ECEG661: Computer Vision
Homework 2

Bruce Coburn
coburn6@purdue.edu

Task-1

We are given four images: three which consist of different views of a wall-mounted photo-
frame (Figures 1(a-c)) while one is of Alex Honnold (Figure 1(d)) climbing El Capitan
without a rope or safety equipment (becoming the first person to “free solo” the route). Our
subtasks are to complete the following;:

1. Using just four points, pick a region of interest (ROI) from the image of Alex Honnold
and project that region onto the PQRS regions in Figures 1(a-c).

2. Find homographies between Figures 1(a-b) and Figures 1(b-c), then multiply the re-
sultant homography to Figure 1(a). The resulting image should look similar to the
image shown in Figure 1(c).

3. Using only affine homographies, map Alex’s image to the PQRS regions in all photo-
frame images. Report the results. If a result is better than the others, explain why.

d m{é() 2 1 ‘v" £/ &
(a) View-1 (b) View-2 (c) View-3 (d) Image to be mapped:
Alex Honnold

Figure 1: Images for Task-1. Note that both outer or inner corner points of the given photo-
frame images are acceptable solutions.

Task-1.1: Logic

We are interested in finding the homography which will transform points in our domain
to a particular range. To do so, we manually annotated pixel coordinates that served as
correspondence points between our domain and range images. For reference, our domain
image points will have the following homogeneous representation:

I
X = i) (1)
T3

Whereas our range image points (or transformed points) will have the following homo-
geneous representation:

X' = |, (2)

We do know that the relationship between our domain and image points is:

X' = HX (3)

Where H is a 3x3 non-singular matrix that can be represented as:

hir hig has
H= |ha ha ho (4)
hsi hsa hss

Noting all of the above equations together and substituting into Equation 3, we arrive at
the following expression:

) hir hig has| |@
h| = |har hoa has| |22 (5)
175% hg1 hga hss €3

We can then derive individual expressions for each of our range image points (X’):

/

Ty = hllxl -+ h121’2 + h13$3
!

Ty = hgll’l + hggl’g + hggl’g

/
T3 = h3171 + h3ay + hasws

Ultimately, we are interested in the physical point representation of our transformed
points; meaning we need to convert our range image points to R? representation. To do so,
we divide our 2} and), by 2 to get our range physical points, (z/,y'):

, @ hywy + hioro + hisws

r = — =
l’g h31$1 + hggl’g + hggﬂfg

r_ x_’g _ ho171 + haowa + hozxs
l’g h31$1 -+ h32£€2 + h33£€3

Y

Because we are working homogeneous structures, we are only concerned about the ratios.
This simplifies our range physical point expressions because we are free to arbitrarily set
hs3 = 1 and divide by x3. Finally, we get our final range physical point expressions:

; hi1zy + higws + hys
hglflfl + h321‘2 +1

y = ho121 + haga + hoz
hgl.CEl -+ h32x2 -+ h33

If we rearrange our expressions, we arrive at the following:

ZEhu + yhlg + h13 — I.T,hg,l — yl’/hgg — ZL’, =0 (6)

zhar + yhay + hag — 2y'hay — yy'hss —y' =0 (7)

In Equations 6 and 7, we can observe that we have 8 unknowns (h;;) amongst 2 equations.
However, our 8 unknowns can be solved with 4 pairs of correspondence points. One pair
of correspondence points gives one domain point ([z;,y;]) and one range point ([z},v}]),
meaning that each pair of correspondence points gives us 2 equations and we only need 4
correspondence points to alleviate our 8 unknowns. The matrix representation for our system
of equations (using 4 correspondence points) is the following:

-ZL’1 U1 1 0 0 0 —(L’lZE,l —ylx’l_ -hll- -.Z'/l-
0 0 0z w1 —myy —wnvr| [P Y
o Yo 1 0 0 0 —xoxh —yoxh| [his xh
0 0 0 @z yo 1 —aoyy —woth| [ha| _ |4 (8)
3 y3 1 0 0 0 —xsxhy —ysay| [he xh
0 0 0 w3 ys 1 —x3y; —ysyz| [hos Y3
Ty Yy 1 0 0 0 —I4[E£1 —y417£1 h31 ZL‘Z
10 0 0 @4 ya 1 —24y) —vayy| |hso] A

To make this representation more readable, we will simplify Equation 8 to be:

Ah =X 9)

Corr

Since we are interested in the parameters, h, of our general homography matrix, H, we
can see that:

h=A"'X (10)

corr

Where we can then reshape h into our 3x3 non-singular homography matrix, H; matching
its form in Equation 5. Now, to transform our domain points to our range points, we simply
follow the operation in Equation 3.

Task-1.1: Implementation

The python code is meant to be (relatively) modular and efficient since this assignment
involves a lot of the same operations over a handful of different images. First, we need to
address how pixel coordinates (for corresponding PQRS regions) were extracted.

The file, retrieve_pixel _coordinates.py, allows us to interactively select points on
images, annotate corresponding P, Q, R, S points and store both the pixel coordinate in-
formation and newly annotated images to a local directory. It should be noted that pixel
coordinate information is stored in img data. json. Heavy inspiration came from an online
post [2], which served as the GUI foundation for the final implementation.

Once we have written pixel coordinate information to img _data.json, we can execute
toplevel hw2.py which handles the code implementation of the logic presented in the prior
section. The code has been commented and laid out in, hopefully, a straightforward manner
but there are a handful of considerations that were taken.

To solve for our general homography, H, the functions solve_and perform homography
and solve_homography were created. The numpy function, numpy.linalg.solve, extracts
the solutions for our general homography matrix, H, when we input a corresponding un-
knowns matrix, A, and the rasterized vector of our correspondence points, X/ . According
to the Numpy documentation for numpy.linalg.solve [5], we are able to use this method
because our linear matrix expression (Equation 9) is well determined and full rank.

Now that we have our general homography matrix, H, we can implement Equation 5 once
we reshape h. To do so, and favoring efficiency, we utilized NumPy’s ability to wvectorize
operations. In particular, vectorized operations are the process of applying an operation to
an entire array, rather than iterating over individual elements using loops. In our case, we
would have to implement nested for loops which would iterate over every pixel element in
an image array. Nested for loops were taking a significantly long time so we decided to
implement vectorized operations instead. This can be observed in the perform_homography
function.

It should also be noted that instead of directly transforming points from the domain
image to the range image, an inverse mapping method was adopted. Initially, we were
having issues assigning valid values to our transformed image when taking a forward mapping
approach. This inverse mapping method involves computing the transformed coordinates in
the domain image that correspond to each point in the range image. This helps to ensure
that all locations in the range image are assigned valid values.

