
ECE661: Computer Vision
Homework 2

Bruce Coburn
coburn6@purdue.edu

Task-1

We are given four images: three which consist of different views of a wall-mounted photo-
frame (Figures 1(a-c)) while one is of Alex Honnold (Figure 1(d)) climbing El Capitan
without a rope or safety equipment (becoming the first person to “free solo” the route). Our
subtasks are to complete the following:

1. Using just four points, pick a region of interest (ROI) from the image of Alex Honnold
and project that region onto the PQRS regions in Figures 1(a-c).

2. Find homographies between Figures 1(a-b) and Figures 1(b-c), then multiply the re-
sultant homography to Figure 1(a). The resulting image should look similar to the
image shown in Figure 1(c).

3. Using only affine homographies, map Alex’s image to the PQRS regions in all photo-
frame images. Report the results. If a result is better than the others, explain why.

Figure 1: Images for Task-1. Note that both outer or inner corner points of the given photo-
frame images are acceptable solutions.

1

Task-1.1: Logic

We are interested in finding the homography which will transform points in our domain
to a particular range. To do so, we manually annotated pixel coordinates that served as
correspondence points between our domain and range images. For reference, our domain
image points will have the following homogeneous representation:

X =

x1

x2

x3

 (1)

Whereas our range image points (or transformed points) will have the following homo-
geneous representation:

X′ =

x′
1

x′
2

x′
3

 (2)

We do know that the relationship between our domain and image points is:

X′ = HX (3)

Where H is a 3x3 non-singular matrix that can be represented as:

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 (4)

Noting all of the above equations together and substituting into Equation 3, we arrive at
the following expression: x′

1

x′
2

x′
3

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

x1

x2

x3

 (5)

We can then derive individual expressions for each of our range image points (X′):

x′
1 = h11x1 + h12x2 + h13x3

x′
2 = h21x1 + h22x2 + h23x3

x′
3 = h31x1 + h32x2 + h33x3

Ultimately, we are interested in the physical point representation of our transformed
points; meaning we need to convert our range image points to R2 representation. To do so,
we divide our x′

1 and x′
2 by x′

3 to get our range physical points, (x′, y′):

x′ =
x′
1

x′
3

=
h11x1 + h12x2 + h13x3

h31x1 + h32x2 + h33x3

2

y′ =
x′
2

x′
3

=
h21x1 + h22x2 + h23x3

h31x1 + h32x2 + h33x3

Because we are working homogeneous structures, we are only concerned about the ratios.
This simplifies our range physical point expressions because we are free to arbitrarily set
h33 = 1 and divide by x3. Finally, we get our final range physical point expressions:

x′ =
h11x1 + h12x2 + h13

h31x1 + h32x2 + 1

y′ =
h21x1 + h22x2 + h23

h31x1 + h32x2 + h33

If we rearrange our expressions, we arrive at the following:

xh11 + yh12 + h13 − xx′h31 − yx′h32 − x′ = 0 (6)

xh21 + yh22 + h23 − xy′h31 − yy′h32 − y′ = 0 (7)

In Equations 6 and 7, we can observe that we have 8 unknowns (hij) amongst 2 equations.
However, our 8 unknowns can be solved with 4 pairs of correspondence points. One pair
of correspondence points gives one domain point ([xi, yi]) and one range point ([x′

i, y
′
i]),

meaning that each pair of correspondence points gives us 2 equations and we only need 4
correspondence points to alleviate our 8 unknowns. The matrix representation for our system
of equations (using 4 correspondence points) is the following:

x1 y1 1 0 0 0 −x1x
′
1 −y1x

′
1

0 0 0 x1 y1 1 −x1y
′
1 −y1y

′
1

x2 y2 1 0 0 0 −x2x
′
2 −y2x

′
2

0 0 0 x2 y2 1 −x2y
′
2 −y2y

′
2

x3 y3 1 0 0 0 −x3x
′
3 −y3x

′
3

0 0 0 x3 y3 1 −x3y
′
3 −y3y

′
3

x4 y4 1 0 0 0 −x4x
′
4 −y4x

′
4

0 0 0 x4 y4 1 −x4y
′
4 −y4y

′
4





h11

h12

h13

h21

h22

h23

h31

h32


=



x′
1

y′1
x′
2

y′2
x′
3

y′3
x′
4

y′4


(8)

To make this representation more readable, we will simplify Equation 8 to be:

Ah = X′
corr (9)

Since we are interested in the parameters, h, of our general homography matrix, H, we
can see that:

h = A−1X′
corr (10)

Where we can then reshape h into our 3x3 non-singular homography matrix, H; matching
its form in Equation 5. Now, to transform our domain points to our range points, we simply
follow the operation in Equation 3.

3

Task-1.1: Implementation

The python code is meant to be (relatively) modular and efficient since this assignment
involves a lot of the same operations over a handful of different images. First, we need to
address how pixel coordinates (for corresponding PQRS regions) were extracted.

The file, retrieve pixel coordinates.py, allows us to interactively select points on
images, annotate corresponding P, Q, R, S points and store both the pixel coordinate in-
formation and newly annotated images to a local directory. It should be noted that pixel
coordinate information is stored in img data.json. Heavy inspiration came from an online
post [2], which served as the GUI foundation for the final implementation.

Once we have written pixel coordinate information to img data.json, we can execute
toplevel hw2.py which handles the code implementation of the logic presented in the prior
section. The code has been commented and laid out in, hopefully, a straightforward manner
but there are a handful of considerations that were taken.

To solve for our general homography, H, the functions solve and perform homography

and solve homography were created. The numpy function, numpy.linalg.solve, extracts
the solutions for our general homography matrix, H, when we input a corresponding un-
knowns matrix, A, and the rasterized vector of our correspondence points, X′

corr. According
to the Numpy documentation for numpy.linalg.solve [5], we are able to use this method
because our linear matrix expression (Equation 9) is well determined and full rank.

Now that we have our general homography matrix, H, we can implement Equation 5 once
we reshape h. To do so, and favoring efficiency, we utilized NumPy’s ability to vectorize
operations. In particular, vectorized operations are the process of applying an operation to
an entire array, rather than iterating over individual elements using loops. In our case, we
would have to implement nested for loops which would iterate over every pixel element in
an image array. Nested for loops were taking a significantly long time so we decided to
implement vectorized operations instead. This can be observed in the perform homography

function.
It should also be noted that instead of directly transforming points from the domain

image to the range image, an inverse mapping method was adopted. Initially, we were
having issues assigning valid values to our transformed image when taking a forward mapping
approach. This inverse mapping method involves computing the transformed coordinates in
the domain image that correspond to each point in the range image. This helps to ensure
that all locations in the range image are assigned valid values.

As explained by Gonzalez and Woods in their book Digital Image Processing [3], inverse
mapping is more efficient and widely used in practice because it avoids gaps or unassigned
pixels in the output image. The book discusses that by scanning the output pixel locations
and computing corresponding locations in the input image using the inverse transformation
matrix, all output pixels are properly assigned, which aligns with our approach. The book
also mentions interpolation, where we simply rounded computed values to the closest integer
using numpy.rint() [6]; effectively nearest-neighbor interpolation. We then normalize the
third coordinate back to 1 to align with HC representation and we filter out points that fall
outside of the image bounds.

4

Task-1.1: Results

Below are the annotated pixel coordinates for our range images:

Figure 2: Annotated Coordinates for img1

Figure 3: Annotated Coordinates for img2

5

Figure 4: Annotated Coordinates for img3

It should be noted that the four corners of our domain image (“alex honnold.jpg”) was
used. The PQRS regions of our images are included below in tabular format:

Filename P Q R S
img1.jpg [424, 856] [2547, 880] [2399, 2290] [684, 3171]
img2.jpg [524, 1441] [1866, 820] [1950, 2810] [464, 2690]
img3.jpg [1217, 560] [2971, 2302] [1790, 3179] [248, 1801]
alex honnold.jpg [0, 0] [782, 0] [782, 664] [0, 664]

Table 1: P,Q,R,S Regions for our images

6

We now present our projected domain images:

Figure 5: alex honnold transformed to img1

Figure 6: alex honnold transformed to img2

7

Figure 7: alex honnold transformed to img3

Task-1.2: Logic

No new logic is particularly needed for this section. However, our domain image is no longer
strictly “alex honnold.jpg”. Instead, we will have changing domain and range images to find
the homographies between img1, img2, and img3. The homography between img1 and img2,
Hab, is found by using domain image points from img1 and range image points from img2.
The homography between img2 and img3, Hbc, is found by using domain image points from
img2 and range image points from img3. We know that multiplying a homography by a
homography results in a homography, so we can simply multiply Hab by Hbc to get our
homography from img1 to img3, Hac.

Task-1.2: Implementation

Because we took a modular approach to our python implementation, we simply have to call
our solve homogrpahy function between our corresponding domain and range images to
get the homography matrix between those images. We then utilize perform homography to
apply an input homography matrix to a particular image and save the result.

Task-1.2: Results

Our homographies were found to be the following (rounded to the nearest third decimal
point). Since we adopted an inverse mapping approach, the homographies listed represent
the transformations from the range image back to the domain image. The ’true’ forward
homographies, which map domain image points to range image points, would be the inverses
of these matrices:

8

Hab =

−12.642 −1.608 7970.635
−6.125 −6.970 11292.515
−0.004 −0.001 1.000

 , Hbc =

 0.221 0.055 154.144
−0.510 0.034 1850.650
0.000 0.000 1.000



Hac =

−2.177 −2.209 3045.558
1.915 −2.641 −2550.563
0.000 0.000 −1.314


And the resulting transformed img1 images are the following:

(a) img1 transformed to img2 range (b) img1 transformed to img3 range

9

Task-1.3: Logic

There isn’t a significant change between the logic of Task-1.1 and Task-1.3. However, now
that we are dealing with strictly affine transformations, we have a slight constraint on our
homography matrix, Haffine. Because our homography will be strictly affine, we know that
the last row of our matrix will be [0, 0, 1]. Haffine will now be:

Haffine =

h11 h12 h13

h21 h22 h23

0 0 1

 (11)

Which will ultimately affect our system of equations. It should be noted that this ex-
pression reflects that 4 correspondence points were used. The reasoning is outlined in the
“Task-1.3: Implementation” subsection. For brevity, the step-by-step derivation has been
omitted. But we are left with the new representation of our system of equations:

x1 y1 1 0 0 0
0 0 0 x1 y1 1
x2 y2 1 0 0 0
0 0 0 x2 y2 1
x3 y3 1 0 0 0
0 0 0 x3 y3 1
x4 y4 1 0 0 0
0 0 0 x4 y4 1




h11

h12

h13

h21

h22

h23

 =



x′
1

y′1
x′
2

y′2
x′
3

y′3
x′
4

y′4


(12)

To make this representation more readable, we will simplify Equation 12 to be:

Aaffinehaffine = X′
corr (13)

Since we are interested in the parameters, haffine, of our affine homography matrix, Haffine,
we can see that:

haffine = A−1
affineX

′
corr (14)

Where we can then reshape haffine into our 3x3 affine homography matrix, Haffine; match-
ing its form in Equation 11. Now, to transform our domain points to our range points, we
simply follow the operation in Equation 3.

