
ECE 661 - HW3
Bhavya Patel - pate1539@purdue.edu

9/13/24

1

Logic

Point to Point Logic

This homography creation logic closely follows the process we took for Hw02,

so much of the logic will be repeated.

A Homography is a 3x3 non-singular matrix that does linear transformations

on homogeneous 3-vectors. This allows a homography matrix to convert a ho-

mogeneous point in a domain space to a homogeneous point in the range space.

We can define the domain space as x = (x, y, x)T , the range space as x’ = (x’,

y’, z’)T , and the homography matrix as H. So we can rewrite this equation for

linear transformations between images as

x′ = Hx

Now lets define the Homography matrix, H, as

H =

a11 a12 tx

a21 a22 ty

v1 v2 1


So now let’s write the full equation for x’ = Hx.x

′

y′

z′

 =

a11 a12 tx

a21 a22 ty

v1 v2 1


xy
1


When converting homogenous cooridnates from 3d vector to 2d vector you know

to find the point (x,y) in physical space IR2 the x = a
c and y = b

c . Where the

3d vector is (a,b,c)T . So converting the z into a 1 will just make the conversion

between the 3d vector into 2d physical points easier by simplifying the equation.

Now let us rewrite the matrices into linear equations in the real coordinates (2d)

by expanding the matrices and then simplifying.

x′
2d = a1,1x+ a1,2y + tx − v1xx

′ − v2yx
′

y′
2d = a2,1x+ a2,2y + ty − v1xy

′ − v2yy
′

We can create a system of equation and solve for the 8 unknown homography

variables. Which means we need 4 points of the image from before and after the

Logic

translation done by the homography. Each set of points results in 2 equations,

so 4*2 = 8. Let those 4 points be represented by (x1, y1), (x2, y2), (x3, y3),

(x4, y4) and they map to (x’1, y’1), (x’2, y’2), (x’3, y’3), (x’4, y’4). The system

of equations in matrix form is



x1 y1 1 0 0 0 −x1x
′
1 −y1x

′
1

0 0 0 x1 y1 1 −x1y
′
1 −y1y

′
1

x2 y2 1 0 0 0 −x2x
′
2 −y2x

′
2

0 0 0 x2 y2 1 −x2y
′
2 −y2y

′
2

x3 y3 1 0 0 0 −x3x
′
3 −y3x

′
3

0 0 0 x3 y3 1 −x3y
′
3 −y3y

′
3

x4 y4 1 0 0 0 −x4x
′
4 −y4x

′
4

0 0 0 x4 y4 1 −x4y
′
4 −y4y

′
4





a1,1

a1,2

tx

a2,1

a2,2

ty

v1

v2


=



x′
1

y′1

x′
2

y′2

x′
3

y′3

x′
4

y′4


The above is in the form of Ab = c which can be turned into b = A−1c to

solve for the vector b which contains the variables in the homography matrix.

Then once you have the variables you have the H, so you can apply x’ = Hx

to transform all the pixels in the image to another picture. However, using

this method I found there to be lots of bleeding. To fix this you can convert

the equation to H−1x’ = x. So now you can take the pixels that you want to

replace and find their corresponding pixel in the source image. This is how the

transformations are carried out throughout this homework.

Two Step Logic

The general idea for a two-step transformation is first to remove the projective

distortion by using the vanishing line method. Then take that new image and

remove the remaining affine distortion by using a cos(θ) expression that uses

the Dual Degenerate Conic C∗
∞ to set the θ back to 90◦.

Step 1: Removing Projective Distortion using the vanishing line method.

A homography is affine if and only if l∞ is mapped to l∞. However, a pro-

jective transformation maps l∞ to a physical line called the vanishing line. This

means we can use a homography to send the vanishing line back to l∞ = (0, 0,

0)T to remove the projective distortion. The vanishing line is the line connecting

the two vanishing points of an image. A vanishing point is the intersection point

of parallel lines l and m in the non-distorted image. The vanishing line can be

Logic

found by taking the cross product of the two vanishing points. Let us define

the vanishing line as lvanish = (l1,l2,l3)
T . Then the homography to remove the

projective distortion is written below.

Hstep1 =

1 0 0

0 1 0

l1 l2 l3


Then we want to apply this homography on lines and l’ = H−T l, so lets convert

this H to H−T .

H−T
step1 =

1 0 − l1
l3

0 1 − l2
l3

0 0 l3


Then you can apply H−T

step1 to the parallel lines l and m to get l’ and m’, which

should only have an affine distortion.

Step 2: Removing Affine Distortion using Dual Degenerate Conic C∗
∞.

Let us write the equation for cos(θ) in terms of the Dual Degenerate Conic

C∗
∞ and its lines l and m.

cos(θ) =
lTC∗

∞m√
(lTC∗

∞l)(mTC∗
∞m)

Let us let cos(θ) be equal to 0 to represent the final angles being at 90◦. This

means that we need the numerator to be equal to zero to make this statement

true, so we can ignore the denominator. Using the equations l = HT l’, m =

HTm’, and C∗
∞ = H−1C∗′

∞H−T we can simplify the equation to

0 = l
′THC∗

∞HTm′

Then we can expand and simplify this equation to get the below.

