ECE 661 - HW4

Bhavya Patel - patel539@Qpurdue.edu
9/23/24

Theory Question

Theory Question: What is the theoretical reason for why

the LoG of an image can be computed as a DoG?

For a given image f(x,y), let ff(x,y,0) represent its o-smoothed version.

ff(x,y,o):// f@'y) gl —a',y—y)da dy

where the gaussian, g(x,y), is

(x.¥) = o e
X = ex —
g(xy) = 5z exp 53

o

The LoG also has the laplacian applied to it after the gaussian smoothing,
so we can write the laplacian as

0? 0?
“ o oy

Now that we have all the equations necessary we can rewrite the LoG as

v2

V2ff(x,y,0) = f(x,y) : h(:c,y,a)

where h(x,y,0) can be written as

1 2 2 2 2
h(x7Y7J) (2_x Y)exp(_w Ty)

2mot o2

After some simplification, you will find that

%ff(m,yﬁ) :a-f(x7y)-h(x,y,a)

which turns in

%ff(xvyﬂ0—> = O'-VQf(l‘,!’%J)

The last equation shows that the LoG of an image can be found by taking
the difference between the (o + do) smoothed version of the f(x,y) from the o

smoothed version. This difference is known as the DoG.

Theory Question

Theory Question: Explain in your own words why comput-
ing the LoG of an image as a DoG is computationally much

more efficient for the same value of o.

To compute the LoG with o, you must calculate a 2nd-order derivative. How-
ever, when calculating DoG you can use the fact that in the gaussian, g(x,y)
defined in the section above, is separable in x and y. Then you can do the
1-D smoothing along the x and y, which is much more computationally efficient
then doing just one 2-D smoothing. This does not work for the LoG operator

of h(x,y) because x and y are not separable.

Logic

Logic 4.1.1 - Harris Corner Detector

Some background on the Harris Corner Detection is it was the world’s most
popular intersect point detector, before SIFT and SURF. Its main use in today’s
world is if your application does not require a scale-space analysis or if the value
of the scale is fixed and known in advance. The steps to implement the Harris

Corner Detection are discussed below.

First, you turn the image into gray-scale because Harris Detector identifies if
a pixel is a corner by changes in pixel intensity. This means you do not need
to have color in the image, so we changed the image to gray-scale. Then you
will use the Haar Wavelet Filter to calculate the first derivative based on x and
y. These derivatives will be denoted as d, and d, respectively and will be used

later.

I will expand on the Haar Wavelet Filters. The most basic form of the Haar
Wavlets is (-1, 1) for x and (1, -1)T for y. These are scaled up to an MxM
operator where M is the smallest even integer greater than 4 times o. The
gray-scale image will be convolved with both x and y Haar Wavelet to get d,

and dy. Then using those calculated values you will create matrix C.

c— Y7 Y d.d,
A\ Xded, Y2

Matrix C is in a 5oxbo neighborhood of the pixel where we wish to determine
the presence or absence of a corner. All the summations are over all the pixels
in the 5o0x50 neighborhood. Then A; and Ay are the eigenvalues of C, where we
assume A\; < Ay. To be called a corner we need to find the ratio between the
eigenvalues i—f Below I will do some calculations to find the ratio, R, of the

eigenvalues.

We know,
Tr(C) =) di+) di =M+ X

and,

det(C) =Y d2> d2 — () _dudy)* = M

Logic

S0,

det(C))\1)\2 R

[Tr(C)2 M+ (1+R)?

We can rewrite the ratio, R, using the Harris Response Calculation. which is

R = det(C) — k(Tr(C))?

where k is a constant that is always between the values of 0.04 and 0.06. With
a larger k, you get fewer false corners but miss more real corners. Then with
a smaller k, you get more corners but will get lots of false corners. In my
implementation, I found that the optimal k value was very dependent on the
image and sigma value, so I keep it as a constant k = 0.5. The larger the R

value the more likely the point is going to be a corner point.