Task-1.3: Implementation

The implementation of the affine transformation in Task-1.3 is similar to that of Task-1.1,
with some adjustments to accomodate the constraints given to us by an affine transformation.
The main difference lies in the choice of the linear system solver. In Task-1.1, we used
numpy.linalg.solve to compute the general homography matrix because the sytem of
equations was well-determined with 8 equations and 8 unknowns. However, in Task-1.3, we
deal with an affine transformation matrix, which has only 6 unknowns due to the constraint
that the last row is fixed to [0, 0, 1].

10

We initially were using 3 correspondence points that allowed us to use numpy.linalg.solve
(6 equations for 6 unknowns), but the results were not that favorable. Instead, we wished
to use four correspondence points, leading to an overdetermined system (8 equations for 6
unknowns). To solve this overdetermined system, we use numpy.linalg.lstsq [4], which
is designed to handle overdetermined systems. This function finds a least-squares solution
which provides a more stable and accurate affine transformation matrix given we are using
more correspondence points than necessary. Of course, we can also continue to use an in-
creasing amount of correspondence points to help increase the quality of our results, but since
we used 4 correspondence points in the last section we decided to also use 4 correspondence
points for this section.

Once the affine transformation matrix, Haffine, is computed, the transformation is applied
similarly to Task-1.1 using the perform homography function. All previous programming
considerations laid out in the prior section applies here as well.

Task-1.3: Results

Our mapped images using only affine transformations can be found below:

Figure 9: alex honnold transformed to img1 (affine only)

11

Figure 10: alex honnold transformed to img2 (affine only)

Figure 11: alex honnold transformed to img3 (affine only)

From Figures 9 to 11, we observe that the results obtained using the affine transformation
matrix, Haffine, are less favorable compared to those obtained with the general homography
matrix, H. Among the three results, Figure 11 appears to be the most accurate, as it aligns
more closely with the PQRS region initially specified in our annotated image.

This difference in performance can be attributed to the properties of affine transforma-
tions, which preserve parallel lines. If the PQRS region in our domain image contained
parallel lines, these lines would remain parallel after applying an affine transformation. Con-
sequently, the accuracy of the affine transformation depends on the extent to which the
PQRS regions in Figures 9 and 10 retained parallelism in their edges. It is possible that
these regions were “less parallel” compared to those in Figure 11, leading to a less accurate
transformation projection in the former cases.

12

Task-2

Repeat the steps of Task-1 using your own images. You can capture three images of a planar
surface from three different viewpoints such as the ones shown in Figures 1(a-c). For the
fourth image you can use your own picture or obtain a picture of an animal, celebrity, etc.

For brevity, it can be assumed that the logic and implementation between Tasks 1 and 2
will be the same. Only results will be shown.

Task-2.1: Results

The three pixel coordinate annotated range images which will be used are the following:

(a) bear1 Annotated Coordi-
nates

(b) bear2 Annotated Coordi-
nates

(c) bear3 Annotated Coordi-
nates

Figure 12: Our annotated range images for Task 2

Our domain image will be:

Figure 13: Domain - THE HAGGIS [1]

13

The pixel coordinates are as follows:

Filename P Q R S
bear1.jpg [600, 1045] [2030, 1185] [2030, 2346] [728, 2798]
bear2.jpg [961, 1417] [2271, 1321] [2246, 2730] [989, 2454]
bear3.jpg [720, 760] [2623, 1573] [1670, 3375] [128, 2162]
haggis.png [0, 0] [1398, 0] [1398, 693] [0, 693]

Table 2: P,Q,R,S Regions of our images for Task 2

Our projected images are as follows:

Figure 14: haggis transformed to bear1

14

Figure 15: haggis transformed to bear2

Figure 16: haggis to bear3

15

Task-2.2: Results

Our homographies were found to be the following (rounded to the nearest third decimal
point). Since we adopted an inverse mapping approach, the homographies listed represent
the transformations from the range image back to the domain image. The ’true’ forward
homographies, which map domain image points to range image points, would be the inverses
of these matrices:

Hbear1-bear2 =

22.791 0.709 −18093.295
10.087 14.577 −21963.821
0.007 0.000 1.000

 , Hbear2-bear3 =

 0.573 0.241 355.282
−0.291 0.558 1188.525
0.000 −0.000 1.000



Hbear1-bear3 =

12.758 6.228 −9152.786
1.413 10.972 −1055.049
0.004 0.002 3.778


And the resulting transformed bear1 images are the following:

(a) bear1 transformed to bear2 range (b) bear1 transformed to bear3

16

Task-2.3: Results

Our projected domain images using only affine transformations are below:

Figure 18: haggis transformed to bear1 (affine only)

Figure 19: haggis transformed to bear2 (affine only)

17

Figure 20: haggis transformed to bear3 (affine only)

From Figures 18-20, we observe that the results obtained using the affine transformation
matrix, Haffine, are not particularly favorable across any of the range images. Unlike Task-1,
where some PQRS regions contained more parallelism, none of the PQRS regions in the
selected range images for Task-2 exhibit notably parallel lines. As a result, the overall
accuracy of the transformations appears reduced, and no single result stands out as more
accurate than the others.

18

Extra Credit

In Lecture 3, we discussed the hierarchy of transformations for homographies and how differ-
ent homography transformations change the lines and shapes in an image. These concepts
are directly applicable to image-editing applications (e.g. iPhone Photos and Snapseed by

Google). These applications are based on the concept of foreground and background, and
the editing tools allow you to manipulate the foreground objects in relation to the back-
ground. You are also allowed to apply global transformations to an image. For example you
could just rotate the entire image. When the foreground objects are manipulated, it is done
by applying a homography to the whole image.

Specifically, the iPhone Photos application offers the following three operations - (1)
Rotating the image; (2) Vertically tilting the image; and (3) Horizontally tilting
the image. For Android users, the Snapseed tool does similar things.

The homographies that are used to produce the effects mentioned above can be param-
eterized by a single parameter, which represents the degree of change required (e.g. the
rotation angle).

Your task for the extra credit is the following:

1. Formulate the parameterized homographies for each of the three types of oper-
ations mentioned above. Representing the parameter by α provide the formula for the
corresponding 3x3 homography H(α).

2. Apply the homographies to an input image with horizontal and vertical grid lines
and display the resulting images. Your figures should resemble the examples shown in
the below figure. Present multiple examples (more than one) for each type of editing
operation, along with the corresponding α values.

3. Analyze the effects of vertical and horizontal tilting operations on arbitrary vertical
and horizontal lines. Discuss which tyles of lines (vertical or horizontal) remain in-
variant under each operation. Provide either a proof or numerical evidence to support
your conclusions.

In each sub-plot, the left side shows the input image with grid lines, and the right side
displays the output image produced by each editing operation.

19

Extra Credit Problem 1

Rotation Homography Matrix

We know that rotation changes the orientation of an image around a center point. In R2,
this center point will be the physical R2 origin, (0, 0). Referencing Equation 5, we can think
of rotating around the R2 origin as transforming only the x1 and x2 coordinates while we
leave the x3 coordinates unchanged because we are rotating along the x3 axis. This implies
that our homography matrix will resemble the following:

Hrotation-unknown(α) =

h11 h12 0
h21 h22 0
0 0 1

 (15)

From geometric intuition, we know that an R2 point, (x1, x2), rotated by an angle, α,
has the transformed coordinates (x′

1, x
′
2):

x′
1 = x1cos(α)− x2sin(α)

x′
2 = x1sin(α) + x2cos(α)

Keeping in mind Equation 5 and 15, we can reason that the rotation matrix must be the
following:

Hrotation(α) =

cos(α) sin(α) 0
sin(α) cos(α) 0

0 0 1

 (16)

Vertical Tilting Homography Matrix

Vertical tilting will skew the image vertically, implying that we keep the x1 coordinates
unchanged while transforming the x2 and x3 coordinates because we are rotating along the
x1 axis. To reflect this notion, we have the following expressions:

x′
1 = x1

x′
2 = x2cos(α) + x3sin(α)

x′
3 = −x2sin(α) + x3cos(α)

In HC representation, x3 = 1, so our vertical tilt matrix will be the following:

Hvertical-tilt(α) =

1 0 0
0 cos(α) sin(α)
0 sin(α) cos(α)

 (17)

20

Horizontal Tilting Homography Matrix

Horizontal tilting will skew the image horizontally, implying that we keep the x2 coordinates
unchanged while transforming the x1 and x3 coordinates because we are rotating along the
x2 axis. To reflect this notion, we have the following expressions:

x′
1 = x1cos(α)− x3sin(α)

x′
2 = x2

x′
3 = x1sin(α) + x3cos(α)

In HC representation, x3 = 1, so our horizontal tilt matrix will be the following:

Hhorizontal-tilt(α) =

cos(α) 0 −sin(α)
0 1 0

sin(α) 0 cos(α)

 (18)

Extra Credit Problem 2

The following gridline image was generated using Python and was used for our transforma-
tions. An “arrow-like” structure was included to help assess orientation:

Figure 21: Original gridline image (generated by Python)

The gridline image was transformed with rotation, vertical tilting, and horizontal tilting
for +15, +45, and −45 degrees. The results are found below:

21

Figure 22: The original gridline image rotated by our predefined angles

Figure 23: The original gridline image vertically tilted by our predefined angles

Figure 24: The original gridline image horizontally tilted by our predefined angles

22

Extra Credit Problem 3

As previously mentioned, when applying a vertical or horizontal tilting transformation to
an image, we rotate about a particular axis, which affects lines differently depending on
their alignment to that axis. For vertical tilting, we rotate about the x1 axis which will
affect horizontal lines, making them appear slanted while keeping vertical lines unchanged.
Conversely, for horizontal tilting, we rotate about the x2 axis which will affect vertical lines,
making them appear slanted while keeping horizontal lines unchanged.