[
l′1 l′2 l′3

] [AAT 02x1

01x2 0

]m
′
1

m′
2

m′
3

 = 0

Then we know that AAT = S, which means that s12 = s21. We can also write

s22 as 1 because only the ratios matter. Now we can rewrite the above equation.

Logic

[
l′1 l′2

] [s11 s12

s12 1

][
m′

1

m′
2

]
= 0

This can be rewritten into the linear equation below.

s11l
′
1m

′
1 + s12(l

′
1m

′
2 + l′2m

′
1) = −l′2m

′
2

In the equation above there is 2 unknowns, so you need 2 pairs of parallel

lines l and m to solve the system. Then once you solve it you will have an S

matrix which is equal to AAT . Then A is positive definite, so we can do an

eigendecomposition to get A = VDVT . Then AAT = VDVTVDVT = VD2VT .

Then you know D =

(
λ2

1 0

0 λ2
2

)
. VVT = I, so we know that by doing the

eigendecomposition of S, we get eigenvectors of A, with its eigenvalues given

by the positive square roots of the eigenvalues of S. Now we know that A =

V

(√
λ2

1 0

0
√
λ2

2

)
VT . So knowing A we can plug it into the homography that

will remove the affine distortion of the image.

Hstep2 =

A11 A12 0

A21 A22 0

0 0 1


Now you can multiply the Hstep1 and Hstep1 homographies to get the combined

homography which I will apply to the original image to remove the distortion.

One Step Logic

The one-step method removes both the projective and affine distortions at once

rather than individually like the two-step method. It achieves this by using the

homography that maps C
′∗
∞ back to C∗

∞. We can write this mapping with the

equation C
′∗
∞ = HC∗

∞HT . We want to solve for C
′∗
∞ which is

C
′∗
∞ =

a
b
2

d
2

b
2 c e

2
d
2

e
2 f



Logic

Given,

C∗
∞ =

1 0 0

0 1 0

0 0 0

 ,H =

A11 A12 0

A21 A22 0

v0 v1 1


we can expand and simplify the mapping equation to get[

AAT Av

vTAT vT v

]
We can now calculate A and v in the homography, H, matrix using

AAT =

[
a b

2
b
2 c

]
,Av =

[
d
2
e
2

]
Now we need to solve for the variables a, b, c, d, e, and f. Let us expand

the equation l′TC
′∗
∞m’ = 0 where l’ and m’ are orthogonal line pairs in the

undistorted post-homography image. We can set f = 1 because only ratios

matter in homographies.

[
l′1 l′2 1

]a
b
2

d
2

b
2 c e

2
d
2

e
2 1


m

′
1

m′
2

1

 = 0

We can see that there are five unknown variables we need to solve for, so we

will need five l’ and m’ orthogonal line pairs to solve the system of equations

that is written below. Note: There should be 5 equations below with the same

form.

a(l′1m
′
1) +

b

2
(l′1m

′
1 + l′1m

′
1) + c(l′1m

′
1) +

d

2
(l′1m

′
1) +

e

2
(l′1m

′
1) = −1

After you have the values of a, b, c, d, e, and f, so you will be able to solve

for A using the eigendecomposition of AAT . Then with A you can solve for v.

Now you can reconstruct H using A and v and apply the homography on the

original image to remove all distortions.

Vectorization and Discussion on Results

Vectorization

I used vectorized numpy operations when applying my homography to an image.

This can be found in the source code function ”apply-homography’. Instead of

looping through the pixels of the image one by one, I vectorized the image

making the computation much quicker.

Discussion on Results

In this section I will just talk about some of the things that I noticed and clarify

things I thought would be important to discuss. Some of my final images might

seem to not have a 90-degree angle, however, I have checked the angle between

orthogonal lines after the homography had been applied. This confirms that

all of the results that should have no distortion are correct. I found that when

applying the homography sometimes the resulting image would be too big for

my computer to run because of RAM limitations. Thus, I used the scaling

homography that was discussed on pizza to make the computation possible. I

found that scaling the homography would have minor effects on the results,

which could be a reason that the images could look deceiving. I found this

more true with the two-step approach because you would have to apply the

homography on pairs of lines and then apply another homography. So the

slight inaccuracies were amplified, but I managed to mitigate them to where

the images seem to look 90 degrees. However, the actual angle between the pair

of lines could be in the range of 87-89 degrees.

I would also like to mention that I was unable to get the corridor images to

properly work for any of the methods outlined in the homework document. I

narrowed down the issue to my apply-homography function for the point to point

method. The generated homography seemed to be accurate because I would

apply the generated homography using cv2.warpPerspective() get an accurate

image. However, with my function, I found that I could only get a black image

or a black image with a small section with a very distorted and indiscernible

image. However, when applying the homography on the lines created by the

points the angle between them was 90 degrees. For the two-step approach, I

could not find any solution and the angle between the lines was 60 degrees when

applying the homography on the lines. I suspect that it was not 90 degrees

because of all the homography scaling done in this function. I found that a

scaled homography minor distortion messes up the angle between the lines. For

the one-step approach applying the final homography on the lines resulted in a

Vectorization and Discussion on Results

angle of 90 degrees. This means the homography is correct, but I was unable to

get the cv.warpPerspective() to work. So for the corridor image results, if

there is a result I used the cv.warpPerspective() function.