As explained by Gonzalez and Woods in their book Digital Image Processing [3], inverse
mapping is more efficient and widely used in practice because it avoids gaps or unassigned
pixels in the output image. The book discusses that by scanning the output pixel locations
and computing corresponding locations in the input image using the inverse transformation
matrix, all output pixels are properly assigned, which aligns with our approach. The book
also mentions interpolation, where we simply rounded computed values to the closest integer
using numpy.rint () [6]; effectively nearest-neighbor interpolation. We then normalize the
third coordinate back to 1 to align with HC representation and we filter out points that fall
outside of the image bounds.

Task-1.1: Results

Below are the annotated pixel coordinates for our range images:

R: [2399, 2290]

s: [684, 3171]

Figure 2: Annotated Coordinates for imgl

|

I
R: [1950, 2810]

Figure 3: Annotated Coordinates for img2

Figure 4: Annotated Coordinates for img3

It should be noted that the four corners of our domain image (“alex_honnold.jpg”) was
used. The PQRS regions of our images are included below in tabular format:

Filename P Q R S
imglipg [424, 856] | [2547, 830] | [2399, 2290] | [684, 3171]
img2.jpg 524, 1441] | [1866, 820] | [1950, 2810] | [464, 2690]
img3.ipg [1217, 560] | [2071, 2302] | [1790, 3179] | [248, 1801]
alex_honnold.jpg [0, 0] [782, 0] (782, 664] [0, 664]

Table 1: P,Q,R,S Regions for our images

We now present our projected domain images:

Original Range: imgl Transformed Domain: alex_honnold to imgl

Figure 5: alex_honnold transformed to imgl

Original Range: img2 Transformed Domain: alex_honnold to img2

Figure 6: alex_honnold transformed to img2

Original Range: img3 Transformed Domain: alex_honnold to img3

Figure 7: alex_honnold transformed to img3

Task-1.2: Logic

No new logic is particularly needed for this section. However, our domain image is no longer
strictly “alez_honnold.jpg”. Instead, we will have changing domain and range images to find
the homographies between imgl, img2, and img3. The homography between imgl and img2,
H.y, is found by using domain image points from imgl and range image points from img2.
The homography between img2 and img3, Hy,., is found by using domain image points from
img2 and range image points from img3. We know that multiplying a homography by a
homography results in a homography, so we can simply multiply Hap, by Hye to get our
homography from imgl to img3, Hye.

Task-1.2: Implementation

Because we took a modular approach to our python implementation, we simply have to call
our solve homogrpahy function between our corresponding domain and range images to
get the homography matrix between those images. We then utilize perform_homography to
apply an input homography matrix to a particular image and save the result.

Task-1.2: Results

Our homographies were found to be the following (rounded to the nearest third decimal
point). Since we adopted an inverse mapping approach, the homographies listed represent
the transformations from the range image back to the domain image. The ’true’ forward
homographies, which map domain image points to range image points, would be the inverses
of these matrices:

—12.642 —1.608 7970.635 0.221 0.055 154.144
H, = | —6.125 —-6.970 11292515, H,. = |—0.510 0.034 1850.650
—0.004 —0.001 1.000 0.000 0.000 1.000

—=2.177 —2.209 3045.558
H,.= | 1915 —-2.641 —-2550.563
0.000 0.000 —1.314

And the resulting transformed imgl images are the following:

Transformed img1 to img3 using H_ab and H_bc

ed imgl to

(b) imgl transformed to img3 range

(a) imgl transformed to img2 range

Task-1.3: Logic

There isn’t a significant change between the logic of Task-1.1 and Task-1.3. However, now
that we are dealing with strictly affine transformations, we have a slight constraint on our
homography matrix, H.mg,.. Because our homography will be strictly affine, we know that
the last row of our matrix will be [0, 0, 1]. Hamne will now be:

hi1 hig hig
Haffne = [h21 hao hos (11)
0 0 1

Which will ultimately affect our system of equations. It should be noted that this ex-
pression reflects that 4 correspondence points were used. The reasoning is outlined in the
“Task-1.3: Implementation” subsection. For brevity, the step-by-step derivation has been
omitted. But we are left with the new representation of our system of equations:

[z, y1 1 0 0 O] EX
0 0 0 =z y 1 B | Yy
T2 Yo 1 0 0 O hlg £L‘I2
0 0 0 22 yo 1| [hag| _ Y (12)
3 y3 1 0 0 Of [hon xh
0 0 0 x3 yz 1| [ho Y3
Tg Yy 1 0 0 0 _h23_ .Z’ZL
(0 0 0 x4 ys 1 4

To make this representation more readable, we will simplify Equation 12 to be:

Aafﬁnehaf‘ﬁne =X (13)

corr

Since we are interested in the parameters, h, .., of our affine homography matrix, H,mpe,
we can see that:

hagine = A4 X/ (14)

affine“*corr

Where we can then reshape h,gy, into our 3x3 affine homography matrix, H,gpe; match-
ing its form in Equation 11. Now, to transform our domain points to our range points, we
simply follow the operation in Equation 3.

Task-1.3: Implementation

The implementation of the affine transformation in Task-1.3 is similar to that of Task-1.1,
with some adjustments to accomodate the constraints given to us by an affine transformation.
The main difference lies in the choice of the linear system solver. In Task-1.1, we used
numpy.linalg.solve to compute the general homography matrix because the sytem of
equations was well-determined with 8 equations and 8 unknowns. However, in Task-1.3, we
deal with an affine transformation matrix, which has only 6 unknowns due to the constraint
that the last row is fixed to [0, 0, 1].

10

We initially were using 3 correspondence points that allowed us to use numpy.linalg.solve
(6 equations for 6 unknowns), but the results were not that favorable. Instead, we wished
to use four correspondence points, leading to an overdetermined system (8 equations for 6
unknowns). To solve this overdetermined system, we use numpy.linalg.lstsq [4], which
is designed to handle overdetermined systems. This function finds a least-squares solution
which provides a more stable and accurate affine transformation matrix given we are using
more correspondence points than necessary. Of course, we can also continue to use an in-
creasing amount of correspondence points to help increase the quality of our results, but since
we used 4 correspondence points in the last section we decided to also use 4 correspondence
points for this section.

Once the affine transformation matrix, Hamye, is computed, the transformation is applied
similarly to Task-1.1 using the perform homography function. All previous programming
considerations laid out in the prior section applies here as well.

Task-1.3: Results
Our mapped images using only affine transformations can be found below:

Original Range: imgl

Figure 9: alex_honnold transformed to imgl (affine only)

11

Original Range: img2 Transformed Domain: alex_honnold to img2 (AFFINE)

Figure 10: alex_honnold transformed to img2 (affine only)

Original Range: img3 Transformed Domain: alex_honnold to img3 (AFFINE)
I g e T

iy

Figure 11: alex_honnold transformed to img3 (affine only)

From Figures 9 to 11, we observe that the results obtained using the affine transformation
matrix, H.gne, are less favorable compared to those obtained with the general homography
matrix, H. Among the three results, Figure 11 appears to be the most accurate, as it aligns
more closely with the PQRS region initially specified in our annotated image.