To numerically prove this, we will utilize two separate lines, one parallel with the x-axis
and the other parallel with the y-axis, apply both vertical and horizontal tilting, observe the
results. If a skew becomes present, then a x1 or x2 component will be added that was not
there before. l1 is parallel to the x-axis, and l2 is parallel to the y-axis:

l1 =

 0
1
−1

 , l2 =

 1
0
−1


We also have to keep in mind how to properly apply homography matrices to lines to

arrive at their transformed counterparts:

l′ = H−T l (19)

Now we will apply a horizontal tilt of +15 degrees to both of these lines:

l1-horz = Hhorizontal-tilt(15
◦)−T l1 =

cos(15) 0 −sin(15)
0 1 0

sin(15) 0 cos(15)

−T  0
1
−1

 =

 0.258
1

−0.966



l2-horz = Hhorizontal-tilt(15
◦)−T l2 =

cos(15) 0 −sin(15)
0 1 0

sin(15) 0 cos(15)

−T  1
0
−1

 =

 1.225
0

−0.707


As we thought, l1 receives a skew in the form of an added x1 component while l2 does

not receive any additional component. Now we will apply a vertical tilt of +15 degrees to
both of these lines:

l1-vert = Hvertical-tilt(15
◦)−T l1 =

1 0 0
0 cos(15) sin(15)
0 sin(15) cos(15)

−T  0
1
−1

 =

 0
0.707
−1.225



l2-vert = Hvertical-tilt(15
◦)−T l2 =

1 0 0
0 cos(15) sin(15)
0 sin(15) cos(15)

−T  1
0
−1

 =

 1
−0.258
−0.966


Similarly, a skew presented itself in l2 in the form of an added x1 component while l1 did

not receive any additional component.

23

Python Code: Toplevel Script

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import cv2

4 import os

5 import json

6

7 from master_helper import print_threeXthree_array ,

print_with_delimiter

8

9

10 def solve_affine(X_prime , X):

11 """

12 Function to solve the Affine transformation matrix A based on

dictionaries X_prime and X.

13

14 Inputs:

15 X_prime (dict): Dictionary of destination points with keys

’x’ and ’y ’.

16 X (dict): Dictionary of source points with keys ’x’ and ’y ’.

17

18 Returns the affine transformation matrix , H_affine.

19 """

20 # Initialize the matrix A

21 A = []

22

23 # Converting the dictionary values to NumPy arrays

24 x = np.array(X["x"]) # Domain x points

25 y = np.array(X["y"]) # Domain y points

26 x_prime = np.array(X_prime["x"]) # Range x’ points

27 y_prime = np.array(X_prime["y"]) # Range y’ points

28

29 # Loop through each pair of points and construct the rows of

unknowns matrix , A

30 for i in range (4): # We have 4 correspondence points

31 # Construct the two rows for the ith point

32 A.append ([x[i], y[i], 1, 0, 0, 0])

33 A.append ([0, 0, 0, x[i], y[i], 1])

34

35 # Convert A to a NumPy array

36 A = np.array(A)

37

38 # Create vector chi_prime from X_prime coordinates

39 chi_prime = np.array(

40 [

41 x_prime [0],

24

42 y_prime [0],

43 x_prime [1],

44 y_prime [1],

45 x_prime [2],

46 y_prime [2],

47 x_prime [3],

48 y_prime [3],

49]

50)

51

52 # Solve the system of linear equations to find the affine

parameters

53 # Note: Because we have an over -determined system (8 equations ,

6 unknowns), we need to use linalg.lstsq

54 H_params = np.linalg.lstsq(A, chi_prime , rcond=None)[0]

55

56 # Append [0, 0, 1] to the parameter array to align with an

affine matrix

57 H_params = np.append(H_params , [0, 0, 1])

58

59 # Reshape the parameter array into the affine matrix H_affine

60 H_affine = H_params.reshape ((3, 3))

61

62 return H_affine

63

64

65 def solve_homography(X_prime , X):

66 """

67 Function to solve the Homography matrix H based on dictionaries

X_prime and X.

68

69 Inputs:

70 X_prime (dict): Dictionary of destination points with keys

’x’ and ’y ’.

71 X (dict): Dictionary of source points with keys ’x’ and ’y ’.

72

73

74 Returns general homography matrix , H.

75 """

76 # Initialize the matrix A

77 A = []

78

79 # Converting the dictionary values to NumPy arrays

80 x = np.array(X["x"]) # Domain x points

81 y = np.array(X["y"]) # Domain y points

82 x_prime = np.array(X_prime["x"]) # Range x’ points

83 y_prime = np.array(X_prime["y"]) # Range y’ points

25

84

85 # Loop through each pair of points and construct the rows of A

86 for i in range (4): # Four correspondence points

87 # Construct the two rows for the ith point

88 A.append ([x[i], y[i], 1, 0, 0, 0, -x[i] * x_prime[i], -y[i]

* x_prime[i]])

89 A.append ([0, 0, 0, x[i], y[i], 1, -x[i] * y_prime[i], -y[i]

* y_prime[i]])

90

91 # Convert A to a NumPy array

92 A = np.array(A)

93

94 # Create vector chi_prime from X_prime coordinates

95 chi_prime = np.array(

96 [

97 x_prime [0],

98 y_prime [0],

99 x_prime [1],

100 y_prime [1],

101 x_prime [2],

102 y_prime [2],

103 x_prime [3],

104 y_prime [3],

105]

106)

107

108 # Solve the system of linear equations to find the homography

parameters

109 # Note: We can use linalg.solve because we have a

well -determined system (8 equations , 8 unknowns)

110 H_params = np.linalg.solve(A, chi_prime)

111

112 # Append 1 to the parameter array to complete the homography

matrix

113 H_params = np.append(H_params , 1)

114

115 # Reshape the parameter array into the homography matrix H

116 H = H_params.reshape ((3, 3))

117

118 return H

119

120

121 def solve_and_perform_homography(domain_img_data , range_img_data):

122 """

123 Function to apply homography transformation from domain to

range image data.

124

26

125 Inputs:

126 domain_img_data (dict): Dictionary containing domain image

file path and points.

127 range_img_data (dict): Dictionary containing range image

file path and points.

128

129

130 Returns tuple of original and transformed range images and

homography matrix.

131 """

132

133 # Load images using the file paths from the dictionaries

134 range_img = cv2.imread(range_img_data["filepath"])

135 range_img_orig = np.copy(range_img)

136 domain_img = cv2.imread(domain_img_data["filepath"])

137

138 # Solve the homography matrix using the coordinates , not images

139 H = solve_homography(domain_img_data , range_img_data)

140

141 # Perform homography transformation using the solved matrix

142 transformed_img = perform_homography(domain_img , range_img , H)

143

144 return range_img_orig , transformed_img , H

145

146

147 def solve_and_perform_homography_affine(domain_img_data ,

range_img_data):

148 """

149 Function to apply homography transformation from domain to

range image data.

150

151 Inputs:

152 domain_img_data (dict): Dictionary containing domain image

file path and points.

153 range_img_data (dict): Dictionary containing range image

file path and points.

154

155

156 Returns tuple of original and transformed range images and

homography matrix.

157 """

158

159 # Load images using the file paths from the dictionaries

160 range_img = cv2.imread(range_img_data["filepath"])

161 range_img_orig = np.copy(range_img)

162 domain_img = cv2.imread(domain_img_data["filepath"])

163

27

164 # Solve the homography matrix using the coordinates , not images

165 H_affine = solve_affine(domain_img_data , range_img_data)

166

167 # Perform homography transformation using the solved matrix

168 transformed_img = perform_homography(domain_img , range_img ,

H_affine)

169

170 return range_img_orig , transformed_img , H_affine

171

172

173 def perform_homography(domain_img , range_img , H):

174 """

175 Function to apply homography transformation from domain to

range image using a given homography matrix.

176

177 Inputs:

178 domain_img (np array): Domain image.

179 range_img (np array): Range image to transform.

180 H (np array): Homography matrix.

181

182 Returns transformed range image (np array).

183 """

184

185 # Get dimensions of the range image

186 height , width = range_img.shape [:2]

187

188 # Generate a grid of (x, y) coordinates for every pixel in the

range image

189 x_coords , y_coords = np.meshgrid(np.arange(width),

np.arange(height))

190

191 # Flatten the coordinate grids to create a list of coordinates

192 x_coords_flat = x_coords.flatten ()

193 y_coords_flat = y_coords.flatten ()

194

195 # Create an array of homogeneous coordinates for the points

196 ones_HC = np.ones_like(x_coords_flat)

197 points_HC = np.vstack ((x_coords_flat , y_coords_flat , ones_HC))

Shape: (3, N)

198

199 # Apply the homography transformation using matrix

multiplication

200 transformed_points = (

201 H @ points_HC

202) # Matrix multiplication with H (3x3) and points_HC (3xN)

203

204 # Normalize by the third coordinate to convert back to HC

28

205 transformed_points /= transformed_points [2, :]

206

207 # Round and convert to integer for pixel coordinates

208 transformed_points = np.rint(transformed_points).astype(int)

209

210 # Filter out points that are outside the target image bounds

211 valid_indices = (

212 (transformed_points [0, :] >= 0)

213 & (transformed_points [0, :] < domain_img.shape [1])

214 & (transformed_points [1, :] >= 0)

215 & (transformed_points [1, :] < domain_img.shape [0])

216)

217

218 # Get valid transformed coordinates

219 valid_transformed_points = transformed_points [:, valid_indices]

220 valid_original_points = points_HC [:, valid_indices]

221

222 # Assign pixel values from the source image to the target image

223 range_img[valid_original_points [1], valid_original_points [0]] =

domain_img[

224 valid_transformed_points [1], valid_transformed_points [0]

225]

226

227 return range_img

228

229

230 def task_1(img_data , show_plots):

231 """

232 Function to perform the described subtasks from Task -1

233 """

234

235 # Extract image points and file paths from the loaded JSON data

236 alex_img = img_data["alex"]

237 img1 = img_data["img1"]

238 img2 = img_data["img2"]

239 img3 = img_data["img3"]

240

241 """

242 Task 1.1: Project Figure 1(d) onto Figures 1(a-c) PQRS region

using homographies

243 """

244

245 # Perform homography transformation

246 range_img1 , range_img1_alex , H_da =

solve_and_perform_homography(alex_img , img1)

247 range_img2 , range_img2_alex , H_db =

solve_and_perform_homography(alex_img , img2)

29

248 range_img3 , range_img3_alex , H_dc =

solve_and_perform_homography(alex_img , img3)

249

250 # Print 3x3 Homographies (for logging)