With all the chosen corner points, you will apply non-max suppression. This is
done because multiple pixels could be detected for some corners, so we will only
pick the max R-value within a specified window. I decided that the window
could be 15*¢ and I automatically removed all R values that were less than the

mean of the ratio values.

Logic 4.1.1 - Establishing Correspondences Between Image

Pairs

You can establish correspondences between image pairs by directly comparing
the gray level in a window, (m+1)x(m+1), around the corner pixel in one image
with the gray levels in a similar window around the corresponding pixel in the
other image. In my implementation, I used m = 29. We will achieve this by two
methods. Normalized Cross-Correlation (NSS) and Sum of Squared Differences
(SDD).

Logic 4.1.1 - NCC

NCC can be written as

Logic

NCC — Yo (fi(,) — ma)(f2(d,5) — m2)
VIS S (G g) — ma)2[S (F2 (i, 5) — ma)?]

where f; = image 1, fo = image 2, and m; = mean of the f; in the window.
The value of NCC is always between 1 and 0. The closer the value is to 1 the
better the match. So in my implementation, I just take the value closest to one

as the final value.

Logic 4.1.1 - SSD

SSD can be written as
SSD =Y "> " |A(i,4) — 26, 5)
i

where f1 is image 1 and fs is image 2. The SSD in other words just finds
the corner points which have the smallest distance between them. So in my
implementation, I chose the corner points by choosing the min of all the SSD

values.

Logic 4.1.2 - SIFT

The first step when using SIFT is to create a DoG pyramid. A DoG pyramid
is represented with D(x,y,0) where o is the scale value. The structure is there
is 09, 200, 409, etc. where each sigma value is called an octave. Then for each
octave you need to find an 0 = xd+0g where x = 1,2,3. So there will be 4 o-
smoothed images in each octave. This results in 3 DoG images for each octave

when you take the difference between the adjacent 4 o-smoothed images.

Then you can find the local extrema in the DoG pyramid by comparing the
middle DoG image pixels with the 26 neighboring pixel values. Where eight of
them will be the surround pixels in the same DoG image, 9 will be from the

above DoG image, and 9 will be from the below DoG image.

At the higher octaves, like 40, the extrema are calculated based on a down-

Logic

sampled image,so the corresponding pixel is not exact. You can improve the
location of the extremum in the DoG pyramid by taking the 2nd-order deriva-
tive of D at the sampling points in the DoG pyramid. The true location of the
extremum is given by

T = —H_l(fo) . J(ﬁo)

where

= (70,0, 00)"

and

oD 0D oD
J(z0) = <8m’8y’8a>

Then you can weed out extrema by thresholding |D(Z)| where an extremum
is rejected if |D(Z)| < 0.03. You now can find the dominant local orientation
by calculating the gradient vector of the Gaussian-Smoothed Image ff(x,y,0)
at the scale value, o, of the extremum. You compute the gradient magnitude,
m(x,y), and gradient orientation, #(x,y), at each point in a KxK neighborhood
around the extremum. Then after weighting 6(x,y) with m(x,y), we construct
a histogram of (x,y) values using 36 separate bins that span 360 degrees. The

bin that is the largest gives the dominant local orientation.

Finally SIFT creates a 128-dimensional vector at each extremum in the DoG
pyramid called the feature vector. This vector allows you to know the image’s
dominant orientation, so you can match point pairs through in-planar rotation.

So SIFT is invariant to in-planar rotation.

Task 1 Results

Original Images for Temple Image

Harris Corner Points Results - Task 1 Temple Image

In the images below I will display what my Harris Corner Point Detector found

for the sigma values of 1, 1.2, 1.6, 2 for the Temple Image.

Task 1 Results

Harris Corner Points for Sigma = 1

Harris Corner Points for Sigma = 1.2

Task 1 Results

Harris Corner Points for Sigma = 1.6

Harris Corner Points for Sigma = 2

Task 1 Results

NCC Results - Task 1 Temple Image

In the images below I will display the NCC Point Correspondences for the sigma
values of 1, 1.2, 1.6, 2 for the Temple Image.