This difference in performance can be attributed to the properties of affine transforma-
tions, which preserve parallel lines. If the PQRS region in our domain image contained
parallel lines, these lines would remain parallel after applying an affine transformation. Con-
sequently, the accuracy of the affine transformation depends on the extent to which the
PQRS regions in Figures 9 and 10 retained parallelism in their edges. It is possible that
these regions were “less parallel” compared to those in Figure 11, leading to a less accurate
transformation projection in the former cases.

12

Task-2

Repeat the steps of Task-1 using your own images. You can capture three images of a planar
surface from three different viewpoints such as the ones shown in Figures 1(a-c). For the
fourth image you can use your own picture or obtain a picture of an animal, celebrity, etc.

For brevity, it can be assumed that the logic and implementation between Tasks 1 and 2
will be the same. Only results will be shown.

Task-2.1: Results

The three pixel coordinate annotated range images which will be used are the following:

Q: [2030, 1185)

Q [2271, 1321]

R: [2030, 2346]

(a) bearl Annotated Coordi- (b) bear2 Annotated Coordi- (c) bear3 Annotated Coordi-
nates nates nates

Figure 12: Our annotated range images for Task 2

Our domain image will be:

Figure 13: Domain - THE HAGGIS [1]

13

The pixel coordinates are as follows:

Filename P Q R S
bearl.jpg | [600, 1045] | [2030, 1185] | [2030, 2346] | [728, 2798]
bear2.jpg | [961, 1417] | [2271, 1321] | [2246, 2730] | [989, 2454]
bear3.jpg [720, 760] | [2623, 1573] | [1670, 3375] | [128, 2162]
haggis.png [0, 0] [1398, 0] [1398, 693] [0, 693]

Table 2: P,Q,R,S Regions of our images for Task 2

Original Range: bearl

Our projected images are as follows:

14

Transformed Domain: haggis to bearl

Figure 14: haggis transformed to bearl

Original Range: bear2 Transformed Domain: haggis to bear2

Figure 15: haggis transformed to bear2

Original Range: bear3 Transformed Domain: haggis to bear3

Figure 16: haggis to bear3

15

Task-2.2: Results

Our homographies were found to be the following (rounded to the nearest third decimal
point). Since we adopted an inverse mapping approach, the homographies listed represent
the transformations from the range image back to the domain image. The ’'true’ forward
homographies, which map domain image points to range image points, would be the inverses
of these matrices:

22.791 0.709 —18093.295 0.573 0.241 355.282
Hpearibeare = [10.087 14.577 —21963.821| , Hpearz-bears = | —0.291 0.558 1188.525
0.007 0.000 1.000 0.000 —0.000 1.000

12.758 6.228 —9152.786
Hycaribears = | 1.413 10.972 —1055.049
0.004 0.002 3.778

And the resulting transformed bearl images are the following:

Transformed bearl to bear2 using H_bearl_bear2 Transformed bearl to bear3 using H_bearl_bear2 and H_bear2_bear3

(a) bearl transformed to bear2 range (b) bearl transformed to bear3

16

Task-2.3: Results
Our projected domain images using only affine transformations are below:

Original Range: bearl Transformed Domain: haggis to bearl (AFFINE)

Figure 18: haggis transformed to bearl (affine only)

Original Range: bear2 Transformed Domain: haggis to bear2 (AFFINE)

Figure 19: haggis transformed to bear2 (affine only)

17

Original Range: bear3 Transformed Domain: haggis to bear3 (AFFINE)

Figure 20: haggis transformed to bear3 (affine only)

From Figures 18-20, we observe that the results obtained using the affine transformation
matrix, Hamne, are not particularly favorable across any of the range images. Unlike Task-1,
where some PQRS regions contained more parallelism, none of the PQRS regions in the
selected range images for Task-2 exhibit notably parallel lines. As a result, the overall
accuracy of the transformations appears reduced, and no single result stands out as more
accurate than the others.

18

Extra Credit

In Lecture 3, we discussed the hierarchy of transformations for homographies and how differ-
ent homography transformations change the lines and shapes in an image. These concepts
are directly applicable to image-editing applications (e.g. iPhone Photos and Snapseed by
Google). These applications are based on the concept of foreground and background, and
the editing tools allow you to manipulate the foreground objects in relation to the back-
ground. You are also allowed to apply global transformations to an image. For example you
could just rotate the entire image. When the foreground objects are manipulated, it is done
by applying a homography to the whole image.

Specifically, the iPhone Photos application offers the following three operations - (1)
Rotating the image; (2) Vertically tilting the image; and (3) Horizontally tilting
the image. For Android users, the Snapseed tool does similar things.

The homographies that are used to produce the effects mentioned above can be param-
eterized by a single parameter, which represents the degree of change required (e.g. the
rotation angle).

Your task for the extra credit is the following:

1. Formulate the parameterized homographies for each of the three types of oper-
ations mentioned above. Representing the parameter by o provide the formula for the
corresponding 3x3 homography H(«).

2. Apply the homographies to an input image with horizontal and vertical grid lines
and display the resulting images. Your figures should resemble the examples shown in
the below figure. Present multiple examples (more than one) for each type of editing
operation, along with the corresponding « values.

3. Analyze the effects of vertical and horizontal tilting operations on arbitrary vertical
and horizontal lines. Discuss which tyles of lines (vertical or horizontal) remain in-
variant under each operation. Provide either a proof or numerical evidence to support
your conclusions.

‘‘‘

(a) Rotation by 45° (b) Vertical tilting operation (c) Horizontal tilting operation

In each sub-plot, the left side shows the input image with grid lines, and the right side
displays the output image produced by each editing operation.

19

Extra Credit Problem 1
Rotation Homography Matrix

We know that rotation changes the orientation of an image around a center point. In R2
this center point will be the physical R? origin, (0, 0). Referencing Equation 5, we can think
of rotating around the R? origin as transforming only the x; and x, coordinates while we
leave the x3 coordinates unchanged because we are rotating along the x3 axis. This implies
that our homography matrix will resemble the following:

hll h12 0
Hrotation—unknown (Oé) = h2 1 h22 0 (1 5)
0 0 1

From geometric intuition, we know that an R? point, (z1,25), rotated by an angle, a,
has the transformed coordinates (], z5):

Ty = zic0s(a) — zosin(a)

xh = xysin(a) + rocos(a)

Keeping in mind Equation 5 and 15, we can reason that the rotation matrix must be the
following:

cos(a) sin(a) 0
H.otation() = |sin(a) cos(a) 0 (16)
0 0 1

Vertical Tilting Homography Matrix

Vertical tilting will skew the image vertically, implying that we keep the x; coordinates
unchanged while transforming the x5 and x3 coordinates because we are rotating along the
x1 axis. To reflect this notion, we have the following expressions:

I/l = T
xy = r9cos(a) + xzsin(q)

ry = —xasin(a) + x3cos(q)

In HC representation, x3 = 1, so our vertical tilt matrix will be the following:

H.crticalite (@) = |0 cos(a) sin(a) (17)

20

Horizontal Tilting Homography Matrix

Horizontal tilting will skew the image horizontally, implying that we keep the x5 coordinates
unchanged while transforming the z; and x3 coordinates because we are rotating along the
xo axis. To reflect this notion, we have the following expressions:

Ty = ricos(a) — x3sin(a)
Th = Iy
zy = xysin(a) + xzcos(a)
In HC representation, x3 = 1, so our horizontal tilt matrix will be the following;:
cos(a) 0 —sin(«a)

Hhorizontal—tilt (a) - 0 1 0 (18)
sin(a) 0 cos(a)

Extra Credit Problem 2

The following gridline image was generated using Python and was used for our transforma-
tions. An “arrow-like” structure was included to help assess orientation:

Figure 21: Original gridline image (generated by Python)

The gridline image was transformed with rotation, vertical tilting, and horizontal tilting
for +15, +45, and —45 degrees. The results are found below:

21

Rotated Transformations

Angle: 15° Angle: 45° Angle: -45°
[2 a

Figure 22: The original gridline image rotated by our predefined angles

Vertical_tilt Transformations

Angle: 15° Angle: 45°

Angle: -45°

Figure 23: The original gridline image vertically tilted by our predefined angles

Horizontal_tilt Transformations

Angle: 15° Angle: 45° Angle: -45°

Figure 24: The original gridline image horizontally tilted by our predefined angles

22

Extra Credit Problem 3

As previously mentioned, when applying a vertical or horizontal tilting transformation to
an image, we rotate about a particular axis, which affects lines differently depending on
their alignment to that axis. For vertical tilting, we rotate about the x; axis which will
affect horizontal lines, making them appear slanted while keeping vertical lines unchanged.
Conversely, for horizontal tilting, we rotate about the x5 axis which will affect vertical lines,
making them appear slanted while keeping horizontal lines unchanged.

To numerically prove this, we will utilize two separate lines, one parallel with the x-axis
and the other parallel with the y-axis, apply both vertical and horizontal tilting, observe the
results. If a skew becomes present, then a x; or s component will be added that was not
there before. 1; is parallel to the x-axis, and 1, is parallel to the y-axis:

We also have to keep in mind how to properly apply homography matrices to lines to
arrive at their transformed counterparts:

I'=H"1 (19)
Now we will apply a horizontal tilt of +15 degrees to both of these lines:

[cos(15) 0 —sin(15)] " [0 [0.258]
1l—horz - Hhorizontal—tilt(150)_T11 - 1 0 1 - 1
|sin(15) 0 cos(15) | -1 | —0.966 |
Ccos(15) 0 —sin(15)] " [1] [1.225]
12—h0rz = Hhorizontal—tilt(150)7T12 = 1 0 0 = 0
|sin(15) 0 cos(15) | -1 | —0.707]

As we thought, 1; receives a skew in the form of an added x; component while 1, does
not receive any additional component. Now we will apply a vertical tilt of +15 degrees to
both of these lines:

10 o 177701 [o0]
Livert = Hyerticalsite (15°) 71 = [0 cos(15) sin(15) 1 |=10.707
|0 sin(15) cos(15)] -1 | —1.225]
1 0 o 177711 [1]
lyvert = Hyerticareie(15°) 71y = |0 cos(15) sin(15) 0| =[-0258
|0 sin(15) cos(15)] -1 | —0.966 |

Similarly, a skew presented itself in 15 in the form of an added z; component while 1; did
not receive any additional component.

23

Python Code: Toplevel Script

import matplotlib.pyplot as plt
import numpy as np

import cv2

import os

import json

from master_helper import print_threeXthree_array,
print_with_delimiter

def solve_affine(X_prime, X):
mnn
Function to solve the Affine transformation matrix A based on
dictionaries X_prime and X.

Inputs:
X_prime (dict): Dictionary of destination points with keys
’x’ and ’y’.

X (dict): Dictionary of source points with keys ’x’ and ’y’.

Returns the affine transformation matrix, H_affine.
mnn

Initialize the matrix A

A =[]

Converting the dictiomnary values to NumPy arrays
= np.array(X["x"]) # Domain x points
np.array(X["y"]) # Domain y points

_prime = np.array(X_prime["x"]) # Range x’ points
_prime = np.array(X_prime["y"]) # Range y’ points

#
X
y
X
y

Loop through each pair of points and construct the rows of
unknowns matrix, A
for i in range(4): # We have 4 correspondence points
Construct the two rows for the ith point
A.append ([x[i], y[il, 1, O, O, 01)
A.append ([0, O, O, x[i], y[il, 11)

Convert A to a NumPy array
A = np.array(A)

Create vector chi_prime from X_prime coordinates
chi_prime = np.array(
L

Xx_prime [0],

24

def

y_prime [0],
x_prime [1],
y_prime [1],
x_prime [2],
y_prime [2],
x_prime [3],
y_prime [3],

Solve the system of linear equations to find the affine
parameters

Note: Because we have an over-determined system (8 equations,
6 unknowns), we need to use linalg.lstsq

H_params = np.linalg.lstsq(A, chi_prime, rcond=None) [0]

Append [0, 0, 1] to the parameter array to align with an
affine matrix
H_params = np.append(H_params, [0, O, 1])

Reshape the parameter array into the affine matrix H_affine
H_affine = H_params.reshape((3, 3))

return H_affine

solve_homography (X_prime, X):

mnn

Function to solve the Homography matrix H based on dictionaries
X_prime and X.

Inputs:
X_prime (dict): Dictionary of destination points with keys
’x’ and ’y’.
X (dict): Dictionary of source points with keys ’x’ and ’y’.

Returns general homography matrix, H.

Initialize the matrix A

A =[]

Converting the dictionary values to NumPy arrays
x = np.array(X["x"]) # Domain x points

y = np.array(X["y"]) # Domain y points

x_prime = np.array(X_prime["x"]) # Range x’ points
y_prime = np.array(X_prime["y"]) # Range y’ points

25

84

85

86

96

97

98

99

100

101

102

103

104

105

def

Loop through each pair of points and construct the rows of A
for i in range(4): # Four correspondence points
Construct the two rows for the ith point
A.append ([x[i], y[il, 1, 0, 0, O, -x[i] * x_prime[i], -yl[il]
* x_prime[il])
A.append ([0, O, O, x[i], y[i], 1, -x[i] * y_prime[i], -yl[il]
* y_prime[il])

Convert A to a NumPy array
A = np.array(4)

Create vector chi_prime from X_prime coordinates
chi_prime = np.array(
L

x_prime [0],
y_prime [0],
x_prime [1],
y_prime [1],
x_prime [2],
y_prime [2],
x_prime [3],
y_prime [3],

Solve the system of linear equations to find the homography
parameters

Note: We can use linalg.solve because we have a
well-determined system (8 equations, 8 unknowns)

H_params = np.linalg.solve(A, chi_prime)

Append 1 to the parameter array to complete the homography
matrix
H_params = np.append(H_params, 1)

Reshape the parameter array into the homography matrix H
H = H_params.reshape ((3, 3))

return H

solve_and_perform_homography (domain_img_data, range_img_data):

Function to apply homography transformation from domain to
range image data.