251 print_with_delimiter("H_da")

252 print_threeXthree_array(H_da)

253

254 print_with_delimiter("H_db")

255 print_threeXthree_array(H_db)

256

257 print_with_delimiter("H_dc")

258 print_threeXthree_array(H_dc)

259

260 # ================

261 # --- PLOTTING

262 # ================

263 # Display the results of Domain: alex_honnold.jpg , Range:

img1.jpg

264 plt.figure(figsize =(10, 10))

265 plt.subplot (121)

266 plt.title("Original Range: img1")

267 plt.imshow(cv2.cvtColor(range_img1 , cv2.COLOR_BGR2RGB))

268 plt.axis("off")

269 plt.grid(False)

270 plt.subplot (122)

271 plt.title("Transformed Domain: alex_honnold to img1")

272 plt.imshow(cv2.cvtColor(range_img1_alex , cv2.COLOR_BGR2RGB))

273 plt.axis("off")

274 plt.grid(False)

275 plt.savefig(os.path.join(figs_dir , "alex_to_img1.png"))

276 if show_plots:

277 plt.show()

278

279 # Display the results of Domain: alex_honnold.jpg , Range:

img2.jpg

280 plt.figure(figsize =(10, 10))

281 plt.subplot (121)

282 plt.title("Original Range: img2")

283 plt.imshow(cv2.cvtColor(range_img2 , cv2.COLOR_BGR2RGB))

284 plt.axis("off")

285 plt.grid(False)

286 plt.subplot (122)

287 plt.title("Transformed Domain: alex_honnold to img2")

288 plt.imshow(cv2.cvtColor(range_img2_alex , cv2.COLOR_BGR2RGB))

289 plt.axis("off")

290 plt.grid(False)

291 plt.savefig(os.path.join(figs_dir , "alex_to_img2.png"))

30

292 if show_plots:

293 plt.show()

294

295 # Display the results of Domain: alex_honnold.jpg , Range:

img3.jpg

296 plt.figure(figsize =(10, 10))

297 plt.subplot (121)

298 plt.title("Original Range: img3")

299 plt.imshow(cv2.cvtColor(range_img3 , cv2.COLOR_BGR2RGB))

300 plt.axis("off")

301 plt.grid(False)

302 plt.subplot (122)

303 plt.title("Transformed Domain: alex_honnold to img3")

304 plt.imshow(cv2.cvtColor(range_img3_alex , cv2.COLOR_BGR2RGB))

305 plt.axis("off")

306 plt.grid(False)

307 plt.savefig(os.path.join(figs_dir , "alex_to_img3.png"))

308 if show_plots:

309 plt.show()

310

311 """

312 Task 1.2: Find homographies between Figures 1(a-b), 1(b-c)

313 """

314

315 # Calculate the homography between img1 and img2 , then between

img2 and img3

316 H_ab = solve_homography(img1 , img2)

317 H_bc = solve_homography(img2 , img3)

318

319 H_ac = H_ab @ H_bc

320

321 print_with_delimiter("H_ab")

322 print_threeXthree_array(H_ab)

323

324 print_with_delimiter("H_bc")

325 print_threeXthree_array(H_bc)

326

327 print_with_delimiter("H_ac")

328 print_threeXthree_array(H_ac)

329

330 # Apply homographies H_ab and H_bc to img1

331 img1_to_img2 = perform_homography(

332 cv2.imread(img1["filepath"]), cv2.imread(img2["filepath"]),

H_ab

333)

334 img1_to_img3 = perform_homography(img1_to_img2 ,

cv2.imread(img3["filepath"]), H_bc)

31

335

336 # ================

337 # --- PLOTTING

338 # ================

339

340 # Display the results of Domain: img1.jpg , Range: img2.jpg

341 plt.figure(figsize =(10, 10))

342 plt.title("Transformed img1 to img2 using H_ab")

343 plt.imshow(cv2.cvtColor(img1_to_img2 , cv2.COLOR_BGR2RGB))

344 plt.axis("off")

345 plt.grid(False)

346 plt.savefig(os.path.join(figs_dir , "img1_to_img2.png"))

347 if show_plots:

348 plt.show()

349

350 # Display the results of Domain: TRANSFORMED img1.jpg , Range:

img3.jpg

351 plt.figure(figsize =(10, 10))

352 plt.title("Transformed img1 to img3 using H_ab and H_bc")

353 plt.imshow(cv2.cvtColor(img1_to_img3 , cv2.COLOR_BGR2RGB))

354 plt.axis("off")

355 plt.grid(False)

356 plt.savefig(os.path.join(figs_dir , "img1_to_img3.png"))

357 if show_plots:

358 plt.show()

359

360 """

361 Task 1.3: Project Figure 1(d) onto Figures 1(a-c) PQRS region

using only affine homographies

362 """

363

364 # Perform homography transformation (affine)

365 range_img1 , range_img1_alex_affine , H_da_affine = (

366 solve_and_perform_homography_affine(alex_img , img1)

367)

368 range_img2 , range_img2_alex_affine , H_db_affine = (

369 solve_and_perform_homography_affine(alex_img , img2)

370)

371 range_img3 , range_img3_alex_affine , H_dc_affine = (

372 solve_and_perform_homography_affine(alex_img , img3)

373)

374

375 # Print 3x3 Homographies (for logging)

376 print_with_delimiter("H_da_affine")

377 print_threeXthree_array(H_da_affine)

378

379 print_with_delimiter("H_db_affine")

32

380 print_threeXthree_array(H_db_affine)

381

382 print_with_delimiter("H_dc_affine")

383 print_threeXthree_array(H_dc_affine)

384

385 # ================

386 # --- PLOTTING

387 # ================

388 # Display the results of Domain: alex_honnold.jpg , Range:

img1.jpg (AFFINE)

389 plt.figure(figsize =(10, 10))

390 plt.subplot (121)

391 plt.title("Original Range: img1")

392 plt.imshow(cv2.cvtColor(range_img1 , cv2.COLOR_BGR2RGB))

393 plt.axis("off")

394 plt.grid(False)

395 plt.subplot (122)

396 plt.title("Transformed Domain: alex_honnold to img1 (AFFINE)")

397 plt.imshow(cv2.cvtColor(range_img1_alex_affine ,

cv2.COLOR_BGR2RGB))

398 plt.axis("off")

399 plt.grid(False)

400 plt.savefig(os.path.join(figs_dir , "alex_to_img1_affine.png"))

401 if show_plots:

402 plt.show()

403

404 # Display the results of Domain: alex_honnold.jpg , Range:

img2.jpg (AFFINE)

405 plt.figure(figsize =(10, 10))

406 plt.subplot (121)

407 plt.title("Original Range: img2")

408 plt.imshow(cv2.cvtColor(range_img2 , cv2.COLOR_BGR2RGB))

409 plt.axis("off")

410 plt.grid(False)

411 plt.subplot (122)

412 plt.title("Transformed Domain: alex_honnold to img2 (AFFINE)")

413 plt.imshow(cv2.cvtColor(range_img2_alex_affine ,

cv2.COLOR_BGR2RGB))

414 plt.axis("off")

415 plt.grid(False)

416 plt.savefig(os.path.join(figs_dir , "alex_to_img2_affine.png"))

417 if show_plots:

418 plt.show()

419

420 # Display the results of Domain: alex_honnold.jpg , Range:

img3.jpg (AFFINE)

421 plt.figure(figsize =(10, 10))

33

422 plt.subplot (121)

423 plt.title("Original Range: img3")

424 plt.imshow(cv2.cvtColor(range_img3 , cv2.COLOR_BGR2RGB))

425 plt.axis("off")

426 plt.grid(False)

427 plt.subplot (122)

428 plt.title("Transformed Domain: alex_honnold to img3 (AFFINE)")

429 plt.imshow(cv2.cvtColor(range_img3_alex_affine ,

cv2.COLOR_BGR2RGB))

430 plt.axis("off")

431 plt.grid(False)

432 plt.savefig(os.path.join(figs_dir , "alex_to_img3_affine.png"))

433 if show_plots:

434 plt.show()

435

436

437 def task_2(img_data , show_plots):

438 """

439 Function to perform the described subtasks from Task -2

440 """

441 # Extract image points and file paths from the loaded JSON data

442 haggis = img_data["haggis"]

443 bear1 = img_data["bear1"]

444 bear2 = img_data["bear2"]

445 bear3 = img_data["bear3"]

446

447 """

448 Task 2.1: Project haggis.png onto our 3 bear image PQRS regions

using homographies

449 """

450

451 # Perform homography transformation

452 range_bear1 , range_bear1_haggis , H_haggis_bear1 =

solve_and_perform_homography(

453 haggis , bear1

454)

455 range_bear2 , range_bear2_haggis , H_haggis_bear2 =

solve_and_perform_homography(

456 haggis , bear2

457)

458 range_bear3 , range_bear3_haggis , H_haggis_bear3 =

solve_and_perform_homography(

459 haggis , bear3

460)

461

462 # Print 3x3 Homographies (for logging)

463 print_with_delimiter("H_haggis_bear1")

34

464 print_threeXthree_array(H_haggis_bear1)

465

466 print_with_delimiter("H_haggis_bear2")

467 print_threeXthree_array(H_haggis_bear2)

468

469 print_with_delimiter("H_haggis_bear3")

470 print_threeXthree_array(H_haggis_bear3)

471

472 # ================

473 # --- PLOTTING

474 # ================

475 # Display the results of Domain: haggis.png , Range: bear1.jpg

476 plt.figure(figsize =(10, 10))

477 plt.subplot (121)

478 plt.title("Original Range: bear1")

479 plt.imshow(cv2.cvtColor(range_bear1 , cv2.COLOR_BGR2RGB))

480 plt.axis("off")

481 plt.grid(False)

482 plt.subplot (122)

483 plt.title("Transformed Domain: haggis to bear1")

484 plt.imshow(cv2.cvtColor(range_bear1_haggis , cv2.COLOR_BGR2RGB))

485 plt.axis("off")

486 plt.grid(False)

487 plt.savefig(os.path.join(figs_dir , "haggis_to_bear1.png"))

488 if show_plots:

489 plt.show()

490

491 # Display the results of Domain: haggis.png , Range: bear2.jpg

492 plt.figure(figsize =(10, 10))

493 plt.subplot (121)

494 plt.title("Original Range: bear2")

495 plt.imshow(cv2.cvtColor(range_bear2 , cv2.COLOR_BGR2RGB))

496 plt.axis("off")

497 plt.grid(False)

498 plt.subplot (122)

499 plt.title("Transformed Domain: haggis to bear2")

