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Logic

Point to Point Logic

This homography creation logic closely follows the process we took for Hw02,
so much of the logic will be repeated.

A Homography is a 3x3 non-singular matrix that does linear transformations
on homogeneous 3-vectors. This allows a homography matrix to convert a ho-
mogeneous point in a domain space to a homogeneous point in the range space.
We can define the domain space as x = (x, y, x)7, the range space as x’ = (x’,
y’, z’)7, and the homography matrix as H. So we can rewrite this equation for

linear transformations between images as
x' = Hx
Now lets define the Homography matrix, H, as

a11 a1z iy
H= |an a2 ft,

(%1} (%] 1

So now let’s write the full equation for x’ = Hx.

JU/ air a2 tx x
! —

Y| = a2 a2 ty

2 v; vy 1 1

When converting homogenous cooridnates from 3d vector to 2d vector you know
to find the point (x,y) in physical space IR? the x = 2 andy = % Where the
3d vector is (a,b,c)”. So converting the z into a 1 will just make the conversion
between the 3d vector into 2d physical points easier by simplifying the equation.
Now let us rewrite the matrices into linear equations in the real coordinates (2d)

by expanding the matrices and then simplifying.

! / !
Xoq = A1,1% + a1,2Y + tz — V12T — Voyx

Yoq = 2,1 + a2y + ty — vizy’ — vayy’

We can create a system of equation and solve for the 8 unknown homography

variables. Which means we need 4 points of the image from before and after the
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translation done by the homography. Each set of points results in 2 equations,
so 4*2 = 8. Let those 4 points be represented by (x1, y1), (x2, y2), (X3, ¥3),

(X4a y4) and they map to (X’h Y’l)a (X727 y’2)3 (X737 y’3)7 (X74a y74)' The SyStem
of equations in matrix form is

z1 y1 1 0 0 0 —xa) —wnzi| e x}
0 0 0 =y 1 —my] —wmy| |aie2 y1
o Yo 1 0 0 0 —xoxh —youh te xh
0 0 0 22 ya 1 —moyh —y2uhl| |a21 _ yh
zg y3 1 0 0 0 —z3xh —yszh| |age xh
0 0 0 23 ys 1 —w3y35 —ysys| |ty Y3
g ya 1 0 0 0 —zyx) —wyaxly| | 1 Ty
10 0 0 @4 ya 1 —wayy —yayy| | v2 | | Y4 |

The above is in the form of Ab = ¢ which can be turned into b = A~'c to
solve for the vector b which contains the variables in the homography matrix.
Then once you have the variables you have the H, so you can apply x’ = Hx
to transform all the pixels in the image to another picture. However, using
this method I found there to be lots of bleeding. To fix this you can convert
the equation to H™'x’ = x. So now you can take the pixels that you want to
replace and find their corresponding pixel in the source image. This is how the

transformations are carried out throughout this homework.

Two Step Logic

The general idea for a two-step transformation is first to remove the projective
distortion by using the vanishing line method. Then take that new image and
remove the remaining affine distortion by using a cos(f) expression that uses
the Dual Degenerate Conic C}_ to set the 6 back to 90°.

Step 1: Removing Projective Distortion using the vanishing line method.

A homography is affine if and only if 1., is mapped to lo,. However, a pro-
jective transformation maps 1l to a physical line called the vanishing line. This
means we can use a homography to send the vanishing line back to 1, = (0, 0,
0)T to remove the projective distortion. The vanishing line is the line connecting
the two vanishing points of an image. A vanishing point is the intersection point

of parallel lines 1 and m in the non-distorted image. The vanishing line can be
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found by taking the cross product of the two vanishing points. Let us define

the vanishing line as lygnish = (11,12,13)T. Then the homography to remove the

projective distortion is written below.

Hstepl =10 1 0

Then we want to apply this homography on lines and I’ = H~71, so lets convert
this H to H=7.

1 0
sep1 = [0 1
0 0
Then you can apply H S_tz;ﬂ to the parallel lines 1 and m to get I’ and m’, which

should only have an affine distortion.

Step 2: Removing Affine Distortion using Dual Degenerate Conic C}_.
Let us write the equation for cos() in terms of the Dual Degenerate Conic

C%, and its lines 1 and m.

1rcxm

VT CLH(mT Ciom)

cos(f) =

Let us let cos(f) be equal to 0 to represent the final angles being at 90°. This
means that we need the numerator to be equal to zero to make this statement
true, so we can ignore the denominator. Using the equations 1 = H'1’, m =

H'm’, and Cf_ = HflCzéH*T we can simplify the equation to
0=1THC_H m/

Then we can expand and simplify this equation to get the below.