26

138

139

140

141

142

143

144

148

149

150

159

160

161

162

163

Inputs:
domain_img_data (dict): Dictionary containing domain image
file path and points.
range_img_data (dict): Dictionary containing range image
file path and points.

Returns tuple of original and transformed range images and

homography matrix.
nnn

Load images using the file paths from the dictionaries

range_img = cv2.imread(range_img_datal["filepath"])
range_img_orig = np.copy(range_img)
domain_img = cv2.imread(domain_img_data["filepath"])

Solve the homography matrix using the coordinates, not images
H = solve_homography(domain_img_data, range_img_data)

Perform homography transformation using the solved matrix
transformed_img = perform_homography(domain_img, range_img, H)

return range_img_orig, transformed_img, H

def solve_and_perform_homography_affine(domain_img_data,
range_img_data):
nmnn
Function to apply homography transformation from domain to
range image data.

Inputs:
domain_img_data (dict): Dictionary containing domain image
file path and points.
range_img_data (dict): Dictionary containing range image
file path and points.

Returns tuple of original and transformed range images and

homography matrix.
nmnn

Load images using the file paths from the dictionaries

range_img = cv2.imread(range_img_datal["filepath"])
range_img_orig = np.copy(range_img)
domain_img = cv2.imread(domain_img_data["filepath"])

27

164

165

166

167

168

169

180

181

182

183

189

190

191

192

193

194

195

196

198

199

200

201

202

203

204

def

Solve the homography matrix using the coordinates, not images
H_affine = solve_affine(domain_img_data, range_img_data)

Perform homography transformation using the solved matrix
transformed_img = perform_homography(domain_img, range_img,
H_affine)

return range_img_orig, transformed_img, H_affine

perform_homography (domain_img, range_img, H):

nnn

Function to apply homography transformation from domain to
range image using a given homography matrix.

Inputs:
domain_img (np array): Domain image.
range_img (np array): Range image to transform.
H (np array): Homography matrix.

Returns transformed range image (np array).
nmnn

Get dimensions of the range image
height, width = range_img.shape[:2]

Generate a grid of (x, y) coordinates for every pixel in the
range image

x_coords, y_coords = np.meshgrid(np.arange(width),
np.arange (height))

Flatten the coordinate grids to create a list of coordinates
x_coords_flat = x_coords.flatten()
y_coords_flat = y_coords.flatten ()

Create an array of homogeneous coordinates for the points

ones_HC = np.ones_like(x_coords_flat)

points_HC = np.vstack((x_coords_flat, y_coords_flat, ones_HC))
Shape: (3, N)

Apply the homography transformation using matrix
multiplication
transformed_points = (
H @ points_HC
) # Matrix multiplication with H (3x3) and points_HC (3xN)

Normalize by the third coordinate to convert back to HC

28

def

transformed_points /= transformed_points[2, :]

Round and convert to integer for pixel coordinates
transformed_points = np.rint(transformed_points).astype(int)

Filter out points that are outside the target image bounds
valid_indices = (
(transformed_points [0, :] >= 0)
& (transformed_points [0, :] < domain_img.shape[1])
& (transformed_points[1l, :]1 >= 0)
& (transformed_points[l, :] < domain_img.shape[0])

)

Get valid transformed coordinates

valid_transformed_points = transformed_points[:, valid_indices]
valid_original_points = points_HC[:, valid_indices]

Assign pixel values from the source image to the target image
range_img[valid_original_points[1], valid_original_points[0]] =
domain_img[
valid_transformed_points[1], valid_transformed_points [0]

return range_img

task_1(img_data, show_plots):

Function to perform the described subtasks from Task-1
nnn

Extract image points and file paths from the loaded JSON data

alex_img = img_datal]
imgl = img_datal]
img2 = img_datal]
img3 = img_datal]

nnn

Task 1.1: Project Figure 1(d) onto Figures 1(a-c) PQRS region
using homographies

Perform homography transformation

range_imgl, range_imgl_alex, H_da =
solve_and_perform_homography (alex_img, imgl)

range_img2, range_img2_alex, H_db =
solve_and_perform_homography(alex_img, img2)

29

289

290

291

range_img3, range_img3_alex, H_dc =
solve_and_perform_homography (alex_img, img3)

Print 3x3 Homographies (for logging)
print_with_delimiter ()
print_threeXthree_array(H_da)

print_with_delimiter ()
print_threeXthree_array (H_db)

print_with_delimiter ()
print_threeXthree_array (H_dc)

S EmEEEEEE === m

--- PLOTTING

=3

Display the results of Domain: alex_honnold.jpg, Range:

imgl. jpg
plt.figure(figsize=(10, 10))
plt.subplot (121)
plt.title()
plt.imshow(cv2.cvtColor (range_imgl, cv2.COLOR_BGR2RGB))
plt.axis()
plt.grid(False)
plt.subplot (122)
plt.title()
plt.imshow(cv2.cvtColor (range_imgl_alex, cv2.COLOR_BGR2RGB))
plt.axis()
plt.grid(False)

plt.savefig(os.path.join(figs_dir,))
if show_plots:
plt.show ()

Display the results of Domain: alex_honnold.jpg, Range:
img2. jpg

plt.figure(figsize=(10, 10))

plt.subplot (121)

plt.title()

plt.imshow(cv2.cvtColor (range_img2, cv2.COLOR_BGR2RGB))

plt.axis()

plt.grid(False)

plt.subplot (122)

plt.title()

plt.imshow(cv2.cvtColor (range_img2_alex, cv2.COLOR_BGR2RGB))

plt.axis()

plt.grid(False)

plt.savefig(os.path.join(figs_dir,))

30

292

293

294

316

if show_plots:

Di

plt.show ()

splay the results of Domain: alex_honnold.jpg, Range:

img3. jpg

plt
plt.
plt
plt.
plt
plt
plt.
plt
plt.
plt
plt
plt.