Task 1

Images and Points used in Task 1

(a) Board Image (b) Corridor Image

Table 1: Points used in Task 1

Image P Q R S
Board (73,425) (1221,146) (1354,1956) (423,1798)

Corridor (815,576) (1073,531) (1068,1212) (811,1069)

Note: P,Q,R,S starts in the upper left most point and goes clockwise.

Task 1

Point-to-Point Correspondences

Point to Point Correspondences Results

(a) Board Point to Point Image (b) Corridor Point to Point Image

Task 1

Two Step Approach

(a) Board without Projective Distor-
tion

(b) Corridor without Projective Dis-
tortion

(c) Board without Any Distortion (d) Board without Any Distortion

Figure 3: Two Step Approach Results

Task 1

One Step Approach

One Step Approach Results

(a) Board One Step Approach Image (b) Corridor One Step Approach Image

Task 2

Images and Points used in Task 2

(a) My Image 1 (b) My Image 2

Table 2: Points used in Task 2

Image P Q R S
My Image 1 (481,1330) (2141,805) (2266,2627) (950,2612)
My Image 2 (954,704) (2841,1729) (2038,3380) (141,2889)

Note: P,Q,R,S starts in the upper left most point and goes clockwise.

Task 2

Point-to-Point Correspondences

Point to Point Correspondences Results

(a) My Image 1 Point to Point (b) My Image 2 Point to Point

Task 2

Two Step Approach

Two Step Approach Results

(a) My Image 1 without Projective
Distortion

(b) My Image 2 without Projective
Distortion

(c) My Image 1 without Any Distortion
(d) My Image 2 without Any Distor-
tion

Task 2

One Step Approach

One Step Approach Results

(a) My Image 1 One Step Approach (b) My Image 1 One Step Approach

Oberservations

Observations

First let’s talk about the point-to-point method. This way is the most simple

to implement because we only need to use four points to achieve a result. There

was also never a time in the point to point where I needed to do matrix scaling

for RAM limitations. The results of the point-to-point are very good and angles

seem to be 90 degrees at all points.

The next method was the two-step approach. This method requires you to find

2 pairs of parallel lines and then 2 pairs of transposed orthogonal lines from

the first step to execute. However, I found that there were lots of scaling issues

when applying the homographies because the scaling would result in slightly

distorted images. But, then you do the second step which builds on the first

homography, and then the slight inconsistencies compound which can give bad

results. This can be alleviated by finding the smallest scaling factor which is

under the RAM threshold, but this can be tedious.

The final method was the one-step approach. This one was similar in complexity

to the two-step approach because you needed to find lines, but instead of the

interdependices between the lines, all you need is five pairs of orthogonal lines.

This method also had some scaling issues but was much more manageable than

the two-step method. I did initially have lots of trouble with the one-step

method because I was using the four corner points and another same rotation

orthogonal line pairs. This resulted in very poor results. However, for the fifth

pair, I found an orthogonal pair that had a different rotation than the 4 corner

line pairs which made my results great. This could be difficult to do if your shape

is not a square, but is well worth the effort to get the best results. As shown

in the board image. In my opinion, I found that the point-to-point method was

the best in terms of results, efficiency of implementation, and execution time.

Source Code

import cv2

import numpy as np

#th i s funct ion creates Homography Matrix for t rans l a t i on

def create homography (x , x prime) :

#formatt ing l i s t o f l i s t in to 1 l i s t

x = [item for s u b l i s t in x for item in s u b l i s t]

x = np . array (x)

x prime = [item for s u b l i s t in x prime for item in s u b l i s t]

x prime = np . array (x prime)

b = Aˆ−1 ∗ c

create matr ic ies

c = x prime . reshape ((8 , 1))

A = np . z e ro s ((8 , 8))

for i in range (0 , 4) :

A[2∗ i] = np . array ([x [2∗ i] , x [2∗ i +1] , 1 , 0 , 0 , 0 , −x [2∗ i]∗ x prime [2∗ i] ,

−x [2∗ i +1]∗ x prime [2∗ i]])

A[2∗ i + 1] = np . array ([0 , 0 , 0 , x [2∗ i] , x [2∗ i +1] , 1 , −x [2∗ i]∗ x prime [2∗ i +1] ,

−x [2∗ i +1]∗ x prime [2∗ i +1]])

#get inverse of A

A inv = np . l i n a l g . inv (A)

#compute b which i s the homography va lues

b = np . dot (A inv , c)

#construct homography 3x3 matrix

homography = np . z e ro s ((3 , 3))

homography . f l a t [: b . s i z e] = b

homography [2] [2] = 1

return (homography)

def apply homography 2 (img , homography) :

#ca l cu l a t e new image boundaries

height , width = img . shape [: 2]

Define the corner points of the input image

co rne r s = np . array ([

[0 , 0] ,

[width , 0] ,

[width , he ight] ,

[0 , he ight]

] , dtype=np . f l o a t 3 2)

corners homogeneous = np . hstack ([corners , np . ones ((4 , 1))])

new corners = np . matmul (homography , corners homogeneous .T) .T

new corners /= new corners [: , 2 : 3]

new corners = np .matmul(homography , corners)