/
AAT OM] ™

o[ =0
0122 0 e

oy
m

Then we know that AA”T = S, which means that s;s = so1. We can also write

S99 as 1 because only the ratios matter. Now we can rewrite the above equation.
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s11 s12| |m)
A =0
[1 2} Lw 1] [mé]

This can be rewritten into the linear equation below.

! I !/ ! !/ ! ! !/
sulymy + siz(lymy + lymy) = —lymy

In the equation above there is 2 unknowns, so you need 2 pairs of parallel
lines 1 and m to solve the system. Then once you solve it you will have an S
matrix which is equal to AAT. Then A is positive definite, so we can do an
eigendecomposition to get A = VDVT. Then AAT = VDVTVDVT = vD2V7T.
A0
0 A
eigendecomposition of S, we get eigenvectors of A, with its eigenvalues given

Then you know D = ( > VVT =1, so we know that by doing the

by the positive square roots of the eigenvalues of S. Now we know that A =
A2 0

UNRVAY

will remove the affine distortion of the image.

A% VT. So knowing A we can plug it into the homography that

A A 0O
Hstep2 = |A21 A 0
0 0 1

Now you can multiply the Hg;epi and Hggepr homographies to get the combined

homography which I will apply to the original image to remove the distortion.

One Step Logic

The one-step method removes both the projective and affine distortions at once
rather than individually like the two-step method. It achieves this by using the
homography that maps C;’g back to C%, . We can write this mapping with the

equation .t = HC*_H”. We want to solve for C_% which is

Ct=

o0

[SIISHINIIS e
e O Nl
~ N0 e
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Given,

0 A A O
0| ,H=[Ay Az O
0

Vo (%1 1

cr =

oS O =
S = O

we can expand and simplify the mapping equation to get

AAT  Av

T AT Ty

We can now calculate A and v in the homography, H, matrix using

o

Now we need to solve for the variables a, b, ¢, d, e, and f. Let us expand

(S SIS

AAT—l

e Nl
1

a
b
2

the equation '"C~m’ = 0 where 1’ and m’ are orthogonal line pairs in the
undistorted post-homography image. We can set f = 1 because only ratios

matter in homographies.

b d /
a 5 > m
2 2 1
/ / b /|l =
[ll U 1} 5 ¢ 5| |my| =0
d ¢ 1] |1

We can see that there are five unknown variables we need to solve for, so we
will need five I’ and m’ orthogonal line pairs to solve the system of equations
that is written below. Note: There should be 5 equations below with the same

form.

b d e
a(lymy) + 5 (lmy + limy) + elymy) + 5 (limy) + 5 (hmy) = —1
After you have the values of a, b, ¢, d, e, and f, so you will be able to solve
for A using the eigendecomposition of AAT. Then with A you can solve for v.
Now you can reconstruct H using A and v and apply the homography on the

original image to remove all distortions.



Vectorization and Discussion on Results

Vectorization

I used vectorized numpy operations when applying my homography to an image.
This can be found in the source code function ”apply-homography’. Instead of
looping through the pixels of the image one by one, I vectorized the image

making the computation much quicker.

Discussion on Results

In this section I will just talk about some of the things that I noticed and clarify
things I thought would be important to discuss. Some of my final images might
seem to not have a 90-degree angle, however, I have checked the angle between
orthogonal lines after the homography had been applied. This confirms that
all of the results that should have no distortion are correct. I found that when
applying the homography sometimes the resulting image would be too big for
my computer to run because of RAM limitations. Thus, I used the scaling
homography that was discussed on pizza to make the computation possible. I
found that scaling the homography would have minor effects on the results,
which could be a reason that the images could look deceiving. I found this
more true with the two-step approach because you would have to apply the
homography on pairs of lines and then apply another homography. So the
slight inaccuracies were amplified, but I managed to mitigate them to where
the images seem to look 90 degrees. However, the actual angle between the pair
of lines could be in the range of 87-89 degrees.