NCC Point Correspondences for Sigma = 1

NCC Point Correspondences for Sigma = 1.2

Task 1 Results

NCC Point Correspondences for Sigma = 1.6

NCC Point Correspondences for Sigma = 2

Task 1 Results

SSD Results - Task 1 Temple Image

In the images below I will display the SSD Point Correspondences for the sigma
values of 1, 1.2, 1.6, 2 for the Temple Image.

SSD Point Correspondences for Sigma = 1

SSD Point Correspondences for Sigma = 1.2

Task 1 Results

SSD Point Correspondences for Sigma = 1.6

SSD Point Correspondences for Sigma = 2

Task 1 Results

Original Images for Hovde Image

Harris Corner Points Results - Task 1 Hovde Image

In the images below I will display what my Harris Corner Point Detector found

for the sigma values of 1, 1.2, 1.6, 2 for the Hovde Image.

Task 1 Results

Harris Corner Points for Sigma = 1

Harris Corner Points for Sigma = 1.2

Task 1 Results

Harris Corner Points for Sigma = 1.6

Harris Corner Points for Sigma = 2

Task 1 Results

NCC Results - Task 1 Hovde Image

In the images below I will display the NCC Point Correspondences for the sigma
values of 1, 1.2, 1.6, 2 for the Hovde Image.

NCC Point Correspondences for Sigma = 1

NCC Point Correspondences for Sigma = 1.2

Task 1 Results

NCC Point Correspondences for Sigma = 1.6

NCC Point Correspondences for Sigma = 2

Task 1 Results

SSD Results - Task 1 Hovde Image

In the images below I will display the SSD Point Correspondences for the sigma
values of 1, 1.2, 1.6, 2 for the Hovde Image.

SSD Point Correspondences for Sigma = 1

SSD Point Correspondences for Sigma = 1.2

Task 1 Results

SSD Point Correspondences for Sigma = 1.6

SSD Point Correspondences for Sigma = 2

Task 1 Results

SIFT Results - Task 1 Temple Image

In the image below, I will display the SIFT algorithm result for the Temple

Image.

SIFT Result for Temple Image

SIFT Results - Task 1 Hovde Image

In the image below, I will display the SIFT algorithm result for the Hovde

Image.

SIFT Result for Hovde Image

Task 1 Results

SuperPoint and SuperGlue Results - Task 1 Temple Image

In the image below, I will display the Superpoint and Superglue result for the
Temple Image.

Superpoint and Superglue Result for Temple Image

SuperPoint and SuperGlue Results - Task 1 Hovde Image

In the image below, I will display the Superpoint and Superglue result for the
Hovde Image.

Superpoint and Superglue Result for Hovde Image

Task 2 Results

Original Images for My Image 1

Harris Corner Points Results - Task 2 My Image 1

In the images below I will display what my Harris Corner Point Detector found

for the sigma values of 1, 1.2, 1.6, 2 for My Image 1.

Task 2 Results

Harris Corner Points for Sigma = 1

Harris Corner Points for Sigma = 1.2

Task 2 Results

Harris Corner Points for Sigma = 1.6

Harris Corner Points for Sigma = 2

Task 2 Results

NCC Results - Task 2 My Image 1

In the images below I will display the NCC Point Correspondences for the sigma
values of 1, 1.2, 1.6, 2 for My Image 1.

NCC Point Correspondences for Sigma = 1

NCC Point Correspondences for Sigma = 1.2

Task 2 Results

NCC Point Correspondences for Sigma = 1.6

NCC Point Correspondences for Sigma = 2

Task 2 Results

SSD Results - Task 2 My Image 1

In the images below I will display the SSD Point Correspondences for the sigma
values of 1, 1.2, 1.6, 2 for My Image 1.

SSD Point Correspondences for Sigma = 1

SSD Point Correspondences for Sigma = 1.2

Task 2 Results

SSD Point Correspondences for Sigma = 1.6

SSD Point Correspondences for Sigma = 2

Task 2 Results

Original Images for My Image 2

Harris Corner Points Results - Task 2 My Image 2

In the images below I will display what my Harris Corner Point Detector found

for the sigma values of 1, 1.2, 1.6, 2 for My Image 2.