Source Code

new corners /= new corners [2 , :]

min x = np . f l o o r (np .min(new corners [: , 0])) . astype (int)

max x = np . c e i l (np .max(new corners [: , 0])) . astype (int)

min y = np . f l o o r (np .min(new corners [: , 1])) . astype (int)

max y = np . c e i l (np .max(new corners [: , 1])) . astype (int)

#now create new image

dest width = max x − min x

d e s t h e i g h t = max y − min y

prin t (des t wid th)

pr in t (d e s t h e i gh t)

Create a zero matrix for the des t ina t ion image with the new s i z e

dest img = np . f u l l ((de s t he i ght , dest width , img . shape [2]) , 0 , dtype=img . dtype)

Get inverse homography

inverse homography = np . l i n a l g . inv (homography)

I t e ra t e through the des t ina t ion image and rep lace p i x e l s i f in frame with transformation

for y in range (d e s t h e i g h t) :

for x in range (dest width) :

Offse t the coordinates by the min x and min y va lues (to handle negat ive o f f s e t s)

x prime = x + min x

y prime = y + min y

Perform the inverse transformation to get the corresponding source coordinates

th r e e d coo rd s = np . matmul (inverse homography , np . array ([x prime , y prime , 1]))

x r ea l , y r ea l , = th r e e d coo rd s / th r e e d coo rd s [2]

Check i f the source coordinates are within the bounds of the source image

i f 0 <= x r e a l < width and 0 <= y r e a l < he ight :

x r ea l , y r e a l = int (x r e a l) , int (y r e a l)

Assign the p i x e l va lue from the source image to the des t ina t ion image

dest img [y , x] = img [y r ea l , x r e a l]

return dest img

def apply homography (img , homography , o u t p u t s i z e=None) :

#ca l cu l a t e new image boundaries

height , width = img . shape [: 2]

Define the corner points of the input image

co rne r s = np . array ([

[0 , 0] ,

[width , 0] ,

[width , he ight] ,

[0 , he ight]

] , dtype=np . f l o a t 3 2)

Source Code

corners homogeneous = np . hstack ([corners , np . ones ((4 , 1))])

new corners = np . matmul (homography , corners homogeneous .T) .T

new corners /= new corners [: , 2 : 3]

min x = np . f l o o r (np .min(new corners [: , 0])) . astype (int)

max x = np . c e i l (np .max(new corners [: , 0])) . astype (int)

min y = np . f l o o r (np .min(new corners [: , 1])) . astype (int)

max y = np . c e i l (np .max(new corners [: , 1])) . astype (int)

#now create new image

new width = max x − min x

new height = max y − min y

prin t (new width)

pr in t (new height)

new img = np . z e ro s ((new height , new width , img . shape [2]) , dtype=img . dtype)

mask = np . z e ro s ((new height , new width) , dtype=bool)

#create meshgrid

x = np . arange (new width)

y = np . arange (new height)

X, Y = np . meshgrid (x , y)

X f l a t = X. f l a t t e n ()

Y f l a t = Y. f l a t t e n ()

#convert to homogeneous form

homogeneous coords = np . vstack ([X f l a t + min x , Y f l a t + min y , np . ones (X. s i z e)])

#apply the homography

inverse homography = np . l i n a l g . inv (homography)

o r i g i n a l c o o r d s = np . matmul (inverse homography , homogeneous coords) .T

o r i g i n a l c o o r d s /= o r i g i n a l c o o r d s [: , 2 : 3]

#turn back into 2−d

X orig = np . c l i p (o r i g i n a l c o o r d s [: , 0] . astype (int) , 0 , width − 1)

Y or ig = np . c l i p (o r i g i n a l c o o r d s [: , 1] . astype (int) , 0 , he ight − 1)

Update the mask where the coordinates are va l i d

val id mask = (o r i g i n a l c o o r d s [: , 0] >= 0) & (o r i g i n a l c o o r d s [: , 0] < width) & \
(o r i g i n a l c o o r d s [: , 1] >= 0) & (o r i g i n a l c o o r d s [: , 1] < he ight)

mask [Y f la t , X f l a t] = val id mask

Assign p i x e l va lues where mask i s True

new img [mask] = img [Y or ig [val id mask] , X or ig [val id mask]]

return new img

def p o i n t t o p o i n t (pqr s s r c , pqrs des t , img) :

po int to point homography = create homography (pqr s s r c , pq r s de s t)

new img = apply homography (img , po int to point homography)

return hi

def a n g l e b e t w e e n l i n e s (H, l1 , l 2) :

Source Code

Convert l i n e s to numpy arrays

l 1 = np . array (l 1)

l 2 = np . array (l 2)

Compute transformed l i n e s

l 1 pr ime = np . dot (np . l i n a l g . inv (H) .T, l 1)

l 2 pr ime = np . dot (np . l i n a l g . inv (H) .T, l 2)

#compute d i r ec t i on vec tors from l i n e c o e f f i c i e n t s

d i r1 = l1 pr ime [: 2] # (a , b) from ax + by + c = 0

d i r2 = l2 pr ime [: 2] # (a , b) from ax + by + c = 0

dot product = np . dot (dir1 , d i r 2)

mag1 = np . l i n a l g . norm(d i r1)

mag2 = np . l i n a l g . norm(d i r2)