I would also like to mention that I was unable to get the corridor images to
properly work for any of the methods outlined in the homework document. I
narrowed down the issue to my apply-homography function for the point to point
method. The generated homography seemed to be accurate because I would
apply the generated homography using cv2.warpPerspective() get an accurate
image. However, with my function, I found that I could only get a black image
or a black image with a small section with a very distorted and indiscernible
image. However, when applying the homography on the lines created by the
points the angle between them was 90 degrees. For the two-step approach, I
could not find any solution and the angle between the lines was 60 degrees when
applying the homography on the lines. I suspect that it was not 90 degrees
because of all the homography scaling done in this function. I found that a
scaled homography minor distortion messes up the angle between the lines. For

the one-step approach applying the final homography on the lines resulted in a



Vectorization and Discussion on Results

angle of 90 degrees. This means the homography is correct, but I was unable to
get the cv.warpPerspective() to work. So for the corridor image results, if

there is a result I used the cv.warpPerspective() function.



Task 1

Images and Points used in Task 1

(a) Board Image

(b) Corridor Image

Table 1: Points used in Task 1

Image P Q R S
Board (73,425) | (1221,146) | (1354,1956) | (423,1798)
Corridor | (815,576) | (1073,531) | (1068,1212) | (811,1069)

Note: P,Q,R,S starts in the upper left most point and goes clockwise.




Task 1

Point-to-Point Correspondences

Point to Point Correspondences Results

(a) Board Point to Point Image (b) Corridor Point to Point Image



Task 1

Two Step Approach

(a) Board without Projective Distor- (b) Corridor without Projective Dis-
tion tortion
(¢) Board without Any Distortion (d) Board without Any Distortion

Figure 3: Two Step Approach Results



Task 1

One Step Approach

One Step Approach Results

(a) Board One Step Approach Image (b) Corridor One Step Approach Image



Task 2

Images and Points used in Task 2

(a) My Image 1

(b) My Image 2

Table 2: Points used in Task 2

Image P Q R S
My Image 1 | (481,1330) | (2141,805) | (2266,2627) | (950,2612)
My Image 2 | (954,704) | (2841,1729) | (2038,3380) | (141,2889)

Note: P,Q,R,S starts in the upper left most point and goes clockwise.




Task 2

Point-to-Point Correspondences

Point to Point Correspondences Results

(a) My Image 1 Point to Point (b) My Image 2 Point to Point



Task 2

Two Step Approach

Two Step Approach Results

(a) My Image 1 without Projective (b) My Image 2 without Projective
Distortion Distortion

(d) My Image 2 without Any Distor-
(c) My Image 1 without Any Distortion tion



Task 2

One Step Approach

One Step Approach Results

(a) My Image 1 One Step Approach (b) My Image 1 One Step Approach



Oberservations

Observations

First let’s talk about the point-to-point method. This way is the most simple
to implement because we only need to use four points to achieve a result. There
was also never a time in the point to point where I needed to do matrix scaling
for RAM limitations. The results of the point-to-point are very good and angles

seem to be 90 degrees at all points.

The next method was the two-step approach. This method requires you to find
2 pairs of parallel lines and then 2 pairs of transposed orthogonal lines from
the first step to execute. However, I found that there were lots of scaling issues
when applying the homographies because the scaling would result in slightly
distorted images. But, then you do the second step which builds on the first
homography, and then the slight inconsistencies compound which can give bad
results. This can be alleviated by finding the smallest scaling factor which is
under the RAM threshold, but this can be tedious.

The final method was the one-step approach. This one was similar in complexity
to the two-step approach because you needed to find lines, but instead of the
interdependices between the lines, all you need is five pairs of orthogonal lines.
This method also had some scaling issues but was much more manageable than
the two-step method. 1 did initially have lots of trouble with the one-step
method because I was using the four corner points and another same rotation
orthogonal line pairs. This resulted in very poor results. However, for the fifth
pair, I found an orthogonal pair that had a different rotation than the 4 corner
line pairs which made my results great. This could be difficult to do if your shape
is not a square, but is well worth the effort to get the best results. As shown
in the board image. In my opinion, I found that the point-to-point method was

the best in terms of results, efficiency of implementation, and execution time.



Source Code

import cv2

import numpy as np

#this function creates Homography Matriz for translation
def create_homography(x , x_prime):

#formatting list of list into 1 list

x = [item for sublist in x for item in sublist]

x = np.array (x)

x-prime = [item for sublist in x_prime for item in sublist]
x_prime = np.array (x_prime)

#b =A1 % ¢

# create matricies

= x_prime.reshape ((8,1))
= np.zeros ((8,8))

> 0
|

for i in range(0, 4):
A[2xi] = np.array ([x[2xi], x[2xi+1], 1, 0, 0, 0, —x[2%i]xx_prime[2xi],
—x[2xi+1]*x_prime[2%i]])
A[2xi + 1] = np.array ([0, 0, O, x[2%i], x[2*x141], 1, —x[2%i]*xx_prime[2*xi+1],
—x[2xi+1]*x_prime [2%1i+1]])