Task 2 Results

Harris Corner Points for Sigma = 1

Harris Corner Points for Sigma = 1.2

Task 2 Results

Harris Corner Points for Sigma = 1.6

Harris Corner Points for Sigma = 2

Task 2 Results

NCC Results - Task 2 My Image 2

In the images below I will display the NCC Point Correspondences for the sigma
values of 1, 1.2, 1.6, 2 for My Image 2.

NCC Point Correspondences for Sigma = 1

NCC Point Correspondences for Sigma = 1.2

Task 2 Results

NCC Point Correspondences for Sigma = 1.6

NCC Point Correspondences for Sigma = 2

Task 2 Results

SSD Results - Task 2 My Image 2

In the images below I will display the SSD Point Correspondences for the sigma
values of 1, 1.2, 1.6, 2 for My Image 2.

SSD Point Correspondences for Sigma = 1

SSD Point Correspondences for Sigma = 1.2

Task 2 Results

SSD Point Correspondences for Sigma = 1.6

SSD Point Correspondences for Sigma = 2

Task 2 Results

SIFT Results - Task 2 My Image 1

In the image below, I will display the SIF'T algorithm result for My Image 1.

SIFT Result for My Image 1

SIFT Results - Task 2 My Image 2

In the image below, I will display the SIFT algorithm result for My Image 2.

SIFT Result for My Image 2

Task 2 Results

SuperPoint and SuperGlue Results - Task 2 My Image 1

In the image below, I will display the Superpoint and Superglue result for the
My Image 1.

Superpoint and Superglue Result for My Image 1

SuperPoint and SuperGlue Results - Task 2 My Image 2

In the image below, I will display the Superpoint and Superglue result for the
My Image 2.

Superpoint and Superglue Result for My Image 2

Results Disccusion

Results Discussion

First I will talk about my results on the Harris Corner Detector. The most
obvious observation is that as the omega value increased less amount of interest
points were detected. In almost all of the images, you can see that at the lowest
omega value of one, many interest points were being detected. The interest
points being detected were very sensitive because they would find even the
smallest change in grayscale to be a corner. Now the results shown have been
through some point suppression, so you do not see all of the points, but this

pattern of many points in the lower sigma values is still evident.

A side note concerning the images that I took. Initially, the resolution of the
images I took was much greater than the images that were given to us in the
assignment. When I put the higher-resolution image through my Harris Corner
detector there were many more interest points than when I reduced the resolu-
tion to something similar to the given images. So, if the resolution of the image
is higher then you can increase the sigma value and get a similar amount of
interest points if you had a lower sigma value and lower resolution image. This
conclusion in hindsight is not a surprise because in the Gaussian pyramid, we

know that when you double the sigma the size of the image decreases by 2 fold.

The next point of discussion is the difference in finding corresponding points
using SSD versus NCC. I observed that SSD yielded slightly better results than
NCC, as there were fewer incorrect matches between points in the Hovde Image
and My Image 1. However, the difference in quality between the two methods
was less noticeable in the Temple Image and My Image 2. Despite SSD generally
producing better results in the images used for the report, neither method was
sufficient for accurately identifying corresponding points. In all the images there
were portions of them where an object was not present in the other image, but
there still were interest points being mapped to the other image. This was the
largest cause of the false assignments of corresponding points. This problem is
mostly fixed in the SIFT and SuperPoint and SuperGlue implementations.

The SIFT implementation was much better than the Harris Corner Detector. It
eliminated many of the false corresponding point allocations which was caused
because of the angle of the image having a portion of the building/object not

in the other image. For example, looking at the SIFT Result of the Temple

Results Disccusion

Image we can see in the left image, half of the picture is not visible in the right
image. So, the SIFT implementation will stop mapping interest points in that
region which is a huge improvement from the Harris Corner Detection Method.
Not only that it seems that the SIFT algorithm only maps one interest point
to another, unlike the Harris Corner Detection method which had many one-to-
many corner mappings. This highlights the limitation of SSD and NCC because
they only look at the distance between points, which is not extensive enough of

a mapping technique.