.figure(figsize=(10, 10))

subplot (121)

.title()

imshow(cv2.cvtColor (range_img3, cv2.COLOR_BGR2RGB))

.axis()
.grid(False)

subplot (122)

.title()

imshow (cv2.cvtColor (range_img3_alex, cv2.COLOR_BGR2RGB))

.axis()
.grid(False)

savefig(os.path. join(figs_dir,))

if show_plots:

Task

Calculate the homography between imgl and img2,

plt.show ()

1.2: Find homographies between Figures 1(a-b), 1(b-c)

img2 and img3

H_ab = solve_homography (imgl, img2)
H_bc = solve_homography(img2, img3)
H_ac = H_ab @ H_bc
print_with_delimiter ()

print_threeXthree_array (H_ab)

print_with_delimiter()
print_threeXthree_array (H_bc)

print_with_delimiter ()
print_threeXthree_array(H_ac)

Apply homographies H_ab and H_bc to imgl

imgl

)
imgl

_to_img2 = perform_homography (
cv2.imread (imgl [1), cv2.imread (img2[
H_ab

_to_img3 = perform_homography(imgl_to_img2,

cv2.imread (img3 [1), H_bc)

31

then between

1,

337 # --- PLOTTING
8 # ================
339
340 # Display the results of Domain: imgl.jpg, Range: img2. jpg
341 plt.figure(figsize=(10, 10))
342 plt.title()

343 plt.imshow(cv2.cvtColor (imgl_to_img2, cv2.COLOR_BGR2RGB))
344 plt.axis()
345 plt.grid(False)

346 plt.savefig(os.path.join(figs_dir,))
347 if show_plots:
348 plt.show ()

350 # Display the results of Domain: TRANSFORMED imgl.jpg, Range:
img3.jpg

351 plt.figure(figsize=(10, 10))

352 plt.title()

353 plt.imshow(cv2.cvtColor (imgl_to_img3, cv2.COLOR_BGR2RGB))

354 plt.axis()

355 plt.grid(False)

356 plt.savefig(os.path.join(figs_dir,))

357 if show_plots:

358 plt.show ()

59

360 e

361 Task 1.3: Project Figure 1(d) onto Figures 1(a-c) PQRS region

using only affine homographies
363
364 # Perform homography transformation (affine)
365 range_imgl, range_imgl_alex_affine, H_da_affine
366 solve_and_perform_homography_affine(alex_img, imgl)

1
~

367)

368 range_img2, range_img2_alex_affine, H_db_affine = (

369 solve_and_perform_homography_affine (alex_img, img2)
370)

371 range_img3, range_img3_alex_affine, H_dc_affine = (

372 solve_and_perform_homography_affine (alex_img, img3)
373)

375 # Print 3x3 Homographies (for logging)
376 print_with_delimiter ()
377 print_threeXthree_array (H_da_affine)

379 print_with_delimiter ()

32

380

389

390

391

392

393

394

408

109

110

111

112

413

print_threeXthree_array (H_db_affine)

print_with_delimiter ()
print_threeXthree_array (H_dc_affine)

Display the results of Domain: alex_honnold.jpg, Range:
imgl.jpg (AFFINE)

plt.figure(figsize=(10, 10))

plt.subplot (121)

plt.title()

plt.imshow (cv2.cvtColor (range_imgl, cv2.COLOR_BGR2RGB))

plt.axis()

plt.grid(False)

plt.subplot (122)

plt.title()

plt.imshow(cv2.cvtColor (range_imgl_alex_affine,
cv2.COLOR_BGR2RGB))

plt.axis()

plt.grid(False)

plt.savefig(os.path.join(figs_dir,))

if show_plots:
plt.show ()

Display the results of Domain: alex_honnold.jpg, Range:
img2. jpg (AFFINE)

plt.figure(figsize=(10, 10))

plt.subplot (121)

plt.title()
plt.imshow(cv2.cvtColor (range_img2, cv2.COLOR_BGR2RGB))
plt.axis()

plt.grid(False)
plt.subplot (122)
plt.title()
plt.imshow(cv2.cvtColor (range_img2_alex_affine,
cv2.COLOR_BGR2RGB))
plt.axis()
plt.grid(False)
plt.savefig(os.path.join(figs_dir,))
if show_plots:
plt.show ()

Display the results of Domain: alex_honnold.jpg, Range:

img3.jpg (AFFINE)
plt.figure(figsize=(10, 10))

33

459

160

161

162

163

def

plt.subplot (121)
plt.title()
plt.imshow (cv2.cvtColor (range_img3, cv2.COLOR_BGR2RGB))
plt.axis()
plt.grid(False)
plt.subplot (122)
plt.title()
plt.imshow(cv2.cvtColor (range_img3_alex_affine,
cv2.COLOR_BGR2RGB))
plt.axis()
plt.grid(False)
plt.savefig(os.path.join(figs_dir,))
if show_plots:
plt.show ()

task_2(img_data, show_plots):

Function to perform the described subtasks from Task-2

Extract image points and file paths from the loaded JSON data

haggis = img_datal]
bearl = img_datal]
bear2 = img_datal]
bear3 = img_datal]

Task 2.1: Project haggis.png onto our 3 bear image PQRS regions
using homographies

Perform homography transformation
range_bearl, range_bearl_haggis, H_haggis_bearl
solve_and_perform_homography (
haggis, bearl

)

range_bear2, range_bear2_haggis, H_haggis_bear2
solve_and_perform_homography (
haggis, bear2

)

range_bear3, range_bear3_haggis, H_haggis_bear3
solve_and_perform_homography (
haggis, bear3

Print 3x3 Homographies (for logging)
print_with_delimiter ()

34

164

165

166

467

168

469

170

489

190

491

192

493

194

495

196

197

198

199

print_threeXthree_array (H_haggis_bearl)

print_with_delimiter ()
print_threeXthree_array(H_haggis_bear?2)

print_with_delimiter()
print_threeXthree_array (H_haggis_bear3)

Display the results of Domain: haggis.png,
plt.figure(figsize=(10, 10))

plt.subplot (121)

plt.title()

Range: bearl. jpg

plt.imshow (cv2.cvtColor (range_bearl, cv2.COLOR_BGR2RGB))

plt.axis()
plt.grid(False)
plt.subplot (122)
plt.title(
plt.imshow(cv2.cvtColor (range_bearl_haggis,
plt.axis()
plt.grid(False)
plt.savefig(os.path.join(figs_dir,
if show_plots:
plt.show ()

Display the results of Domain: haggis.png,
plt.figure(figsize=(10, 10))

plt.subplot (121)

plt.title()

)

cv2.COLOR_BGR2RGB))

))

Range: bear2. jpg

plt.imshow(cv2.cvtColor (range_bear2, cv2.COLOR_BGR2RGB))

plt.axis()
plt.grid(False)
plt.subplot (122)
plt.title(
plt.imshow(cv2.cvtColor (range_bear2_haggis,
plt.axis()
plt.grid(False)
plt.savefig(os.path. join(figs_dir,
if show_plots:
plt.show ()

Display the results of Domain: haggis.png,
plt.figure(figsize=(10, 10))

plt.subplot (121)

plt.title()

35

)

cv2.COLOR_BGR2RGB))