Compute cosine of the angle

co s th e t a = dot product / (mag1 ∗ mag2)

co s th e t a = np . c l i p (cos theta , −1.0 , 1 . 0)

the ta rad = np . a r cco s (c o s th e t a)

theta deg = np . degree s (the ta rad)

return theta rad , theta deg

def p l o t l i n e s o n i m a g e (img , l i n e s) :

i m g w i t h l i n e s = img . copy ()

h , w = img . shape [: 2]

for l i n e in l i n e s :

Homogeneous l i n e equation i s : ax + by + c = 0

a , b , c = l i n e

Find two points on the l i n e

i f b != 0 :

x1 , y1 = 0 , −c / b

x2 , y2 = w, −(a ∗ w + c) / b

I f b == 0 , i t ’ s a v e r t i c a l l i n e (x = −c / a)

else :

x1 , y1 = −c / a , 0

x2 , y2 = −c / a , h

Draw the l i n e on the image

i m g w i t h l i n e s = cv2 . l i n e (img wi th l i n e s , (int (x1) , int (y1)) ,

(int (x2) , int (y2)) , (0 , 255 , 0) , 2)

return i m g w i t h l i n e s

def two step approach (pqrs , img , name) :

#th i s funct ion uses the two−s tep approach to get the nondis tor ted image

#Step 1: Removing the Pro jec t i ve Dis tor t ion

l i n e s = g e t 4 l i n e s (pqrs)

project ive homography = get van i sh ing l ine homography (l i n e s)

Source Code

#sca l e homography down i f needed

i f (name == ’ ta sk 2 2 s t ep my img1 a f f i n e . jpg ’) :

project ive homography = np . matmul (project ive homography , np . array ([

[0 . 8 , 0 , 0] ,

[0 , 0 . 8 , 0] ,

[0 , 0 , 1]

]))

a f f i n e i m g = apply homography (img , project ive homography)

#Step 2: Removign Aff ine Dis tor t ion

#get new l i n e s (l pr ime and m prime in equat ions)

new l ine = homography on l ine (l i n e s , project ive homography)

L = np . z e ro s ((2 , 2))

L [0] [0] = new l ine [0] [0] ∗ new l ine [2] [0]

L [0] [1] = new l ine [0] [0] ∗ new l ine [2] [1] + new l ine [0] [1] ∗ new l ine [2] [0]

L [1] [0] = new l ine [1] [0] ∗ new l ine [3] [0]

L [1] [1] = new l ine [1] [0] ∗ new l ine [3] [1] + new l ine [1] [1] ∗ new l ine [3] [0]

c = np . z e ro s ((2 , 1))

c [0] = −1∗ new l ine [0] [1] ∗ new l ine [2] [1]

c [1] = −1∗ new l ine [1] [1] ∗ new l ine [3] [1]

so l ve for s = Lˆ−1 ∗ c

L inv = np . l i n a l g . pinv (L)

s = np . matmul (L inv , c)

#create the S matrix

S = np . ones ((2 , 2))

S [0] [0] = s [0]

S [0] [1] = s [1]

S [1] [0] = s [1]

#Now use SVD to f ind matrix A

V, D, V T = np . l i n a l g . svd (S)

D of A = np . sq r t (np . diag (D))

A = np . dot (V, D of A)

A = np . dot (A, V T)

#now create the Homography for a f f i n e

H a f f i n e = np . z e ro s ((3 , 3))

H a f f i n e [0] [0] = A[0] [0]

H a f f i n e [0] [1] = A[0] [1]

H a f f i n e [1] [0] = A[1] [0]

H a f f i n e [1] [1] = A[1] [1]

H a f f i n e [2] [2] = 1

#ca l cu l a t e new homography for en t i r e image

combined homography = np . matmul (np . l i n a l g . inv (H a f f i n e) , pro ject ive homography)

#confim that angle between l i n e s i s 90 degrees

print (a n g l e b e t w e e n l i n e s (combined homography , l i n e s [0] , l i n e s [3]))

Source Code

#i f vector i s too la rge sca l e i t down

i f (name == ’ ta sk 2 2 s t ep my img1 a f f i n e . jpg ’ or name == ’ ta sk 2 2 s t ep my img2 a f f i n e . jpg ’) :

combined homography = np . matmul (combined homography , np . array ([

[0 . 3 , 0 , 0] ,

[0 , 0 . 3 , 0] ,

[0 , 0 , 1]

]))

#apply the homography

new img = apply homography (img , combined homography)

return new img

def homography on l ine (l i n e s , homography) :

th i s turns in the l i n e s to l i n e s without po r j e c t i v e d i s t o r t i on

homography inv = np . l i n a l g . inv (homography)

homography inv transpose = homography inv .T

new l in e s = []

for i in l i n e s :

new l ine = np . dot (homography inv transpose , i)

n ew l in e s . append (new l ine)

return (new l ine s)

#th i s funct ion f ind the vanishing l i n e homography when given the pqrs points

def get van i sh ing l ine homography (l i n e) :

#find the 2 vanishing points between the l i n e s

van i sh ing po in t0 = np . c r o s s (l i n e [0] , l i n e [1])

van i sh ing po in t1 = np . c r o s s (l i n e [2] , l i n e [3])