SIFT is more successful than Harris Corner Detection because it calculates a
dominant local orientation, making it easier to map points under planar rotation.
While Harris Corner Detection can successfully identify interest points when the

correct sigma value is chosen, it struggles with accurate point mapping.

The final method implemented in this report is the SuperPoint and SuperGlue
approach, which proved to be the most effective in identifying matching point
pairs. To illustrate why this method excels, let’s examine My Image 1. In pre-
vious implementations, including SIFT, the algorithms struggled to correctly
match points on the building behind the brown building. Both Harris Corner
Detection and SIFT mistakenly mapped points from the top of this building
in the left image to the far right side of the same building in the right image.
However, SuperPoint and SuperGlue recognized that the images were showing
different parts of the building and correctly flagged these points in red, indicat-
ing no valid corresponding points. This level of accuracy sets SuperPoint and

SuperGlue apart from the classical methods.

The best parameters for the best feature extraction and matching is very de-
pendent on the image. However, I found general success with using the window
size, M, equal to 29, a sigma value of 1.6, k value of 0.5 (for Harris Response

Calculation function), and a non-max suppression window of 15*c.

Source Code

import cv2

import numpy as np

def

def

get_haar_wavelet_filter (sigma):

#get M value for size of matriz
M = int(np.ceil (4*xsigma))
ifM% 2 = 1):

M+=1

#create haar matriz for =z

haar_x_left = —np.ones((M, M // 2))
haar_x_right = np.ones((M, M // 2))
haar_x = np.concatenate ((haar_x_left , haar_x_right), axis=1)

#create haar matriz for y

haar_y_top = np.ones((M //2 , M))

haar_y_bottom = —np.ones((M //2 , M))

haar_.y = np.concatenate ((haar_y_top, haar_y_bottom), axis=0)

return haar_x, haar_y

harris_corner_detection (imgl, img2, sigma, file_name):

#convert images to grayscale
imgl_grayscale = cv2.cvtColor (imgl, cv2.COLORBGR2GRAY) / 255
img2_grayscale = cv2.cvtColor (img2, cv2.COLORBGR2GRAY) / 255

#Use Haar Waveler Filter to get derivative
haar_x, haar.y = get_haar_wavelet_filter (sigma)

#convolve the haar matriz on each image
imgl_dx = cv2.filter2D (imgl_grayscale ,ddepth=—1,kernel=haar_x)
imgl_dy = cv2.filter2D (imgl_grayscale ,ddepth=—1,kernel=haar_y)

img2_.dx = cv2.filter2D (img2_grayscale ,ddepth=—1,kernel=haar_x)
img2_dy = cv2.filter2D (img2_grayscale ,ddepth=—1,kernel=haar_y)

#get values without the summation in c¢ matriz
imgl_dx_-2 = np.square(imgl_dx)
imgl_dy-2 = np.square(imgl_-dy)
imgl_dx_.dy = imgl_.dx * imgl_dy

img2_dx_-2 = np.square(img2_dx)
img2_dy-2 = np.square(img2_dy)
img2_dx_-dy = img2.dx * img2_dy

#apply summation to the wvalues in ¢ matric
five_sigma = int(np.ceil (5xsigma))

five_sigma_matrix = np.ones((five_sigma , five_sigma))

imgl_dx_2_summation = cv2.filter2D (imgl_dx-2,ddepth=—1,kernel=five_sigma_matrix)
imgl_dy_2_summation = cv2.filter2D (imgl_dy-2,ddepth=—1,kernel=five_sigma_matrix)

Source Code

imgl_dx_dy_summation = cv2.filter2D (imgl_dx_-dy ,ddepth=—1,kernel=five_sigma_matrix)
img2_dx_2_summation = cv2.filter2D (img2_dx-2 ,ddepth=—1,kernel=five_sigma_matrix)
img2_dy_2_summation = cv2.filter2D (img2_dy-2 ,ddepth=—1,kernel=five_sigma_matrix)

img2_dx_dy_summation = cv2.filter2D (img2_dx_-dy ,ddepth=—1,kernel=five_sigma_matrix)