#get inverse of A
A_inv = np.linalg.inv (A)

#compute b which is the homography wvalues
b = np.dot(A_inv, c¢)

#construct homography 3xz8 matriz
homography = np.zeros ((3, 3))
homography. flat [:b.size] = b
homography [2][2] =1

return (homography)
def apply_homography_2(img, homography):

#calculate mew image boundaries
height , width = img.shape[:2]

# Define the corner points of the input image
corners = np.array ([

[0, o],

[width, 0],

[width, height],

[0, height]
], dtype=np.float32)

corners_homogeneous = np.hstack ([corners, np.ones((4, 1))])
new_corners = np.matmul(homography, corners_homogeneous.T).T
new_corners /= new_corners[:, 2:3]

# new_corners = np.matmul(homography, corners)
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# mew_corners /= mew_corners[2, :]

min_x = np. floor (np.min(new_corners[:, 0])).astype(int)
max-x = np.ceil (np.max(new_corners[:, 0])).astype(int)
min_y = np.floor (np.min(new_corners[:, 1])).astype(int)
max.y = np.ceil (np.max(new_corners[:, 1])).astype(int)

#now create new image
dest_width = max_x — min_x
dest_height = max_.y — min_y

# print(dest_width)
# print(dest_height)

# Create a zero matriz for the destination image with the new size
dest_-img = np. full ((dest_-height , dest_-width, img.shape[2]), 0, dtype=img.dtype)

# Get inverse homography

inverse_homography = np.linalg.inv (homography)

# Iterate through the destination image and replace pizels if in frame with transformation
for y in range(dest_height):
for x in range(dest_width):
# Offset the coordinates by the min_z and min_y values (to handle negative offsets)
X_prime = x 4+ min_x
y-prime =y + min_y

# Perform the inverse transformation to get the corresponding source coordinates
three_d_-coords = np.matmul(inverse_homography , np.array ([x-prime, y-prime, 1]))
x_real , y_real, _ = three_d_coords / three_d_coords[2]

# Check if the source coordinates are within the bounds of the source image
if 0 <= x_real < width and 0 <= y_real < height:
x-real , y_real = int(x_real), int(y-real)
# Assign the pizel value from the source image to the destination image
dest_img |y, x] = img[y-real, x-_real]

return dest_img

def apply_homography (img, homography, output_size=None):

#calculate new image boundaries
height , width = img.shape[:2]

# Define the corner points of the input image
corners = np.array ([

[0, o],

[width, 0],

[width, height],

[0, height]
], dtype=np.float32)
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def

def

corners_homogeneous = np.hstack ([corners, np.ones((4, 1))])
new_corners = np.matmul(homography, corners_homogeneous.T).T
new_corners /= new_corners [:, 2:3]

min_x = np. floor (np.min(new_corners[:, 0])).astype(int)
max-x = np.ceil (np.max(new_corners[:, 0])).astype(int)

min_y = np.floor (np.min(new_corners[:, 1])).astype(int)
max.y = np.ceil (np.max(new_corners[:, 1])).astype(int)

#now create new image
new_width = max_-x — min_x

new_height = max_.y — min_y

# print (new_width)
# print(new_height)

new_img = np.zeros ((new_height , new_width, img.shape[2]), dtype=img.dtype)

mask = np.zeros ((new_height, new_width), dtype=bool)

#create meshgrid

x = np.arange (new_width)
y = np.arange(new_height)
X, Y = np.meshgrid(x, y)
X_flat = X. flatten ()
Y_flat = Y. flatten ()

#convert to homogeneous form

homogeneous_coords = np.vstack ([ X_-flat + min_.x , Y_flat + min_y,

#apply the homography

np.ones (X.size)])

inverse_homography = np.linalg.inv (homography)
original_coords = np.matmul(inverse_homography , homogeneous_coords).T
original_coords /= original_coords[:, 2:3]

#turn back into 2—d

X_orig = np.clip(original_coords [:, 0].astype(int), 0, width — 1)

Y_orig = np.clip(original_coords [:, 1].astype(int), 0, height — 1)

# Update the mask where the coordinates are wvalid

valid_mask = (original_coords[:, 0] >= 0) & (original_coords [:,

(original_coords [:, 1] >= 0) & (original_coords [:,

mask[Y_flat , X_flat] = valid_mask

# Assign pizel values where mask is True

new_img [mask] = img[Y_orig[valid_-mask], X_orig[valid_mask]]
return new_img

point_to_point (pqrs_src, pqrs_dest, img):