#get vanishing l i n e from vanishing points

v a n i s h i n g l i n e = np . c r o s s (van i sh ing po int0 , van i sh ing po in t1)

#turn vanishing l i n e to Homogarphy Matrix for pro jec t ion removal

project ion homography = np . i d e n t i t y (3)

project ion homography [2] = v a n i s h i n g l i n e

project ion homography [2] = project ion homography [2] / project ion homography [2] [2]

return project ion homography

#get the 4 l i n e s created by the four points

def g e t 4 l i n e s (po in t s) :

l i n e p q = g e t l i n e (po in t s [0] [0] , po in t s [0] [1] , po in t s [1] [0] , po in t s [1] [1])

l i n e r s = g e t l i n e (po in t s [3] [0] , po in t s [3] [1] , po in t s [2] [0] , po in t s [2] [1])

l i n e p s = g e t l i n e (po in t s [3] [0] , po in t s [3] [1] , po in t s [0] [0] , po in t s [0] [1])

l i n e q r = g e t l i n e (po in t s [2] [0] , po in t s [2] [1] , po in t s [1] [0] , po in t s [1] [1])

Source Code

return (np . array ([l i n e pq , l i n e r s , l i n e p s , l i n e q r]))

th i s funct ion takes 2−D points and returns a l i n e in 3−d

def g e t l i n e (point0 , point1 , point2 , po int3) :

homogenous point0 = np . array ([point0 , point1 , 1])

homogenous point1 = np . array ([point2 , point3 , 1])

l i n e = np . c r o s s (homogenous point0 , homogenous point1)

i f np . abs (l i n e [2]) >= 1e −6:

l i n e = l i n e / l i n e [2]

return (l i n e)

#th i s funct ion does the one s tep approach

def one step approach (pqrs , f i f t h l i n e p o i n t s , img , s c a l e = False) :

#get the 5 orthognal l i n e s from or i g i na l image

l i n e = g e t 4 l i n e s (pqrs)

f i f t h l i n e = np . array (g e t l i n e (f i f t h l i n e p o i n t s [0] [0] , f i f t h l i n e p o i n t s [0] [1] ,

f i f t h l i n e p o i n t s [1] [0] , f i f t h l i n e p o i n t s [1] [1]))

s i x t h l i n e = np . array (g e t l i n e (f i f t h l i n e p o i n t s [2] [0] , f i f t h l i n e p o i n t s [2] [1] ,

f i f t h l i n e p o i n t s [3] [0] , f i f t h l i n e p o i n t s [3] [1]))

l i n e = np . vstack ((l i n e , f i f t h l i n e , s i x t h l i n e))

h i = p l o t l i n e s o n i m a g e (img , l i n e)

cv2 . imshow (’ Image Window ’ , h i)

cv2 . waitKey (0)

cv2 . destroyAllWindows ()

prin t (” l i n e s ”)

pr in t (l i n e)

A = np . z e ro s ((5 , 5))

A [0] = [l i n e [0] [0] ∗ l i n e [3] [0] , l i n e [0] [0] ∗ l i n e [3] [1] + l i n e [0] [1] ∗ l i n e [3] [0] ,

l i n e [0] [1] ∗ l i n e [3] [1] , l i n e [0] [0] + l i n e [3] [0] , l i n e [0] [1] + l i n e [3] [1]]

A [1] = [l i n e [0] [0] ∗ l i n e [2] [0] , l i n e [0] [0] ∗ l i n e [2] [1] + l i n e [0] [1] ∗ l i n e [2] [0] ,

l i n e [0] [1] ∗ l i n e [2] [1] , l i n e [0] [0] + l i n e [2] [0] , l i n e [0] [1] + l i n e [2] [1]]

A [2] = [l i n e [1] [0] ∗ l i n e [3] [0] , l i n e [1] [0] ∗ l i n e [3] [1] + l i n e [1] [1] ∗ l i n e [3] [0] ,

l i n e [1] [1] ∗ l i n e [3] [1] , l i n e [1] [0] + l i n e [3] [0] , l i n e [1] [1] + l i n e [3] [1]]

A [3] = [l i n e [1] [0] ∗ l i n e [2] [0] , l i n e [1] [0] ∗ l i n e [2] [1] + l i n e [1] [1] ∗ l i n e [2] [0] ,

l i n e [1] [1] ∗ l i n e [2] [1] , l i n e [1] [0] + l i n e [2] [0] , l i n e [1] [1] + l i n e [2] [1]]

A [4] = [l i n e [5] [0] ∗ l i n e [4] [0] , l i n e [5] [0] ∗ l i n e [4] [1] + l i n e [5] [1] ∗ l i n e [4] [0] ,

l i n e [5] [1] ∗ l i n e [4] [1] , l i n e [5] [0] + l i n e [4] [0] , l i n e [5] [1] + l i n e [4] [1]]

c = np . z e ro s ((5 , 1))

c [0] = −1

c [1] = −1

c [2] = −1

c [3] = −1

c [4] = −1

#so l ve for conic va r i a b l e s using b = Aˆ−1 ∗ c

A inv = np . l i n a l g . pinv (A)

Source Code

b = np . dot (A inv , c)

b = b/np .max(b)