#using the summation values you can find trace and determinant

imgl_determiant = (imgl_-dx_-2_summation*imgl_dy_-2_summation) — (imgl_dx_dy_summation)x*2
imgl_trace = imgl_-dx_-2_summation + imgl_-dy-2_summation
img2_determiant = (img2_dx_-2_summation*img2_dy_-2_summation) — (img2_dx_-dy-summation)x*2
img2_trace = img2_dx_-2_summation + img2_dy_-2_summation

#make Harris Response Calculation

k = 0.05 #picked the middle of allowed range
imgl_ R = imgl_determiant — (kx(imgl_tracex%2))
img2_ R = img2_determiant — (k*(img2_tracex%2))

#now filter out the mon—corner or weak corners by calcualted threshold
imgl_threshold = np.mean(np.abs(imgl_R))
img2_threshold = np.mean(np.abs(img2_R))

#Do no mazimum suppression with area of fivexsigma
imgl_corner_list = []

img2_corner_list = []

five_sigma = five_sigma=x3
for x in range(five_sigma , imgl.shape[1] five_sigma):
for y in range(five_sigma , imgl.shape[0] — five_sigma):
imgl_R_window = imgl_R[y—five_sigma:y+five_sigma , x—five_sigma :x+five_sigma]

Check if the current response is the mazimum and exceeds the threshold
if imgl_R[y, x] == imgl_R_window .max() and imgl_R[y,x] > imgl_threshold:
imgl_corner_list.append((x, y))

for x in range(five_sigma , img2.shape[l] — five_sigma):
for y in range(five_sigma , img2.shape[0] — five_sigma):
img2_R_window = img2_R[y—five_sigma:y+five_sigma , x—five_sigma:x+five_sigma]

Check if the current response is the mazimum and exceeds the threshold
if img2_ R[y, x] = img2_R_window .max() and img2_R[y,x] > img2_threshold:
img2_corner_list.append ((x, y))

Convert the list to a NumPy array
imgl_corner_list = np.array(imgl_corner_list)

img2_corner_list = np.array(img2_corner_list)

#create image with all points
imgl_output = np.copy(imgl)
img2_output = np.copy(img2)

for x, y in imgl_corner_list:
cv2.circle (imgl_output, (x, y), radius=3, color=(0, 255, 0), thickness=—1)
cv2.imwrite (file_name 4+ ’_’ + str(sigma) + ’_imgl_points.jpeg’, imgl_output)

for x, y in img2_corner_list:
cv2.circle (img2_output, (x, y), radius=3, color=(0, 255, 0), thickness=—1)

Source Code

def

cv2.imwrite (file_name 4+ ’_’ + str(sigma) + ’_img2_points.jpeg’, img2_output)

return imgl_corner_list, img2_corner_list

harris_corner_detection_with_ncec (imgl, img2, cornerl, corner2, sigma, M, file_name):

#convert images to grayscale
imgl_grayscale = cv2.cvtColor (imgl, cv2.COLORBGR2GRAY) / 255
img2_grayscale = cv2.cvtColor (img2, cv2.COLORBGR2GRAY) / 255

#add boarder to images
imgl_border = cv2.copyMakeBorder(imgl_grayscale ,M,M,M,M, cv2 .BORDER.CONSTANT, value=0)
img2_border = cv2.copyMakeBorder(img2_grayscale ,M,M,M,M, cv2.BORDER.CONSTANT, value=0)

point_pairs = []

for windowl in cornerl:
distance_-list = np.zeros((len(corner2),2))

for i, window2 in enumerate(corner2):

#get window
imgl_window = imgl_border [windowl[1]4+MM//2 : windowl[1]+NMHM//2,
[0]+MM//2 : windowl[0]+NMHM/ /2]
img2_window = img2_border [window2[1]4+MM//2 : window2[1]+NMM//2,
window2 [0]+M-M//2 : window2[0]+MHM/ /2]

windowl

#get NCC
mean_-1 = np.mean(imgl_window)
mean_2 = np.mean(img2_window)
distance_-list[i] = np.array ([(np.sum((imgl_-window — mean-1) =
(img2_window — mean_-2))) /
(np.sqrt ((np.sum((imgl_-window — mean.1) %% 2))
* (np.sum((img2_window — mean_-2) %% 2)))), i])