500 plt.imshow(cv2.cvtColor(range_bear2_haggis , cv2.COLOR_BGR2RGB))

501 plt.axis("off")

502 plt.grid(False)

503 plt.savefig(os.path.join(figs_dir , "haggis_to_bear2.png"))

504 if show_plots:

505 plt.show()

506

507 # Display the results of Domain: haggis.png , Range: bear3.jpg

508 plt.figure(figsize =(10, 10))

509 plt.subplot (121)

510 plt.title("Original Range: bear3")

35

511 plt.imshow(cv2.cvtColor(range_bear3 , cv2.COLOR_BGR2RGB))

512 plt.axis("off")

513 plt.grid(False)

514 plt.subplot (122)

515 plt.title("Transformed Domain: haggis to bear3")

516 plt.imshow(cv2.cvtColor(range_bear3_haggis , cv2.COLOR_BGR2RGB))

517 plt.axis("off")

518 plt.grid(False)

519 plt.savefig(os.path.join(figs_dir , "haggis_to_bear3.png"))

520 if show_plots:

521 plt.show()

522

523 """

524 Task 1.2: Find homographies between bear1 -bear2 , bear2 -bear3

525 """

526

527 # Calculate the homography between bear1 and bear2 , then

between bear2 and bear3

528 H_bear1_bear2 = solve_homography(bear1 , bear2)

529 H_bear2_bear3 = solve_homography(bear2 , bear3)

530

531 H_bear1_bear3 = H_bear1_bear2 @ H_bear2_bear3

532

533 print_with_delimiter("H_bear1_bear2")

534 print_threeXthree_array(H_bear1_bear2)

535

536 print_with_delimiter("H_bear2_bear3")

537 print_threeXthree_array(H_bear2_bear3)

538

539 print_with_delimiter("H_bear1_bear3")

540 print_threeXthree_array(H_bear1_bear3)

541

542 # Apply homographies H_bear1_bear2 and H_bear2_bear3 to bear1

543 bear1_to_bear2 = perform_homography(

544 cv2.imread(bear1["filepath"]),

cv2.imread(bear2["filepath"]), H_bear1_bear2

545)

546 bear1_to_bear3 = perform_homography(

547 bear1_to_bear2 , cv2.imread(bear3["filepath"]), H_bear2_bear3

548)

549

550 # ================

551 # --- PLOTTING

552 # ================

553 # Display the results of Domain: bear1.jpg , Range: bear2.jpg

554 plt.figure(figsize =(10, 10))

555 plt.title("Transformed bear1 to bear2 using H_bear1_bear2")

36

556 plt.imshow(cv2.cvtColor(bear1_to_bear2 , cv2.COLOR_BGR2RGB))

557 plt.axis("off")

558 plt.grid(False)

559 plt.savefig(os.path.join(figs_dir , "bear1_to_bear2.png"))

560 if show_plots:

561 plt.show()

562

563 # Display the results of Domain: TRANSFORMED bear1.jpg , Range:

bear3.jpg

564 plt.figure(figsize =(10, 10))

565 plt.title("Transformed bear1 to bear3 using H_bear1_bear2 and

H_bear2_bear3")

566 plt.imshow(cv2.cvtColor(bear1_to_bear3 , cv2.COLOR_BGR2RGB))

567 plt.axis("off")

568 plt.grid(False)

569 plt.savefig(os.path.join(figs_dir , "bear1_to_bear3.png"))

570 if show_plots:

571 plt.show()

572

573 """

574 Task 1.3: Project haggis.png onto our 3 bear image PQRS regions

using only affine homographies

575 """

576

577 # Perform homography transformation (affine)

578 range_bear1 , range_bear1_haggis_affine , H_haggis_bear1_affine =

(

579 solve_and_perform_homography_affine(haggis , bear1)

580)

581 range_bear2 , range_bear2_haggis_affine , H_haggis_bear2_affine =

(

582 solve_and_perform_homography_affine(haggis , bear2)

583)

584 range_bear3 , range_bear3_haggis_affine , H_haggis_bear3_affine =

(

585 solve_and_perform_homography_affine(haggis , bear3)

586)

587

588 # Print 3x3 Homographies (for logging)

589 print_with_delimiter("H_haggis_bear1_affine")

590 print_threeXthree_array(H_haggis_bear1_affine)

591

592 print_with_delimiter("H_haggis_bear2_affine")

593 print_threeXthree_array(H_haggis_bear2_affine)

594

595 print_with_delimiter("H_haggis_bear3_affine")

596 print_threeXthree_array(H_haggis_bear3_affine)

37

597

598 # ================

599 # --- PLOTTING

600 # ================

601 # Display the results of Domain: haggis.png , Range: bear1.jpg

(AFFINE)

602 plt.figure(figsize =(10, 10))

603 plt.subplot (121)

604 plt.title("Original Range: bear1")

605 plt.imshow(cv2.cvtColor(range_bear1 , cv2.COLOR_BGR2RGB))

606 plt.axis("off")

607 plt.grid(False)

608 plt.subplot (122)

609 plt.title("Transformed Domain: haggis to bear1 (AFFINE)")

610 plt.imshow(cv2.cvtColor(range_bear1_haggis_affine ,

cv2.COLOR_BGR2RGB))

611 plt.axis("off")

612 plt.grid(False)

613 plt.savefig(os.path.join(figs_dir ,

"haggis_to_bear1_affine.png"))

614 if show_plots:

615 plt.show()

616

617 # Display the results of Domain: haggis.png , Range: bear2.jpg

(AFFINE)

618 plt.figure(figsize =(10, 10))

619 plt.subplot (121)

620 plt.title("Original Range: bear2")

621 plt.imshow(cv2.cvtColor(range_bear2 , cv2.COLOR_BGR2RGB))

622 plt.axis("off")

623 plt.grid(False)

624 plt.subplot (122)

625 plt.title("Transformed Domain: haggis to bear2 (AFFINE)")

626 plt.imshow(cv2.cvtColor(range_bear2_haggis_affine ,

cv2.COLOR_BGR2RGB))

627 plt.axis("off")

628 plt.grid(False)

629 plt.savefig(os.path.join(figs_dir ,

"haggis_to_bear2_affine.png"))

630 if show_plots:

631 plt.show()

632

633 # Display the results of Domain: haggis.png , Range: bear3.jpg

(AFFINE)

634 plt.figure(figsize =(10, 10))

635 plt.subplot (121)

636 plt.title("Original Range: bear3")

38

637 plt.imshow(cv2.cvtColor(range_bear3 , cv2.COLOR_BGR2RGB))

638 plt.axis("off")

639 plt.grid(False)

640 plt.subplot (122)

641 plt.title("Transformed Domain: haggis to bear3 (AFFINE)")

642 plt.imshow(cv2.cvtColor(range_bear3_haggis_affine ,

cv2.COLOR_BGR2RGB))

643 plt.axis("off")

644 plt.grid(False)

645 plt.savefig(os.path.join(figs_dir ,

"haggis_to_bear3_affine.png"))

646 if show_plots:

647 plt.show()

648

649

650 if __name__ == "__main__":

651

652 # Boolean to display plots (MAINLY FOR DEBUG)

653 show_plots_bool = False

654

655 # Load the image data from the JSON file

656 json_file = "img_data.json"

657 with open(json_file , "r") as f:

658 img_data = json.load(f)

659

660 # Directory to save figures

661 figs_dir = "HW2_images"

662 os.makedirs(figs_dir , exist_ok=True)

663

664 # ***

665 # TASK 1: img1 , img2 , img3 , and Alex Honnold

666 # ***

667 task_1(img_data , show_plots=show_plots_bool)

668

669 # ***

670 # TASK 2: bear1 , bear2 , bear3 , and THE HAGGIS

671 # ***

672 task_2(img_data , show_plots=show_plots_bool)

Python Code: Script to retrieve pixel coordinates

1 """

2 This online post:

https ://www.geeksforgeeks.org/displaying -the -coordinates -of-the -points -clicked -on-the -image -using -python -opencv /#

3 served as the GUI foundation for clicking our PQRS region. The

provided code was heavily modified to cater more to our needs.

39

4 """

5

6 import cv2

7 import sys

8 import json

9 import os

10 from master_helper import print_with_delimiter

11 from master_helper import Logger

12

13 # Global variables to store the image and click count

14 img = None

15 click_count = 0

16 letters = ["P", "Q", "R", "S"]

17 coordinates = {"x": [], "y": []} # To store the clicked coordinates

18

19

20 def print_image_corners(image_filepath):

21 """

22 Extracts and prints the pixel coordinates for the four corners

of an image.

23 Also returns the coordinates for JSON storage.

24

25 :param image_filepath: The path to the image file.

26 :return: Dictionary containing the corner coordinates.

27 """

28 # Read in the image

29 img = cv2.imread(image_filepath)

30

31 # Check if the image is loaded correctly

32 if img is None:

33 print(f"Error loading image: {image_filepath}")

34 return

35

36 # Get the dimensions of the image

37 height , width = img.shape [:2] # Only need width and height

38

39 # Define the corner coordinates

40 corners = {

41 "x": [0, width - 1, width - 1, 0], # P, Q, R, S

42 "y": [0, 0, height - 1, height - 1], # P, Q, R, S

43 "filepath": image_filepath ,

44 }

45

46 # Print the corner coordinates for logging

47 print(f"Image corners for {image_filepath }:")

48 print(f"P: [{ corners[’x ’][0]}, {corners[’y ’][0]}]") # Top -left

corner

40

49 print(f"Q: [{ corners[’x ’][1]}, {corners[’y ’][1]}]") #

Top -right corner

50 print(f"R: [{ corners[’x ’][2]}, {corners[’y ’][2]}]") #

Bottom -right corner

51 print(f"S: [{ corners[’x ’][3]}, {corners[’y ’][3]}]") #

Bottom -left corner

52

53 return corners

54

55

56 # Function to display the coordinates of the points clicked on the

image

57 def click_event(event , x, y, flags , params):

58 global img , click_count , letters , coordinates

59

60 # checking for left mouse clicks

61 if event == cv2.EVENT_LBUTTONDOWN:

62 if click_count < 4: # Allow only 4 clicks

63 letter = letters[click_count]

64

65 # Displaying the coordinates with a letter

66 coordinate_str = f"{letter }: [{x}, {y}]"

67 print(coordinate_str)

68

69 # Store coordinates

70 coordinates["x"]. append(x)

71 coordinates["y"]. append(y)