0] < width) & \
1] < height)

point_to_point_homography = create_homography (pqrs_src, pqrs_dest)

new_img = apply_homography (img, point_-to_point_homography)
return hi

angle_between_lines (H, 11, 12):
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# Convert lines to numpy arrays
11 = np.array (11)
12 = np.array (12)

# Compute transformed lines
l11_prime = np.dot(np.linalg.inv(H).T, 11)
12_prime = np.dot(np.linalg.inv(H).T, 12)

#compute direction wvectors from line coefficients
dirl = ll_prime [:2] # (a, b) from az + by + ¢ = 0
dir2 = 12_prime [:2] # (a, b) from az + by + ¢ = 0

dot_product = np.dot(dirl, dir2)
magl = np.linalg .norm(dirl)
mag2 = np.linalg .norm(dir2)

# Compute cosine of the angle
cos_theta = dot_product / (magl * mag2)

cos_theta np.clip(cos_theta, —1.0, 1.0)
theta_-rad = np.arccos(cos_theta)
theta_.deg = np.degrees(theta_rad)

return theta_rad, theta_-deg

def plot_lines_on_image (img, lines):
img-with_lines = img.copy ()
h, w = img.shape [:2]

for line in lines:
# Homogeneous line equation is: ax + by + ¢ = 0
a, b, ¢ = line

# Find two points on the line

if b !'= 0:
xl, yl =0, —¢c / b
x2, y2 =w, —(a * w4+ c¢c) / b

# If b == 0, it’s a vertical line (z = —c / a)
else:

xl, yl =—c / a, O

x2, y2 =-—¢c / a, h

# Draw the line on the image

img_with_lines = cv2.line (img_-with_lines , (int(x1), int(yl)),

(int (x2), int(y2)), (0, 255, 0),
return img_with_lines

def two_step_approach (pqrs, img, name):

#this function wuses the two—step approach to get the mnondistorted image

#Step 1: Remowving the Projective Distortion
lines = get_-4_lines (pqrs)
projective_homography = get_vanishing_line_homography (lines)
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#scale homography down if mneeded

if (name == ’task_2_2step_my_imgl_affine.jpg’):
projective_homography = np.matmul(projective_homography ,np.array (|
[0.8, 0, O],
[0, 0.8, 0],
[0, 0, 1]

1)
affine_img = apply_-homography (img, projective_homography)
#Step 2: Remowvign Affine Distortion

#get new lines (l-prime and m_prime in equations)

new_line = homography_on_line(lines , projective_homography)

L = np.zeros((2,2))

L[0][0] = new_line [0][0] * new_line[2][0]

L[0][1] = new-line [0][0] = new_line[2][1] 4+ new-_line [0][1] % new_line [2][0]
L[1][0] = new_line [1][0] * new_line [3][0]

L[1][1] = new-line[1][0] = new_line[3][1] 4+ new-line[1][1] % new_line [3][0]
¢ = np.zeros ((2,1))

c¢[0] = —1% new_line [0][1] * new_line [2][1]

c[1] = —1% new_line [1][1] * new-_line [3][1]

# solve for s = L°—1 * ¢
L_inv = np.linalg.pinv (L)

s = np.matmul(L_inv, c¢)

#create the S matriz
S = np.ones ((2,2))

S[o][0] = s[0]
S[0][1] = s[1]
S[1][0] = s[1]

#Now use SVD to find matriz A
V, D, V.T = np.linalg.svd(S)
D_of_ A = np.sqrt(np.diag (D))
A = np.dot(V, D_of_A)

A = np.dot (A, V.T)

#now create the Homography for affine
H_affine = np.zeros ((3,3))

H_affine [0][0] = A[0][0]
H_affine [0][1] = A[0][1]
H_affine [1][0] = A[1][0]
H_affine [1][1] = A[1][1]
H_affine [2][2] =1

#calculate mew homography for entire image

combined_homography = np.matmul(np.linalg.inv(H_affine), projective_homography)

#confim that angle between lines is 90 degrees
print (angle_between_lines (combined_homography, lines [0], lines [3]))
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#if wvector is too large scale it down

if (name == ’task_2_2step_-my_imgl_affine.jpg’ or name == ’task_2_2step_-my_-img2_affine.jpg’):
combined_homography = np.matmul(combined_homography ,np.array (|
[0.3, 0, O],
[0, 0.3, 0],
[0, 0, 1]

1)