#create the AA T matrix

AA T = np . z e ro s ((2 , 2))

AA T [0] [0] = b [0]

AA T [0] [1] = b [1]

AA T [1] [0] = b [1]

AA T [1] [1] = b [2]

#do eigendecompostion to get va lue of A

V, D, V transpose = np . l i n a l g . svd (AA T)

D of A = np . sq r t (np . diag (D))

A = np . dot (np . dot (V, D of A) , V. t ranspose ())

#using A f ind v by v = Aˆ−1 ∗ g

g = np . z e ro s ((2 , 1))

g [0] = b [3]

g [1] = b [4]

v = np . dot (np . l i n a l g . pinv (A) , g)

#now create the Homography

homography = np . z e ro s ((3 , 3))

homography [0] [0] = A[0] [0]

homography [0] [1] = A[0] [1]

homography [1] [0] = A[1] [0]

homography [1] [1] = A[1] [1]

homography [2] [0] = v [0] [0]

homography [2] [1] = v [1] [0]

homography [2] [2] = 1

#confim that angle between l i n e s i s 90 degrees

print (a n g l e b e t w e e n l i n e s (np . l i n a l g . inv (homography) , l i n e [0] , l i n e [3]))

#sca l e the homography

homography = np . l i n a l g . inv (homography)

i f (s c a l e i s True) :

homography = np . matmul (homography , np . array ([

[0 . 4 , 0 , 0] ,

[0 , 0 . 4 , 0] ,

[0 , 0 , 1]

]))

#apply the homography

new img = apply homography (img , homography)

return new img

def main () :

#Firs t ge t the points from the provided images

board img = cv2 . imread (’ board 1 . jpeg ’)

co r r i do r img = cv2 . imread (’ c o r r i d o r . jpeg ’)

my img1 = cv2 . imread (’ my img1 . jpg ’)

my img2 = cv2 . imread (’ my img2 . jpg ’)

Source Code

cv2 . imshow(’ Image Window ’ , corridor img)

cv2 . waitKey (0)

cv2 . destroyAllWindows ()

#Lis t the points for each Picture

#Board Points

p board = [7 3 , 4 2 5]

q board = [1221 , 146]

r board = [1354 , 1956]

s board = [423 , 1798]

pqrs board = np . array ([p board , q board , r board , s board])

#Point to Point Board Points

p new board = [0 , 0]

q new board = [1 0 0 0 , 0]

r new board = [1000 , 1500]

s new board = [0 , 1 5 0 0]

pqrs new board = np . array ([p new board , q new board , r new board , s new board])

#Corridor Points

p c o r r i d o r = [813 , 576]

q c o r r i d o r = [1073 , 531]

r c o r r i d o r = [1068 , 1212]

s c o r r i d o r = [813 , 1069]

p q r s c o r r i d o r = np . array ([p co r r i do r , q co r r i do r , r c o r r i d o r , s c o r r i d o r])

#Point to Point Corridor Points

p new cor r idor = [813 , 550]

q new cor r ido r = [1070 , 550]

r n ew co r r i do r = [1070 , 1100]

s n ew co r r i do r = [813 , 1100]

pq r s new co r r ido r = np . array ([p new corr idor , q new corr idor , r new cor r ido r , s n ew co r r i do r])

#My Img 1 Points

p my img1 = [481 , 1330]

q my img1 = [2141 , 805]

r my img1 = [2266 , 2627]

s my img1 = [950 , 2612]

pqrs my img1 = np . array ([p my img1 , q my img1 , r my img1 , s my img1])

#Point to Point My Img 1 Points

p new my img1 = [0 , 0]

q new my img1 = [3 0 0 , 0]

r new my img1 = [300 , 600]

s new my img1 = [0 , 6 0 0]

pqrs new my img1 = np . array ([p new my img1 , q new my img1 , r new my img1 , s new my img1])

#My Img 2 Points

p my img2 = [954 , 704]

q my img2 = [2841 , 1729]

r my img2 = [2038 , 3380]

s my img2 = [141 , 2889]

pqrs my img2 = np . array ([p my img2 , q my img2 , r my img2 , s my img2])

Source Code

#Point to Point My Img 2 Points

p new my img2 = [0 , 0]

q new my img2 = [3 0 0 , 0]

r new my img2 = [300 , 600]

s new my img2 = [0 , 6 0 0]

pqrs new my img2 = np . array ([p new my img2 , q new my img2 , r new my img2 , s new my img2])

########### Task 1 − Point to Point Correspondance ####################

Get Point to Point for Board image

img1 = po in t t o po in t (pqrs board , pqrs new board , board img)

cv2 . imwrite (’ task 1 p tp board . jpg ’ , img1)

Get Point to Point for Corridor image

img2 = po in t t o po in t (pqrs corr idor , pqrs new corridor , corridor img)

cv2 . imwrite (’ t a s k 1 p tp cor r i do r . jpg ’ , img2)

########### Task 1 − Two Step ###

Apply two−s tep approach to the board image

img3 = two step approach (pqrs board , board img , ’ t a s k 1 2 s t ep boa rd a f f i n e . jpg ’)

cv2 . imwrite (’ t a s k 1 2s t ep board und i s t . jpg ’ , img3)