72

73 # Draw a dot at the clicked location

74 dot_color = (0, 0, 255) # Red color for the dot

75 dot_radius = 10 # Radius of the dot

76 cv2.circle(img , (x, y), dot_radius , dot_color , -1) #

Filled circle

77

78 # Displaying the coordinates and letter on the image

window

79 font = cv2.FONT_HERSHEY_SIMPLEX

80 font_scale = 2 # Increased font size

81 thickness = 5 # Increased thickness

82 offset = 15

83 cv2.putText(

84 img ,

85 coordinate_str ,

86 (x + offset , y + offset),

87 font ,

88 font_scale ,

89 (255, 255, 255),

41

90 thickness ,

91)

92 cv2.imshow("image", img)

93

94 click_count += 1 # Increment the click count

95

96 if click_count == 4: # After 4 clicks , disable further

clicks

97 cv2.setMouseCallback("image", lambda *args: None) #

Disable further clicks

98

99

100 def annotate_pixel_coordinates(image_filepath):

101 global img , click_count , coordinates

102

103 # Reset the click count and coordinates for each new image

104 click_count = 0

105 coordinates = {"x": [], "y": []} # Reset coordinates

106

107 # Read in the image

108 img = cv2.imread(image_filepath , 1)

109

110 # Check if image is loaded correctly

111 if img is None:

112 print(f"Error loading image: {image_filepath}")

113 return

114

115 # Get the dimensions of the image

116 height , width , channels = img.shape

117 print(f"Image size: Width = {width}, Height = {height},

Channels = {channels}")

118

119 # Calculate aspect ratio

120 aspect_ratio = width / height

121

122 # Desired width or height for the window

123 desired_width = 800 # Example: 800 pixels

124 desired_height = int(desired_width / aspect_ratio)

125

126 # Create a named window that allows resizing

127 cv2.namedWindow("image", cv2.WINDOW_NORMAL)

128

129 # Resize the window to maintain the aspect ratio

130 cv2.resizeWindow("image", desired_width , desired_height)

131

132 # Move window to the center of the screen (assuming 1920 x1080

screen resolution)

42

133 screen_width , screen_height = (

134 1920,

135 1080,

136) # You can adjust this to your screen resolution

137 window_x = int((screen_width - desired_width) / 2)

138 window_y = int((screen_height - desired_height) / 2)

139 cv2.moveWindow("image", window_x , window_y)

140

141 # Display the image in the resized window

142 cv2.imshow("image", img)

143

144 # Setting mouse handler for the image

145 # and calling the click_event () function

146 cv2.setMouseCallback("image", click_event)

147

148 # Wait for a key to be pressed to exit

149 cv2.waitKey (0)

150

151 # Save the annotated image with the suffix "_annotated"

152 annotated_filepath = image_filepath.replace(".jpg",

"_annotated.jpg")

153 cv2.imwrite(annotated_filepath , img)

154 print(f"Annotated image saved as: {annotated_filepath}")

155

156 # Properly close the window and release resources

157 cv2.destroyAllWindows ()

158

159 return coordinates # Return the collected coordinates

160

161

162 def write_coordinates_to_json(image_data , json_filepath):

163 """

164 Writes image coordinates to a JSON file. If the file exists ,

append new entries.

165

166 :param image_data: Dictionary containing image filepaths and

coordinates.

167 :param json_filepath: The path to the JSON file.

168 """

169 if os.path.exists(json_filepath):

170 # If the JSON file exists , read its current content

171 with open(json_filepath , "r") as json_file:

172 existing_data = json.load(json_file)

173 else:

174 existing_data = {}

175

176 # Update existing data with new data

43

177 existing_data.update(image_data)

178

179 # Write updated data back to JSON file

180 with open(json_filepath , "w") as json_file:

181 json.dump(existing_data , json_file , indent =4)

182 print(f"Coordinates saved to {json_filepath}")

183

184

185 def task_1(log_filename , json_filename):

186 # Set up logging to both terminal and file

187 logger = Logger(log_filename)

188 sys.stdout = logger

189

190 image1_filepath = "HW2_images/img1.jpg"

191 image2_filepath = "HW2_images/img2.jpg"

192 image3_filepath = "HW2_images/img3.jpg"

193 alex_filepath = "HW2_images/alex_honnold.jpg"

194

195 image_data = {} # To store data for all images

196

197 # Annotate images

198 print_with_delimiter(f"Annotating Coordinates for:

{image1_filepath}")

199 img1_coordinates = annotate_pixel_coordinates(image1_filepath)

200 img1_coordinates["filepath"] = image1_filepath

201 image_data["img1"] = img1_coordinates

202 print(f"--------------------------------")

203

204 print_with_delimiter(f"Annotating Coordinates for:

{image2_filepath}")

205 img2_coordinates = annotate_pixel_coordinates(image2_filepath)

206 img2_coordinates["filepath"] = image2_filepath

207 image_data["img2"] = img2_coordinates

208 print(f"--------------------------------")

209

210 print_with_delimiter(f"Annotating Coordinates for:

{image3_filepath}")

211 img3_coordinates = annotate_pixel_coordinates(image3_filepath)

212 img3_coordinates["filepath"] = image3_filepath

213 image_data["img3"] = img3_coordinates

214 print(f"--------------------------------")

215

216 print_with_delimiter(f"Extracting Image Corners for:

{alex_filepath}")

217 alex_corners = print_image_corners(alex_filepath)

218 image_data["alex"] = alex_corners

219 print(f"--------------------------------")

44

220

221 # Write image data to JSON

222 write_coordinates_to_json(image_data , json_filename)

223

224 # Close the log file and reset stdout

225 logger.close ()

226 sys.stdout = logger.terminal

227 print(f"--- Log saved to {log_filename}")

228

229

230 def task_2(log_filename , json_filename):

231 # Set up logging to both terminal and file

232 logger = Logger(log_filename)

233 sys.stdout = logger

234

235 bear1_filepath = "HW2_images/bear1.jpg"

236 bear2_filepath = "HW2_images/bear2.jpg"

237 bear3_filepath = "HW2_images/bear3.jpg"

238 haggis_filepath = "HW2_images/haggis.png"

239

240 image_data = {} # To store data for all images

241

242 # Annotate images

243 print_with_delimiter(f"Annotating Coordinates for:

{bear1_filepath}")

244 bear1_coordinates = annotate_pixel_coordinates(bear1_filepath)

245 bear1_coordinates["filepath"] = bear1_filepath

246 image_data["bear1"] = bear1_coordinates

247 print(f"--------------------------------")

248

249 print_with_delimiter(f"Annotating Coordinates for:

{bear2_filepath}")

250 bear2_coordinates = annotate_pixel_coordinates(bear2_filepath)

251 bear2_coordinates["filepath"] = bear2_filepath

252 image_data["bear2"] = bear2_coordinates

253 print(f"--------------------------------")

254

255 print_with_delimiter(f"Annotating Coordinates for:

{bear3_filepath}")

256 bear3_coordinates = annotate_pixel_coordinates(bear3_filepath)

257 bear3_coordinates["filepath"] = bear3_filepath

258 image_data["bear3"] = bear3_coordinates

259 print(f"--------------------------------")

260

261 print_with_delimiter(f"Extracting Image Corners for:

{haggis_filepath}")

262 haggis_corners = print_image_corners(haggis_filepath)

45

263 image_data["haggis"] = haggis_corners

264 print(f"--------------------------------")

265

266 # Write image data to JSON

267 write_coordinates_to_json(image_data , json_filename)

268

269 # Close the log file and reset stdout

270 logger.close ()

271 sys.stdout = logger.terminal

272 print(f"--- Log saved to {log_filename}")

273

274

275 if __name__ == "__main__":

276 task_1_log = "task_1_log.txt"

277 task_2_log = "task_2_log.txt"

278 json_file = "img_data.json"

279

280 # Obtain pixel coordinates for files from Tasks 1 and 2...

281 task_1(task_1_log , json_file)

282 task_2(task_2_log , json_file)

Python Code: Script to help complete the extra credit

1 import cv2

2 import numpy as np

3 import os

4 import matplotlib.pyplot as plt

5

6

7 def create_grid_image(width , height , grid_size):

8 """

9 Function to create our desired grid image with an ‘‘arrow -like"

structure in the middle (to help determine orientation)

10 """

11

12 # Create a blank white image

13 image = np.ones((height , width), dtype=np.uint8) * 255 # 255

for a white image

14

15 # Draw grid lines

16 for i in range(0, width , grid_size):

17 cv2.line(image , (i, 0), (i, height), (0), 1) # Vertical

lines

18 for j in range(0, height , grid_size):

19 cv2.line(image , (0, j), (width , j), (0), 1) # Horizontal

lines

46

20

21 # Calculate the center of the grid

22 center_x = (width // 2) // grid_size # Center in grid units

23 center_y = (height // 2) // grid_size # Center in grid units

24

25 # Define the arrow tip and body relative to the center

26 arrow_tip = (center_x , center_y) # Center grid position

27 arrow_body = [

28 (center_x - 1, center_y),

29 (center_x - 2, center_y),

30 (center_x , center_y - 1),

31 (center_x , center_y + 1),

32]

33

34 # Draw the arrow tip

35 cv2.rectangle(

36 image ,

37 (arrow_tip [0] * grid_size , arrow_tip [1] * grid_size),

38 ((arrow_tip [0] + 1) * grid_size , (arrow_tip [1] + 1) *

grid_size),

39 (0),

40 -1,

41)

42

43 # Draw the arrow body

44 for bx , by in arrow_body:

45 cv2.rectangle(

46 image ,

47 (bx * grid_size , by * grid_size),

48 ((bx + 1) * grid_size , (by + 1) * grid_size),

49 (0),

50 -1,

51)

52

53 return image

54

55

56 def apply_homography(image , H):

57 """

58 Function to apply a homography matrix to an input image.

59 NOTE: For this part , we are allowed to use

cv2.warpPerspective (), unlike the prior parts

60 """

61 height , width = image.shape [:2]

62 return cv2.warpPerspective(image , H, (width , height))

63

64

47

65 def save_images(images , transformation_type , angles):

66 """

67 Function to save our transformed image plots

68 """

69 if not os.path.exists("HW2_images"):

70 os.makedirs("HW2_images")

71

72 for i, img in enumerate(images):

73 cv2.imwrite(

74 f"HW2_images /{ transformation_type}_transformation_angle_{angles[i]:.0f}.png",

75 img ,

76)

77

78

79 def plot_images(images , transformation_type , angles):

80 """

81 Function to create side -by-side figures that show

transformations for all available angles

82 """

83 # Create a figure for the transformation type

84 fig , axes = plt.subplots(1, len(images), figsize =(15, 5))

85 fig.suptitle(f"{transformation_type.capitalize ()}

Transformations", fontsize =16)

86

87 for i, (img , angle) in enumerate(zip(images , angles)):

88 axes[i]. imshow(img , cmap="gray")

89 axes[i]. set_title(f"Angle: {angle :.0f} ")

90 axes[i].axis("off")

91

92 # Save the figure

93 plt.savefig(f"HW2_images /{ transformation_type}_transformations.png")

94 plt.show()

95

96

97 def apply_homography_to_line(H, line):

98 """

99 Applies a homography transformation to a line in homogeneous

coordinates.