#apply the homography
new_img = apply_-homography (img, combined_homography)

return new_img

def homography_on_line(lines , homography):

# this turns in the lines to lines without porjective distortion

homography_inv = np.linalg.inv (homography)
homography_inv_transpose = homography_inv.T

new_lines = []
for i in lines:
new_line = np.dot(homography_inv_transpose, i)

new_lines.append(new_line)

return(new_lines)

#this function find the wvanishing line homography when given the pqrs points
def get_vanishing_line_homography (line):

#find the 2 wvanishing points between the lines
vanishing_point0 = np.cross(line [0], line[1])

vanishing_pointl = np.cross(line[2], line[3])

#get vanishing line from wvanishing points

vanishing_line = np.cross(vanishing_point0, vanishing_pointl)

#turn wvanishing line to Homogarphy Matrixz for projection remowal
projection_homography = np.identity (3)
projection_homography [2] = vanishing_line

2

projection_homography [2] = projection_homography [2] / projection_homography [2][2]
return projection_homography

#get the 4 lines created by the four points
def get_4_lines (points):

line_pgq = get_line(points [0][0], points[0][1], points[1][0], points[1][1])
line_.rs = get_line(points [3][0], points[3][1], points[2][0], points[2][1])
line_ps = get_line (points [3][0], points[3][1], points[0][0], points[0][1])

(21[0] s [2][1] s [1][0] 1

line_qr = get_line (points , points[1



Source Code

return(np.array ([line_pq ,line_rs ,line_ps ,line_qr])))

# this function takes 2—D points and returns a line in 3—d

def get_line(point0, pointl, point2, point3):

homogenous_point0 = np.array ([ point0, pointl, 1])
homogenous_pointl = np.array ([point2, point3, 1])

line = np.cross(homogenous_point0, homogenous_pointl)
if np.abs(line[2]) >= le—6:
line = line / line [2]

return(line)

#this function does the one step approach
def one_step_approach(pqrs, fifth_line_points , img, scale = False):

#get the 5 orthognal lines from original image

line = get_4_lines (pqrs)

fifth_line = np.array(get-line(fifth_line_points [0][0], fifth_line_points [0][1],
fifth_line_points [1][0], fifth_line_points[1][1]))

sixth_line = np.array(get_-line (fifth_line_points [2][0], fifth_line_points[2][1],
fifth_line_points [3][0], fifth_line_points[3][1]))

line = np.vstack ((line, fifth_line , sixth_line))

hi = plot_lines_on_image (img, line)
cv2.imshow ( ’Image-Window’, hi)
cv2.waitKey (0)
cv2.destroyAllWindows ()

# print(7lines”)

# print(line)

A_ = np.zeros ((5,5))

A_[0] = [line [0][0]*1line [3][0], line[0][0]*1line [3][1] + line[0][1]xline [3][0],
line [0][1]=line [3][1], line[0][0]+ line [3][0], line[O][1]4 line [3][1]]

A_[1] = [line [0][0]*1line [2][0], line[0][O0]*1line[2][1] + line [0][1]xline [2][0],
line [0][1] = line [2][1], line[0][0]+ line [2][0], line[O][1]4 line [2][1]]

A_[2] = [line[1][0]=*line [3][0], line[1][0]*line[3][1] + line[1][1]=line[3][0],
line [1][1]= line [3][1], line[1][0]+ line [3][0], line[1][1]4 line [3][1]]

A_[3] = [line[1][0]*1line [2][0], line[1][0]*1line[2][1] + line[1][1]xline[2][0],
line [1][1]= line [2][1], line[1][0]+ line [2][0], line[1][1]4 line [2][1]]

A_[4] = [line [5][0]*line [4][0], line[5][0]*1line[4][1] + line [5][1]xline [4][0],
line [5][1]=*line [4][1], line[5][0]+ line [4][0], line[5][1]+4 line [4][1]]

¢ = np.zeros ((5,1))

c[0] = —1

c[1l] = —1

c[2] = —1

c[3] = —1

c[4] —1

#solve for conic wvartables wusing b = A"—1 * ¢

A_inv = np.linalg.pinv(A_)
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def

b np.dot (A_inv, c¢)
b = b/np.max(b)

#create the AA.T matrix
AAT = np.zeros ((2,2))

AA_T[0][0] = b[O]
AAT[0][1] = b[1]
AAT[1][0] = b[1]
AAT[1][1] = b[2]

#do eigendecompostion to get value of A

V, D, V_transpose = np.linalg.svd (AA.T)
D_of_A = np.sqrt(np.diag (D))