))

Range: bear3. jpg

plt.imshow(cv2.cvtColor (range_bear3, cv2.COLOR_BGR2RGB))
plt.axis()
plt.grid(False)
plt.subplot (122)

plt.title()
plt.imshow(cv2.cvtColor (range_bear3_haggis, cv2.COLOR_BGR2RGB))
plt.axis()

plt.grid(False)

plt.savefig(os.path.join(figs_dir,))

if show_plots:
plt.show ()

Task 1.2: Find homographies between bearl-bear2, bear2-bear3

Calculate the homography between bearl and bear2, then
between bear2 and bear3

H_bearl_bear2 = solve_homography(bearl, bear2)

H_bear2_bear3 solve_homography (bear2, bear3)

H_bearl_bear3

H_bearl_bear2 @ H_bear2_bear3

print_with_delimiter()
print_threeXthree_array (H_bearl_bear2)

print_with_delimiter ()
print_threeXthree_array(H_bear2_bear3)

print_with_delimiter ()
print_threeXthree_array (H_bearl_bear3)

Apply homographies H_bearl_bear2 and H_bear2_bear3 to bearl
bearl_to_bear2 = perform_homography(

cv2.imread (bearl [1,
cv2.imread (bear2[1), H_bearil_bear?2

)
bearl_to_bear3 = perform_homography (

bearl_to_bear2, cv2.imread(bear3[]), H_bear2_bear3
)
======—=—========
—-—-- PLOTTING
================

Display the results of Domain: bearl.jpg, Range: bear2. jpg
plt.figure(figsize=(10, 10))
plt.title()

36

564

565

566

567

568

569

570

plt.imshow(cv2.cvtColor (bearl_to_bear2, cv2.COLOR_BGR2RGB))
plt.axis()
plt.grid(False)

plt.savefig(os.path.join(figs_dir,))
if show_plots:
plt.show ()

Display the results of Domain: TRANSFORMED bearl. jpg, Range:
bear3. jpg

plt.figure(figsize=(10, 10))

plt.title(

)
plt.imshow(cv2.cvtColor (bearl_to_bear3, cv2.COLOR_BGR2RGB))
plt.axis()
plt.grid(False)
plt.savefig(os.path.join(figs_dir,))
if show_plots:
plt.show ()

Task 1.3: Project haggis.png onto our 3 bear image PQRS regions
using only affine homographies

Perform homography transformation (affine)
range_bearl, range_bearl_haggis_affine, H_haggis_bearl_affine
(

solve_and_perform_homography_affine (haggis, bearl)

)
range_bear2, range_bear2_haggis_affine, H_haggis_bear2_affine
(

solve_and_perform_homography_affine (haggis, bear2)

)
range_bear3, range_bear3_haggis_affine, H_haggis_bear3_affine
(

solve_and_perform_homography_affine (haggis, bear3)

Print 3x3 Homographies (for logging)
print_with_delimiter ()
print_threeXthree_array (H_haggis_bearl_affine)

print_with_delimiter ()
print_threeXthree_array (H_haggis_bear2_affine)

print_with_delimiter()
print_threeXthree_array(H_haggis_bear3_affine)

37

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

Display the results of Domain: haggis.png, Range: bearl. jpg

(AFFINE)
plt.figure(figsize=(10, 10))
plt.subplot (121)

plt.title()
plt.imshow(cv2.cvtColor (range_bearl,
plt.axis()

plt.grid(False)
plt.subplot (122)
plt.title(

cv2.COLOR_BGR2RGB))

plt.imshow(cv2.cvtColor (range_bearl_haggis_affine,

cv2.COLOR_BGR2RGB))
plt.axis()
plt.grid(False)
plt.savefig(os.path.join(figs_dir,
))
if show_plots:
plt.show ()

Display the results of Domain: haggis.png, Range: bear2.jpg

(AFFINE)
plt.figure(figsize=(10, 10))
plt.subplot (121)
plt.title()
plt.imshow (cv2.cvtColor (range_bear?2,
plt.axis()
plt.grid(False)
plt.subplot (122)
plt.title(

cv2.COLOR_BGR2RGB))

plt.imshow(cv2.cvtColor (range_bear2_haggis_affine,

cv2.COLOR_BGR2RGB))
plt.axis()
plt.grid(False)
plt.savefig(os.path. join(figs_dir,
))
if show_plots:
plt.show ()

Display the results of Domain: haggis.png, Range:

(AFFINE)
plt.figure(figsize=(10, 10))
plt.subplot (121)
plt.title()

38

bear3. jpg

637 plt.imshow(cv2.cvtColor (range_bear3, cv2.COLOR_BGR2RGB))
638 plt.axis("off")

639 plt.grid(False)

640 plt.subplot (122)

641 plt.title("Transformed Domain: haggis to bear3 (AFFINE)")
642 plt.imshow(cv2.cvtColor (range_bear3_haggis_affine,
cv2.COLOR_BGR2RGB))

643 plt.aXiS(”Off”)

644 plt.grid(False)

645 plt.savefig(os.path.join(figs_dir,
"haggis_to_bear3_affine.png"))

646 if show_plots:

647 plt.ShOW()

648
649

650 |1f __name__ ==
651
652 # Boolean to display plots (MAINLY FOR DEBUG)
653 show_plots_bool = False

654
655 # Load the image data from the JSON file
656 json_file = "img_data.json"

657 with open(json_file, "r") as f:

658 img_data = json.load(f)

659
660 # Directory to save figures

661 figs_dir = "HW2_images"

662 os.makedirs(figs_dir, exist_ok=True)
663
664 H o okokokok ok ok ok ok ko ok ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok K
665 # TASK 1: imgl, img2, img3, and Alex Honnold

666 H o okokokok ok ok ok ok ko ok ok ok ok ok ok ok sk ok ok ok ok sk sk ok sk ok ok ok ok sk ok ok ok ok ok ok ok sk ok ok K
667 task_1(img_data, show_plots=show_plots_bool)

668
669 F o okokokok ok ok ok ok sk k ok ok ok ok ok sk ko ok ok ok ok ok sk ok ok ok ok K ok ok sk ok ok ok ok ok ok ok ok ok ok K
670 # TASK 2: bearl, bear2, bear3, and THE HAGGIS
671 H o okokokok ok ok ok ok sk ko ok ok ok ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok k

672 task_2(img_data, show_plots=show_plots_bool)

Python Code: Script to retrieve pixel coordinates

2 |This online post:
https://wuw.geeksforgeeks.org/displaying-the-coordinates-of-the-pgints-click
3 |served as the GUI foundation for clicking our PQRS region. The
provided code was heavily modified to cater more to our needs.

