r n e r d e t e c t i o n (

hovde 1 , hovde 2 , i , ’ hovde ’ )

#ncc

M = 40

ha r r i s c o r n e r d e t e c t i o n w i t h n c c ( temple 1 , temple 2 , temple img1 points ,

temple img2 points , i , M, ’ temple ’ )

h a r r i s c o r n e r d e t e c t i o n w i t h n c c ( hovde 1 , hovde 2 , hovde img1 points ,

hovde img2 points , i , M, ’ hovde ’ )

#ssd

ha r r i s c o r n e r d e t e c t i o n w i t h s s d ( temple 1 , temple 2 , temple img1 points ,

temple img2 points , i , M, ’ temple ’ )

h a r r i s c o r n e r d e t e c t i o n w i t h s s d ( hovde 1 , hovde 2 , hovde img1 points ,

hovde img2 points , i , M, ’ hovde ’ )

####### SIFT ############################
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SIFT( temple 1 , temple 2 , ’ temple ’ )

SIFT( hovde 1 , hovde 2 , ’ hovde ’ )

######### TASK 2 ######################

#load a l l the task 2 images

img1 1 = cv2 . imread ( ’my img1 1 . jpg ’ )

img1 2 = cv2 . imread ( ’my img1 2 . jpg ’ )

img2 1 = cv2 . imread ( ’my img2 1 . jpg ’ )

img2 2 = cv2 . imread ( ’my img2 2 . jpg ’ )

for i in s i gma l i s t :

# get corners

img1 1 points , img1 2 po int s = ha r r i s c o r n e r d e t e c t i o n (

img1 1 , img1 2 , i , ’my img1 ’ )

img2 1 points , img2 2 po int s = ha r r i s c o r n e r d e t e c t i o n (

img2 1 , img2 2 , i , ’my img2 ’ )

#ncc

M = 30

ha r r i s c o r n e r d e t e c t i o n w i t h n c c ( img1 1 , img1 2 , img1 1 points ,

img1 2 points , i , M, ’my img1 ’ )

h a r r i s c o r n e r d e t e c t i o n w i t h n c c ( img2 1 , img2 2 , img2 1 points ,

img2 2 points , i , M, ’my img2 ’ )

#ssd

ha r r i s c o r n e r d e t e c t i o n w i t h s s d ( img1 1 , img1 2 , img1 1 points ,

img1 2 points , i , M, ’my img1 ’ )

h a r r i s c o r n e r d e t e c t i o n w i t h s s d ( img2 1 , img2 2 , img2 1 points ,

img2 2 points , i , M, ’my img2 ’ )

####### SIFT ############################

SIFT( img1 1 , img1 2 , ’my img1 ’ )

SIFT( img2 1 , img2 2 , ’my img2 ’ )

i f name ==” main ” :

main ( )