#in all NCC find the largest one
max_val = np.argmax(distance_list [:, 0], axis=0)

point_pairs.append ((windowl, corner2|[max_val]))

#put points and lines on a picture

imgl_color = cv2.copyMakeBorder (imgl ,M,M,M,M, cv2.BORDER.CONSTANT, value=0)
img2_color = cv2.copyMakeBorder (img2 ,M,M,M,M, cv2.BORDER.CONSTANT, value=0)
image_combined = np.concatenate ((imgl_color, img2_color), axis=1)

width_imgl = imgl.shape[1]

for i, j in point_pairs:
imgl_plot = (i[0] + M, i[1l] + M)
img2_plot = (j[0] + Mx3 + width_imgl,j[1] + M)

draw poins and lines

cv2.circle (image_.combined, imgl_plot, radius=5, color=(0,0,255), thickness=—1)
cv2.circle (image_combined, img2_plot, radius=5, color=(0,0,255), thickness=-1)
cv2.line (image_combined, imgl_plot, img2_plot, color=(0,255,0), thickness=1)

cv2.imwrite(file_name + ’_’ + str(sigma) + ’'_img_ncc.jpeg’, image_combined)

return

Source Code

def

def

harris_corner_detection_with_ssd (imgl, img2,

#convert images to grayscale
imgl_grayscale = cv2.cvtColor (imgl,
img2_grayscale = cv2.cvtColor (img2,
#add boarder to images
imgl_border =
img2_border =

(]

point_pairs

#loop thorugh all and calculate
in cornerl:

np.zeros ((len(corner2),2))

points
for windowl
distance_list =
for j, window2 in enumerate(corner2):
#get window
imgl_border [windowl [1]+MM//2
windowl [0] +M-M//2
img2_border [window2[1]+MM//2
window2 [0] +M-M/ /2

imgl_-window =
img2_window =

#get SSD
distance_list [j] =

#in all

min_distance =

the SSD find the smallest one

int (np.argmin(distance_list [:
point_pairs.append ((windowl,

#put points and lines on a picture

imgl_color =

img2_color =

image_combined = np.concatenate ((imgl_color,

width_imgl = imgl.shape[1]
for i, j in point_pairs:
imgl_plot = (i[0] + M, i[1l] + M)
img2_plot = (j[0] + Mx3 + width_imgl,j[1] + M)

#points and lines

cv2.circle (image_.combined, imgl_plot, radius=5,

cv2.circle (image_combined, img2_plot, radius=5,

cv2.line (image_combined, imgl_plot, img2_plot,
cv2.imwrite(file_name + ’_’° + str(sigma) +

return

SIFT (imgl, img2, file_.name):

#convert images to grayscale
cv2.cvtColor (imgl,
cv2.cvtColor (img2,

imgl_grayscale =
img2_grayscale =

#make sift

cornerl ,

cv2 .COLOR.BGR2GRAY)
cv2 .COLORBGR2GRAY) / 255

np.array ([np.sum((imgl_window

img2_color),

color=(0,0,255),

’_img_ssd.jpeg’,

corner2, sigma, M, file_name):

/ 255

cv2.copyMakeBorder (imgl_grayscale ,M,M,M,M, cv2 .BORDER.CONSTANT, value=0)
cv2.copyMakeBorder (img2_grayscale ,M,M,M,M, cv2 .BORDER.CONSTANT, value=0)

the min distance

windowl [1]4+NMHM/ /2,
window1 [0]+MHM/ /2]
window2 [1]4+NMHM/ /2,
window2 [0]+MHM/ /2]

img2_window) *x 2), j])