A = np.dot(np.dot(V,D_of_A), V.transpose())

#using A find v by v = A"—1 x g

g = np.zeros ((2,1))
g[0] = b[3]
g[1] = bl4]

v = np.dot(np.linalg.pinv(A), g)

#now create the Homography
homography = np.zeros ((3,3))
homography [0][0] = A[0][O

J[0]
homography [0][1] = A[0][1]
homography [1][0] = A[1][0]
homography [1][1] = A[1][1]
homography [2][0] = v[0][0]
homography [2][1] = v[1]][0]
homography [2][2] =1

#confim that angle between lines is 90 degrees
print (angle_between_lines (np.linalg.inv (homography),

#scale the homography
homography = np.linalg.inv (homography)
if(scale is True):

homography = np.matmul( homography ,np.array ([

[0.4, 0, 0],
[0, 0.4, 0],
[0, 0, 1]

1)

#apply the homography

new_img = apply_homography (img, homography)
return new_img
main ():

#First get the points from the prowvided images
board_-img = cv2.imread( board_1.jpeg’)
corridor_img = cv2.imread(’corridor.jpeg’)
my-imgl = cv2.imread ('my-imgl.jpg’)

my-img2 = cv2.imread ( 'my-img2.jpg’)

line [0],

line [3]))
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# cv2.imshow ('Image Window’, corridor_img)

# cv2.waitKey (0)
# cv2.destroyAllWindows ()

#List the points for each Picture
#Board Points

p-board = [73,425]
q-board = [1221,146]
r_board = [1354,1956]
s_board = [423,1798]

pqrs_board = np.array ([p-board,q-board,r_board,s_board])

#Point to Point Board Points

p-new_board = [0,0]

g-new_board = [1000,0]

r.new_board = [1000,1500]

s_.new_board = [0,1500]

pgrs_new_board = np.array ([p-new_board,q-new_board ,r_-new_board ,s_new_board])

#Corridor Points

p-corridor = [813,576]

g-corridor = [1073,531]

r_corridor = [1068,1212]

s_corridor = [813,1069]

pars_corridor = np.array ([ p-corridor ,q-corridor ,r_corridor ,s_corridor])

#Point to Point Corridor Points

p-new_corridor = [813,550]

g-new_corridor = [1070,550]

r-new_corridor = [1070,1100]

s_new_corridor = [813,1100]

pars_new_corridor = np.array ([ p-new_corridor ,q-new_corridor ,r_new_corridor ,s_new_corridor])
#My Img 1 Points

p-my_imgl = [481,1330]

q-my_imgl = [2141,805]

romy_imgl = [2266,2627]

s.my_imgl = [950,2612]
pqrs-my_imgl = np.array ([p-my-imgl,q-my_imgl ,r_my_imgl ,s_my_imgl])

#Point to Point My Img 1 Points

p-new_my_imgl = [0,0]

g-new_my_imgl = [300,0]

ronew_my-imgl = [300,600]

s_.new_my_imgl = [0,600]

pqrs-new_my_imgl = np.array ([p-new_my_-imgl ,q-new_my_imgl ,r_.new_my_imgl ,s_new_my_imgl])

#My Img 2 Points

p-my_-img2 = [954,704]
q-my_img2 = [2841,1729]
romy_-img2 = [2038,3380]
s.my_img2 = [141,2889]

pqrs-my_img2 = np.array ([p-my-img2,q-my_img2 ,r-my_-img2 ,s_my_img2])
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#Point to Point My Img 2 Points

p-new_my_-img2 = [0,0]

g-new_my_img2 = [300,0]

ronew_my-img2 = [300,600]

s_new_my_img2 = [0,600]

pqrs-new_my_img2 = np.array ([ p-new_my_-img2,q-new_my_img2 ,r_-new_my_-img2 ,s_new_my_img2])

A Task 1 — Point to Point Correspondance

Get Point to Point for Board image
imgl = point_-to_point(pgrs_board, pqgrs-new_-board, board_-img)
cv2.imwrite ("task_-1_ptp_board.jpg’, imgl)

# Get Point to Point for Corridor image

img2 = point_-to_point(pgrs_corridor, pqrs_new_corridor, corridor_-img)

WK W W

cv2.imwrite ("task_1_ptp_corridor.jpg’, img2)