Apply two−s tep approach to the corr idor image

img4 = two step approach (pqrs corr idor , corridor img , ’ t a s k 1 2 s t e p co r r i d o r a f f i n e . jpg ’)

cv2 . imwrite (’ t a s k 1 2 s t e p co r r i d i o r und i s t . jpg ’ , img4)

########### Task 1 − One Step ###

#get orthongonal points on board image

f i f t h l i n e p o i n t b o a r d 1 = [824 , 869]

f i f t h l i n e p o i n t b o a r d 2 = [484 , 1320]

f i f t h l i n e p o i n t b o a r d 3 = [480 , 895]

f i f t h l i n e p o i n t b o a r d 4 = [879 , 1241]

f i f t h l i n e p o i n t s b o a r d = np . array ([f i f t h l i n e p o i n t b o a r d 1 , f i f t h l i n e p o i n t b o a r d 2 ,

f i f t h l i n e p o i n t b o a r d 3 , f i f t h l i n e p o i n t b o a r d 4])

Apply one−s tep approach to the board image

img5 = one step approach (pqrs board , f i f t h l i n e p o i n t s b o a r d , board img)

cv2 . imwrite (’ ta sk 1 1s tep board . jpg ’ , img5)

#get orthongonal points on corrdior image

f i f t h l i n e p o i n t c o r r i d o r 1 = [815 , 576]

f i f t h l i n e p o i n t c o r r i d o r 2 = [1068 , 1212]

f i f t h l i n e p o i n t c o r r i d o r 3 = [1073 , 531]

f i f t h l i n e p o i n t c o r r i d o r 4 = [811 , 1069]

f i f t h l i n e p o i n t s c o r r i d o r = np . array ([f i f t h l i n e p o i n t c o r r i d o r 1 , f i f t h l i n e p o i n t c o r r i d o r 2 ,

f i f t h l i n e p o i n t c o r r i d o r 3 , f i f t h l i n e p o i n t c o r r i d o r 4])

Apply one−s tep approach to the corr idor image

img6 = one step approach (pqrs corr idor , f i f t h l i n e p o i n t s c o r r i d o r , corridor img)

cv2 . imwrite (’ t a s k 1 1 s t e p co r r i d i o r . jpg ’ , img6)

########### Task 2 − Point to Point Correspondance ####################

Source Code

Get Point to Point for My img 1

img7 = po in t t o po in t (pqrs my img1 , pqrs new my img1 , my img1)

cv2 . imwrite (’ task 2 ptp my img1 . jpg ’ , img7)

Get Point to Point for My img 2

img8 = po in t t o po in t (pqrs my img2 , pqrs new my img2 , my img2)

cv2 . imwrite (’ task 2 ptp my img2 . jpg ’ , img8)

########### Task 2 − Two Step ###

Apply two−s tep approach to my img 1

img9 = two step approach (pqrs my img1 , my img1 , ’ task 2 2s tep my img1 af f ine . jpg ’)

cv2 . imwrite (’ task 2 2step my img1 undis t . jpg ’ , img9)

Apply two−s tep approach to my img 2

img10 = two step approach (pqrs my img2 , my img2 , ’ task 2 2s tep my img2 af f ine . jpg ’)

cv2 . imwrite (’ task 2 2step my img2 undis t . jpg ’ , img10)

########### Task 2 − One Step ###

#get orthongonal points on my image 1

f i f t h l i n e p o i n t m y i m g 1 1 = [481 , 1330]

f i f t h l i n e p o i n t m y i m g 1 2 = [2266 , 2627]

f i f t h l i n e p o i n t m y i m g 1 3 = [2141 , 805]

f i f t h l i n e p o i n t m y i m g 1 4 = [950 , 2612]

f i f t h l i n e p o i n t s m y i m g 1 = np . array ([f i f t h l i n e p o i n t m y i m g 1 1 , f i f t h l i n e p o i n t m y i m g 1 2 ,

f i f t h l i n e p o i n t m y i m g 1 3 , f i f t h l i n e p o i n t m y i m g 1 4])

Apply one−s tep approach to my image 1

img11 = one step approach (pqrs my img1 , f i f t h l ine po in t s my img1 , my img1 , sca l e = True)

cv2 . imwrite (’ task 2 1step my img1 . jpg ’ , img11)

#get orthongonal points on my image 1

f i f t h l i n e p o i n t m y i m g 2 1 = [954 , 704]

f i f t h l i n e p o i n t m y i m g 2 2 = [2038 , 3380]

f i f t h l i n e p o i n t m y i m g 2 3 = [2841 , 1729]

f i f t h l i n e p o i n t m y i m g 2 4 = [141 , 2889]

f i f t h l i n e p o i n t s m y i m g 2 = np . array ([f i f t h l i n e p o i n t m y i m g 2 1 , f i f t h l i n e p o i n t m y i m g 2 2 ,

f i f t h l i n e p o i n t m y i m g 2 3 , f i f t h l i n e p o i n t m y i m g 2 4])

Apply one−s tep approach to my image 1

img12 = one step approach (pqrs my img2 , f i f t h l ine po in t s my img2 , my img2)

cv2 . imwrite (’ task 2 1step my img2 . jpg ’ , img12)

return

i f name ==” main ” :

main ()