:01))

corner2 [min_distance]))

cv2.copyMakeBorder (imgl ,M,M,M,M, cv2 .BORDER.CONSTANT, value=0)
cv2.copyMakeBorder (img2 ,M,M,M,M, cv2 .BORDER.CONSTANT, value=0)

axis=1)

color=(0,255,0),
color=(0,255,0),

thickness=—1)
thickness=-—1)
thickness=1)

image_combined)

cv2 .COLORBGR2GRAY)
cv2 .COLORBGR2GRAY)

Source Code

sift = cv2.SIFT_create ()

#get keypoints and descriptors
kpl, descriptorsl = sift.detectAndCompute(imgl_grayscale, None)
kp2, descriptors2 = sift.detectAndCompute(img2_grayscale, None)

#create matcher
bf = cv2.BFMatcher ()

#match descriptots and get lowest distances matches
matches = matches = bf.match(descriptorsl ,descriptors2)
matches = sorted (matches, key=lambda val: val.distance)

#draw the first 50 matches
out = cv2.drawMatches(imgl, kpl, img2, kp2, matches[:200], None, flags=2)

#save the image
cv2.imwrite(file_name 4+ ’*_SIFT.jpeg’, out)

return

def main():

#load all the task 1 images

temple_1 = cv2.imread (’temple_1.jpg’)
temple-2 = cv2.imread(’temple_2.jpg’)
hovde-1 = c¢v2.imread(’hovde_2.jpg’)
hovde_-2 = cv2.imread(hovde-3.jpg’)

wHAAAAH Harris Corner Detector #tt st ##7#

#list of all 4 sigma values
sigma_list = [1, 1.2, 1.6, 2]

for i in sigmac_list:

get corners

temple_imgl_points, temple_.img2_points = harris_corner_detection (
temple_1, temple_2, i, ’temple’)

hovde_imgl_points, hovde_img2_points = harris_corner_detection (
hovde_-1, hovde-2, i, ’hovde’)

#ncc

M = 40

harris_corner_detection_with_ncc (temple_-1, temple.2, temple_.imgl_points,
temple_img2_points, i, M, ’temple’)

harris_corner_detection_with_ncc (hovde_-1, hovde_2, hovde_imgl_points,
hovde_img2_points, i, M, ’hovde’)

#ssd

harris_corner_detection_with_ssd (temple_1, temple-2, temple_imgl_points,
temple_img2_points, i, M, ’temple’)

harris_corner_detection_with_ssd (hovde-1, hovde-2, hovde_imgl_points,

hovde_img2_points, i, M, ’hovde’)

SIFT

Source Code

if

SIFT (temple_1, temple-2, ’temple’)
SIFT (hovde_1, hovde_.2, ’hovde’)

A HHA A TASK 2

#load all the task 2 images

imgl_-1 = cv2.imread(’my_imgl_1.jpg’)
imgl_2 = cv2.imread(’my_imgl_2.jpg’)
img2_1 = cv2.imread(’my_img2_1.jpg’)
img2_2 = cv2.imread(’my_-img2_2.jpg’)

for i in sigmac_list:

get corners

imgl_1_points, imgl_2_points = harris_corner_detection (

imgl_1, imgl_2, i, ’my-imgl’)

img2_1_points, img2_2_points = harris_corner_detection (

img2_1, img2.2, i, ’my-img2’)
#ncc
M = 30
harris_corner_detection_-with_ncc (

harris_corner_detection_-with_ncc (

#ssd

harris_corner_detection_with_ssd (

harris_corner_detection_with_ssd (

SIFT

imgl_1, imgl_2
imgl_2_points ,
img2_1, img2_2
img2_2_points ,

imgl_1, imgl_2
imgl_2_points ,
img2_1, img2_2
img2_2_points ,

SIFT (imgl-1, imgl_2, ’my_imgl’)
SIFT (img2_-1, img2.2, ’'my-img2’)

__name__.=—=" __main__":

main ()

s

s

s

s

i

i

i

i

imgl_1l_points ,

)

M,

‘my_imgl’)

img2_1_points ,

)

M,

‘my_img2’)

imgl_1_points ,

)

M,

‘my_imgl’)

img2_1_points ,

)

M,

‘my_img2)