A AAA A Task 1 — Two Step

# Apply two—step approach to the board image

# img3 = two_step_approach (pgqrs_-board, board_-img, ’‘task_-1_2step_board_affine.jpg’)

# cv2.imwrite ("task_1_2step_board_undist.jpg’, img3)

# Apply two—step approach to the corridor image

# img4 = two_step_approach(pqrs_corridor, corridor_-img, ’'task_-1_2step_corridor_affine.jpg’)
# cv2.imwrite ("task_1_2step_corridior_undist.jpg’, img4)

A AAAAAHA Task 1 — One Step

#get orthongonal points on board image
fifth_line_point_board_-1 = [824,869]

fifth_line_point_board_2 = [484,1320]
fifth_line_point_board_-3 = [480, 895]
fifth_line_point_board_4 = [879, 1241]

fifth_line_points_board = np.array ([fifth_line_point_board_1, fifth_line_point_board_-2 ,
fifth_line_point_board_-3 , fifth_line_point_board-4])

# Apply one—step approach to the board image
# img5 = one_step_approach (pqrs_board, fifth_line_points_board , board_-img)
# cv2.imwrite ("task_1_1step_board.jpg’, img5)

#get orthongonal points on corrdior image

fifth_line_point_corridor_-1 = [815,576]

fifth_line_point_corridor_-2 = [1068,1212]

fifth_line_point_corridor_-3 = [1073,531]

fifth_line_point_corridor_-4 = [811,1069]

fifth_line_points_corridor = np.array ([fifth_line_point_corridor_1, fifth_line_point_corridor_2 ,

fifth_line_point_corridor_-3 , fifth_line_point_corridor_4]
# Apply one—step approach to the corridor image
# img6 = one_step_approach(pqrs_corridor, fifth_line_points_corridor , corridor_-img)

# cv2.imwrite ('task_1_1step_corridior.jpg’, img6)

A Task 2 — Point to Point Correspondance
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if

# # Get Point to Point for My img 1
# img7 = point_to_point(pgrs-my_imgl,
# cv2.imwrite ('task_2_ptp_-my_imgl.jpg ’, img7)
# # # Get Point to Point for My img 2

# img8 =
# cv2.imwrite ('task-2_ptp_-my_img2.jpg ’,

point_to_point (pgrs-my_-img2,
img8)

pgrs_new_my_-imgl ,

pqrs_-new_-my_img2 ,

my_img1)

my_img2)

A AAA A Task 2 — Two Step

Apply two—step approach to my img 1

cv2.imuwrite ("task_2_2step_my_img2_undist.jpg ’,

#

# img9 = two_step_approach (pqrs-my_imgl, my-imgl, ’‘task_-2_2step_-my_-imgl_affine.jpg’)
# cv2.imwrite ("task_-2_2step_-my_-imgl_undist.jpg ’, img9)

# Apply two—step approach to my img 2

# imgl0 = two_step_approach(pgrs-my_img2, my-img2, ’task_-2_2step_-my_img2_affine.jpg’)
#

img10)

AR HHAAAHA Task 2 — One Step

#get orthongonal points on my image 1

fifth_line_point_-my_imgl_1 = [481,1330]

fifth_line_point_-my_-imgl_-2 = [2266,2627]
fifth_line_point_-my_imgl_-3 = [2141, 805]
fifth_line_point_-my_imgl_-4 = [950, 2612]

fifth_line_points_my_.imgl = np.array ([fifth_line_point_-my_imgl_1,
fifth_line_point-my_-imgl_3 ,

# Apply one—step approach to my image 1
# imgll = one_step_approach (pqrs-my_imgl ,
# cv2.imwrite ("task_2_1step_my_imgl.jpg ’,
#get orthongonal points on my image 1
[954,704]
[2038,3380]
[2841,1729]
[141,2889]

fifth_line_point_-my_img2_.1 =
fifth_line_point_my_img2_2 =
fifth_line_point_-my_img2_.3 =
fifth_line_point_my_img2_4 =
fifth_line_points_-my_img2 =

fifth_line_point_-my_img2_3 ,

# Apply one—step approach to my image 1
# imgl2 =
# cv2.imwrite ("task_2_1step_-my_img2.jpg ’,

one_step_approach (pqrs-my-img2,

return

_-name__=="__main__":

main ()

fifth_line_points_my_imgl ,

img11)

np.array ([fifth_line_point_my_img2_1 ,

fifth_line_points_my_img2 ,
imgl12)

fifth_line_point_my_imgl_2 ,
fifth_line_point_-my_-imgl_-4])

my_imgl, scale = True)

fifth_line_point_-my_img2_2 ,
fifth_line_point_my_img2_4])

my-img2)