100

101 Inputs:

102 - H: 3x3 numpy array representing the homography matrix.

103 - line: 3x1 numpy array (column vector) representing the line

in homogeneous coordinates (ax + by + c = 0).

104

105 Returns "transformed_line ": 3x1 numpy array (column vector)

representing the transformed line.

106 """

48

107 # Compute the inverse transpose of the homography matrix

108 H_inv_transpose = np.linalg.inv(H).T

109

110 # Apply the transformation

111 transformed_line = H_inv_transpose @ line

112

113 return transformed_line

114

115

116 def normalize_line(line):

117 """

118 Normalizes a line in homogeneous coordinates by dividing by the

third coordinate.

119

120 Inputs:

121 - line: 3x1 numpy array (column vector) representing the line

in homogeneous coordinates.

122

123

124 Returns "normalized_line ": 3x1 numpy array (column vector)

representing the normalized line.

125 """

126 return line / line [2]

127

128

129 if __name__ == "__main__":

130 # Define the image dimensions and grid size

131 width , height = 500, 500

132 grid_size = 50 # Size of the grid cells

133

134 # Create the grid image

135 input_image = create_grid_image(width , height , grid_size)

136 cv2.imwrite(f"HW2_images/original_grid.png", input_image)

137

138 # Define the list of angles in degrees

139 angles = [15, 45, -45]

140

141 # Normalization and de -normalization homographies

142 H_norm = np.array ([[2 / width , 0, -1], [0, 2 / height , -1], [0,

0, 1]])

143

144 H_de_norm = np.array(

145 [[width / 2, 0, width / 2], [0, height / 2, height / 2],

[0, 0, 1]]

146)

147

148 # Lists to store output images for each transformation type

49

149 rotated_images = []

150 horz_tilt_images = []

151 vert_tilt_images = []

152

153 for angle in angles:

154 alpha = np.radians(angle) # Convert degrees to radians

155

156 # Rotation homography matrix

157 H_rot = np.array(

158 [

159 [np.cos(alpha), -np.sin(alpha), 0],

160 [np.sin(alpha), np.cos(alpha), 0],

161 [0, 0, 1],

162]

163)

164

165 # Horizontal tilting homography matrix

166 H_horz_tilt = np.array(

167 [

168 [np.cos(alpha), 0, -np.sin(alpha)],

169 [0, 1, 0],

170 [np.sin(alpha), 0, np.cos(alpha)],

171]

172)

173

174 # Vertical tilting homography matrix

175 H_vert_tilt = np.array(

176 [

177 [1, 0, 0],

178 [0, np.cos(alpha), np.sin(alpha)],

179 [0, -np.sin(alpha), np.cos(alpha)],

180]

181)

182

183 # Composite homographies

184 H_composite_rot = H_de_norm @ H_rot @ H_norm

185 H_composite_horz_tilt = H_de_norm @ H_horz_tilt @ H_norm

186 H_composite_vert_tilt = H_de_norm @ H_vert_tilt @ H_norm

187

188 # Apply the transformations

189 rotated_image = apply_homography(input_image ,

H_composite_rot)

190 horz_tilt_image = apply_homography(input_image ,

H_composite_horz_tilt)

191 vert_tilt_image = apply_homography(input_image ,

H_composite_vert_tilt)

192

50

193 # Append the results to the corresponding lists

194 rotated_images.append(rotated_image)

195 horz_tilt_images.append(horz_tilt_image)

196 vert_tilt_images.append(vert_tilt_image)

197

198 # Save images

199 save_images(rotated_images , "rotated", angles)

200 save_images(horz_tilt_images , "horizontal_tilt", angles)

201 save_images(vert_tilt_images , "vertical_tilt", angles)

202

203 # Plot and save figures

204 plot_images(rotated_images , "rotated", angles)

205 plot_images(horz_tilt_images , "horizontal_tilt", angles)

206 plot_images(vert_tilt_images , "vertical_tilt", angles)

207

208 print("Images saved and figures created successfully.")

209

210 """

211 Extra Credit Problem 3

212 """

213 line_x_parallel = np.array ([0, 1, -1]).reshape(3, 1)

214 line_y_parallel = np.array ([1, 0, -1]).reshape(3, 1)

215

216 alpha = 15

217 alpha_rad = np.radians(alpha)

218

219 # Horizontal tilting homography matrix

220 H_horz_tilt = np.array(

221 [

222 [np.cos(alpha_rad), 0, -np.sin(alpha_rad)],

223 [0, 1, 0],

224 [np.sin(alpha_rad), 0, np.cos(alpha_rad)],

225]

226)

227

228 # Vertical tilting homography matrix

229 H_vert_tilt = np.array(

230 [

231 [1, 0, 0],

232 [0, np.cos(alpha_rad), np.sin(alpha_rad)],

233 [0, -np.sin(alpha_rad), np.cos(alpha_rad)],

234]

235)

236

237 # Apply homography to both lines

238

239 # Horizontal Tilt

51

240 print(f"\n===")

241 print(f"Applying Horizontal Tilt: {alpha} degrees")

242 print(f"===")

243 horz_tilt_x_parallel = apply_homography_to_line(H_horz_tilt ,

line_x_parallel)

244 horz_tilt_y_parallel = apply_homography_to_line(H_horz_tilt ,

line_y_parallel)

245

246 print(f"Horizontally tilted x_parallel (UNNORMALIZED):

{horz_tilt_x_parallel.T}")

247 print(f"Horizontally tilted y_parallel (UNNORMALIZED):

{horz_tilt_y_parallel.T}")

248

249 # Normalize the results

250 horz_tilt_x_parallel = normalize_line(horz_tilt_x_parallel)

251 horz_tilt_y_parallel = normalize_line(horz_tilt_y_parallel)

252

253 print(f"Horizontally tilted x_parallel:

{horz_tilt_x_parallel.T}")

254 print(f"Horizontally tilted y_parallel:

{horz_tilt_y_parallel.T}")

255

256 # Vertical Tilt

257 print(f"\n===")

258 print(f"Applying Vertical Tilt: {alpha} degrees")

259 print(f"===")

260 vert_tilt_x_parallel = apply_homography_to_line(H_vert_tilt ,

line_x_parallel)

261 vert_tilt_y_parallel = apply_homography_to_line(H_vert_tilt ,

line_y_parallel)

262

263 print(f"Vertically tilted x_parallel (UNNORMALIZED):

{vert_tilt_x_parallel.T}")

264 print(f"Vertically tilted y_parallel (UNNORMALIZED):

{vert_tilt_y_parallel.T}")

265

266 # Normalize the results

267 vert_tilt_x_parallel = normalize_line(vert_tilt_x_parallel)

268 vert_tilt_y_parallel = normalize_line(vert_tilt_y_parallel)

269

270 print(f"Vertically tilted x_parallel: {vert_tilt_x_parallel.T}")

271 print(f"Vertically tilted y_parallel: {vert_tilt_y_parallel.T}")

Python Code: Helper functions and classes

1 import sys

52

2 import cv2

3 import math

4 import tkinter as tk

5

6

7 # class to print both to terminal and log file

8 class Logger:

9 def __init__(self , log_file):

10 self.terminal = sys.stdout # Save the original stdout

11 self.log_file = open(log_file , "w")

12

13 def write(self , message):

14 self.terminal.write(message) # Print to terminal

15 self.log_file.write(message) # Write to log file

16

17 def flush(self):

18 self.terminal.flush() # Ensure terminal flushes its buffer

19 self.log_file.flush() # Ensure file flushes its buffer

20

21 def close(self):

22 self.log_file.close() # Close the file

23

24

25 def center_window(window_name , image):

26 """

27 Centers an OpenCV window on the screen

28

29 Inputs:

30 window_name: The name of the OpenCV window._

31 image: The image displayed in the window , needed to get its

size.

32 """

33

34 # Initialize tkinter to fetch screen size

35 root = tk.Tk()

36 screen_width = root.winfo_screenwidth ()

37 screen_height = root.winfo_screenheight ()

38 root.destroy () # Close the tkinter window

39

40 # Get image dimensions

41 image_height , image_width = image.shape [:2]

42

43 # Calculate the position to center the window

44 x_pos = math.floor ((screen_width - image_width) // 2)

45 y_pos = math.floor ((screen_height - image_height) // 2.5)

46

47 # Move the OpenCV window to the calculated position

53

48 cv2.moveWindow(window_name , x_pos , y_pos)

49

50

51 def print_with_delimiter(text , delimiter="*"):

52 """

53 Prints the given text surrounded by a specified delimiter ,

54 with lines of the delimiter above and below the text.

55

56 Inputs:

57 text: The string to be surrounded and printed.

58 delimiter: The character(s) to surround and print the lines.

59 """

60 # Create the line of delimiters

61 delimiter_line = delimiter * (len(text) + 4) # +4 for the

delimiters on either side

62

63 # Print the delimiter line above

64 print(f"\n{delimiter_line}")

65

66 # Print the text surrounded by delimiters

67 print(f"{delimiter} {text} {delimiter}")

68

69 # Print the delimiter line below

70 print(delimiter_line)

71

72

73 import numpy as np

74

75

76 def print_threeXthree_array(array , decimals =3):

77 """

78 Nicely prints a 3x3 NumPy array with formatted alignment.

79

80 Inputs:

81 array (np.ndarray): A 3x3 NumPy array to print.

82 decimals (int): Number of decimal places to format the

numbers.

83 """

84 # Check if the input array is 3x3

85 if array.shape != (3, 3):

86 raise ValueError("Input array must be a 3x3 NumPy array.")

87

88 # Use NumPy’s set_printoptions to control formatting

89 with np.printoptions(precision=decimals , suppress=True):

90 for row in array:

91 print(" ".join(f"{val :8.3f}" for val in row))

54

JSON File: HW2 Image Data

1 {

2 "img1": {

3 "x": [

4 424,

5 2547,

6 2399,

7 684

8],

9 "y": [

10 856,

11 880,

12 2290,

13 3171

14],

15 "filepath": "HW2_images/img1.jpg"

16 },

17 "img2": {

18 "x": [

19 524,

20 1866,

21 1950,

22 464

23],

24 "y": [

25 1441,

26 820,

27 2810,

28 2690

29],

30 "filepath": "HW2_images/img2.jpg"

31 },

32 "img3": {

33 "x": [

34 1217,

35 2971,

36 1790,

37 248

38],

39 "y": [

40 560,

41 2302,

42 3179,

43 1801

44],

45 "filepath": "HW2_images/img3.jpg"

55

46 },

47 "alex": {

48 "x": [

49 0,

50 782,

51 782,

52 0

53],

54 "y": [

55 0,

56 0,

57 664,

58 664

59],

60 "filepath": "HW2_images/alex_honnold.jpg"

61 },

62 "bear1": {

63 "x": [

64 600,

65 2030,

66 2030,

67 728

68],

69 "y": [

70 1045,

71 1185,

72 2346,

73 2798

74],

75 "filepath": "HW2_images/bear1.jpg"

76 },

77 "bear2": {

78 "x": [

79 961,

80 2271,

81 2246,

82 989

83],

84 "y": [

85 1417,

86 1321,

87 2730,

88 2454

89],

90 "filepath": "HW2_images/bear2.jpg"

91 },

92 "bear3": {

56

93 "x": [

94 720,

95 2623,

96 1670,

97 128

98],

99 "y": [

100 760,

101 1573,

102 3375,

103 2162

104],

105 "filepath": "HW2_images/bear3.jpg"

106 },

107 "haggis": {

108 "x": [

109 0,

110 1398,

111 1398,

112 0

113],

114 "y": [

115 0,

116 0,

117 693,

118 693

119],

120 "filepath": "HW2_images/haggis.png"

121 }

122 }

Log File: Task 1 PQRS Coordinates

∗∗∗
∗ Annotating Coordinates f o r : HW2 images/img1 . jpg ∗
∗∗∗
Image s i z e : Width = 3024 , Height = 4032 , Channels = 3
P: [424 , 856]
Q: [2547 , 880]
R: [2399 , 2290]
S : [684 , 3171]
Annotated image saved as : HW2 images/ img1 annotated . jpg
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

57

∗∗∗
∗ Annotating Coordinates f o r : HW2 images/img2 . jpg ∗
∗∗∗
Image s i z e : Width = 3024 , Height = 4032 , Channels = 3
P: [524 , 1441]
Q: [1866 , 820]
R: [1950 , 2810]
S : [464 , 2690]
Annotated image saved as : HW2 images/ img2 annotated . jpg
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∗∗∗
∗ Annotating Coordinates f o r : HW2 images/img3 . jpg ∗
∗∗∗
Image s i z e : Width = 3024 , Height = 4032 , Channels = 3
P: [1217 , 560]
Q: [2971 , 2302]
R: [1790 , 3179]
S : [248 , 1801]
Annotated image saved as : HW2 images/ img3 annotated . jpg
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∗∗∗
∗ Extract ing Image Corners f o r : HW2 images/ a lex honno ld . jpg ∗
∗∗∗
Image co rne r s f o r HW2 images/ a lex honno ld . jpg :
P: [0 , 0]
Q: [782 , 0]
R: [782 , 664]
S : [0 , 664]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Coordinates saved to img data . j son

Log File: Task 2 PQRS Coordinates

∗∗
∗ Annotating Coordinates f o r : HW2 images/bear1 . jpg ∗
∗∗
Image s i z e : Width = 3024 , Height = 4032 , Channels = 3
P: [600 , 1045]
Q: [2030 , 1185]
R: [2030 , 2346]
S : [728 , 2798]
Annotated image saved as : HW2 images/ bear1 annotated . jpg

58

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∗∗
∗ Annotating Coordinates f o r : HW2 images/bear2 . jpg ∗
∗∗
Image s i z e : Width = 3024 , Height = 4032 , Channels = 3
P: [961 , 1417]
Q: [2271 , 1321]
R: [2246 , 2730]
S : [989 , 2454]
Annotated image saved as : HW2 images/ bear2 annotated . jpg
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∗∗
∗ Annotating Coordinates f o r : HW2 images/bear3 . jpg ∗
∗∗
Image s i z e : Width = 3024 , Height = 4032 , Channels = 3
P: [720 , 760]
Q: [2623 , 1573]
R: [1670 , 3375]
S : [128 , 2162]
Annotated image saved as : HW2 images/ bear3 annotated . jpg
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∗∗∗
∗ Extract ing Image Corners f o r : HW2 images/ hagg i s . png ∗
∗∗∗
Image co rne r s f o r HW2 images/ hagg i s . png :
P: [0 , 0]
Q: [1398 , 0]
R: [1398 , 693]
S : [0 , 693]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Coordinates saved to img data . j son

Environment File: Python packages in conda environ-

ment

name : ece661
channe l s :

− conda−f o r g e
− d e f a u l t s

dependenc ies :
− l i bgcc mutex=0.1=conda fo rge

59

− openmp mutex=4.5=2 gnu
− as t tokens =2.4.1=pyhd8ed1ab 0
− bzip2=1.0.8= h5eee18b 6
− ca−c e r t i f i c a t e s =2024.8.30= hbcca054 0
− comm=0.2.2=pyhd8ed1ab 0
− debugpy=1.6.7=py312h6a678d5 0
− decora to r =5.1.1=pyhd8ed1ab 0
− except iongroup=1.2.2=pyhd8ed1ab 0
− execut ing =2.0.1=pyhd8ed1ab 0
− expat=2.6.2=h6a678d5 0
− import l ib−metadata=8.4.0=pyha770c72 0
− import l ib metadata =8.4.0=hd8ed1ab 0
− i pyke rne l =6.29.5=pyh3099207 0
− ipython=8.27.0=pyh707e725 0
− j e d i =0.19.1=pyhd8ed1ab 0
− j u p y t e r c l i e n t =8.6.2=pyhd8ed1ab 0
− j upy t e r c o r e =5.7.2=py312h06a4308 0
− l d imp l l i nux −64=2.38=h1181459 1
− l i b f f i =3.4.4=h6a678d5 1
− l i b g c c =14.1.0= h77fa898 1
− l i b g c c−ng=14.1.0= h69a702a 1
− l ibgomp=14.1.0= h77fa898 1
− l ibsod ium=1.0.18= h36c2ea0 1
− l i b s tdcxx−ng=11.2.0= h1234567 1
− l i buu id =1.41.5= h5eee18b 0
− matplot l ib− i n l i n e =0.1.7=pyhd8ed1ab 0
− ncurse s=6.4=h6a678d5 0
− nest−async io =1.6.0=pyhd8ed1ab 0
− opens s l =3.3.1=hb9d3cd8 3
− packaging=24.1=pyhd8ed1ab 0
− parso=0.8.4=pyhd8ed1ab 0
− pexpect=4.9.0=pyhd8ed1ab 0
− p i c k l e s h a r e =0.7.5=py 1003
− pip=24.2=py312h06a4308 0
− p l a t f o rmd i r s =4.2.2=pyhd8ed1ab 0
− prompt−t o o l k i t =3.0.47=pyha770c72 0
− p s u t i l =5.9.0=py312h5eee18b 0
− ptyproce s s =0.7.0=pyhd3deb0d 0
− pure eva l =0.2.3=pyhd8ed1ab 0
− pygments=2.18.0=pyhd8ed1ab 0
− python=3.12.4=h5148396 1
− python−da t e u t i l =2.9.0=pyhd8ed1ab 0
− pyzmq=25.1.2=py312h6a678d5 0
− r e ad l i n e=8.2=h5eee18b 0
− s e t up t oo l s =72.1.0=py312h06a4308 0

60

− s i x =1.16.0= pyh6c4a22f 0
− s q l i t e =3.45.3= h5eee18b 0
− s tack data =0.6.2=pyhd8ed1ab 0
− tk=8.6.14= h39e8969 0
− tornado=6.4.1= py312h5eee18b 0
− t r a i t l e t s =5.14.3=pyhd8ed1ab 0
− t yp ing ex t en s i on s =4.12.2=pyha770c72 0
− tzdata=2024a=h04d1e81 0
− wcwidth=0.2.13=pyhd8ed1ab 0
− wheel=0.43.0=py312h06a4308 0
− xz=5.4.6= h5eee18b 1
− zeromq=4.3.5=h6a678d5 0
− z ipp=3.20.1=pyhd8ed1ab 0
− z l i b =1.2.13= h5eee18b 1
− pip :

− black ==24.8.0
− c l i c k ==8.1.7
− contourpy==1.3.0
− c y c l e r ==0.12.1
− f o n t t o o l s ==4.53.1
− imageio ==2.35.1
− k iw i s o l v e r ==1.4.5
− lazy−l oade r==0.4
− matp lo t l i b ==3.9.2
− mypy−ex t en s i on s ==1.0.0
− networkx==3.3
− numpy==2.1.0
− opencv−python==4.10.0.84
− pathspec==0.12.1
− p i l l ow ==10.4.0
− pypars ing==3.1.4
− s c i k i t −image==0.24.0
− s c ipy ==1.14.1
− t i f f f i l e ==2024.8.28

p r e f i x : /home/ gooseneck /anaconda3/ envs / ece661

61

References

[1] Fiction Taxonomy Fandom. Wild Haggis. https://fiction-taxonomy.fandom.com/
wiki/Wild_haggis. Image used from webpage, Accessed: 2024-09-04.

[2] GeeksforGeeks. Displaying the Coordinates of the Points Clicked on the Image using
Python-OpenCV. https://www.geeksforgeeks.org/displaying-the-coordinates-
of-the-points-clicked-on-the-image-using-python-opencv/. Accessed: 2024-
09-04.

[3] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. 4th ed. Harlow,
Essex, England: Pearson Education Limited, 2018. isbn: 978-1-292-22304-9.

[4] NumPy Developers. NumPy: Linear algebra (numpy.linalg.lstsq). Accessed: 2024-09-04.
2024. url: https://numpy.org/doc/stable/reference/generated/numpy.linalg.
lstsq.html.

[5] NumPy Developers. NumPy: Linear algebra (numpy.linalg.solve). Accessed: 2024-09-04.
2024. url: https://numpy.org/doc/stable/reference/generated/numpy.linalg.
solve.html.

[6] NumPy Developers. numpy.rint. Online; accessed 2024-09-04. 2023. url: https://
numpy.org/doc/stable/reference/generated/numpy.rint.html.

62