39

nmnn

import cv2

import sys

import json

import os

from master_helper import print_with_delimiter
from master_helper import Logger

Global variables to store the image and click count

img = None

click_count = 0

letters = ["P", "Q", "R", "s"]

coordinates = {"x": [], "y": [1} # To store the clicked coordinates

def print_image_corners(image_filepath):
nnn
Extracts and prints the pixel coordinates for the four cormners
of an image.
Also returns the coordinates for JSON storage.

:param image_filepath: The path to the image file.
:return: Dictionary containing the cormer coordinates.
nnn

Read in the image

img = cv2.imread(image_filepath)

Check if the image is loaded correctly

if img is None:
print (f"Error loading image: {image_filepathl}")
return

Get the dimensions of the image
height, width = img.shape[:2] # Only need width and height

Define the corner coordinates

corners = {
"x": [0, width - 1, width - 1, 0], # P, Q, R, S
"y": [0, O, height - 1, height - 1], # P, Q, R, S
"filepath": image_filepath,

Print the corner coordinates for logging

print (f"Image corners for {image_filepathl}:")

print (£"P: [{corners[’x’]1[0]}, {corners[’y’]1[0]}]") # Top-left
corner

40

49

50

80

81

82

83

84

print (£"Q: [{cormers[’x’][1]}, {corners[’y’][1]1}]") #
Top-right cormner

print (£"R: [{cormners[’x’][2]}, {corners[’y’][2]}]") #
Bottom-right corner

print (£"S: [{cormners[’x’]([3]}, {corners[’y’]1[3]}]1") #
Bottom-left corner

return corners

Function to display the coordinates of the points clicked on the
image
def click_event(event, x, y, flags, params):
global img, click_count, letters, coordinates

checking for left mouse clicks
if event == cv2.EVENT_LBUTTONDOWN :
if click_count < 4: # Allow omnly 4 clicks
letter = letters[click_count]

Displaying the coordinates with a letter
coordinate_str = f'"{letter}t: [{x}, {y+l"
print (coordinate_str)

Store coordinates
coordinates ["x"].append(x)
coordinates["y"].append(y)

Draw a dot at the clicked location

dot_color = (0, 0, 255) # Red color for the dot

dot_radius = 10 # Radius of the dot

cv2.circle(img, (x, y), dot_radius, dot_color, -1) #
Filled circle

Displaying the coordinates and letter on the image

window
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 2 # Increased font size
thickness = 5 # Increased thickness

offset = 15
cv2.putText (
img,
coordinate_str,
(x + offset, y + offset),
font,
font_scale,
(255, 255, 255),

41

90 thickness,

91)

92 cv2.imshow ("image", img)
93

94 click_count += 1 # Increment the click count

96 if click_count == 4: # After 4 clicks, disable further
clicks
97 cv2.setMouseCallback ("image", lambda *args: None) #

Disable further clicks
98
99
10 |def annotate_pixel_coordinates (image_filepath):
101 global img, click_count, coordinates

102
103 # Reset the click count and coordinates for each new image
104 click_count = 0

105 coordinates = {"x": [], "y": [1} # Reset coordinates

106
107 # Read in the image

108 img = cv2.imread(image_filepath, 1)
109
110 # Check if image is loaded correctly
111 if img is None:

112 print (f"Error loading image: {image_filepathl}")

113 return

114

115 # Get the dimensions of the image

116 height, width, channels = img.shape

117 print (f"Image size: Width = {width}, Height = {height},

Channels = {channels}")
118

119 # Calculate aspect ratio

120 aspect_ratio = width / height

121

122 # Desired width or height for the window
123 desired_width = 800 # Example: 800 pixels

124 desired_height = int(desired_width / aspect_ratio)

126 # Create a named window that allows resizing

127 cv2.namedWindow ("image", cv2.WINDOW_NORMAL)

128

129 # Resize the window to maintain the aspect ratio

130 cv2.resizeWindow ("image", desired_width, desired_height)
131
132 # Move window to the center of the screen (assuming 1920x1080
screen resolution)

42

138

139

140

141

142

143

159

160

161

162

163

164

165

166

167

168

169

170

def

screen_width, screen_height = (

1920,

1080,
) # You can adjust this to your screen resolution
window_x = int((screen_width - desired_width) / 2)

window_y = int((screen_height - desired_height) / 2)
cv2.moveWindow ("image", window_x, window_y)

Display the image in the resized window
cv2.imshow ("image", img)

Setting mouse handler for the image
and calling the click_event() function
cv2.setMouseCallback("image", click_event)

Wait for a key to be pressed to exit
cv2.waitKey (0)

Save the annotated image with the suffix "_annotated"

annotated_filepath = image_filepath.replace(".jpg",
"_annotated. jpg")

cv2.imwrite (annotated_filepath, img)

print (f"Annotated image saved as: {annotated_filepathl}")

Properly close the window and release resources
cv2.destroyAllWindows ()

return coordinates # Return the collected coordinates

write_coordinates_to_json(image_data, json_filepath):

nmnn

Writes image coordinates to a JSON file. If the file exists,
append new entries.

:param image_data: Dictionary containing image filepaths and
coordinates.
:param json_filepath: The path to the JSON file.
if os.path.exists(json_filepath):
If the JSON file exists, read its current content
with open(json_filepath, "r") as json_file:
existing_data = json.load(json_file)
else:
existing_data = {}

Update existing data with new data

43

193

194

195

196

197

198

def

existing_data.update(image_data)

Write updated data back to JSON file

with open(json_filepath,) as json_file:
json.dump(existing_data, json_file, indent=4)
print (f)

task_1(log_filename, json_filename):

Set up logging to both terminal and file
logger = Logger (log_filename)

sys.stdout = logger

imagel_filepath
image2_filepath
image3_filepath
alex_filepath =

image_data = {} # To store data for all images

Annotate images
print_with_delimiter (f

)
imgl_coordinates = annotate_pixel_coordinates(imagel_filepath)
imgl_coordinates [] = imagel_filepath
image_datal] = imgl_coordinates
print (f)

print_with_delimiter (f

)
img2_coordinates = annotate_pixel_coordinates(image2_filepath)
img2_coordinates [] = image2_filepath
image_datal] = img2_coordinates
print (f)

print_with_delimiter (f

)
img3_coordinates = annotate_pixel_coordinates(image3_filepath)
img3_coordinates [] = image3_filepath
image_datal[] = img3_coordinates
print (f)

print_with_delimiter (f

)
alex_corners = print_image_corners(alex_filepath)
image_datal[] = alex_corners
print (f)

44

Write image data to JSON
write_coordinates_to_json(image_data, json_filename)

Close the log file and reset stdout
logger.close ()

sys.stdout = logger.terminal

print (f)

def task_2(log_filename, json_filename):
Set up logging to both terminal and file
logger = Logger (log_filename)
sys.stdout = logger

bearl_filepath
bear2_filepath
bear3_filepath
haggis_filepath =

image_data = {} # To store data for all images

Annotate images
print_with_delimiter (f

)
bearl_coordinates = annotate_pixel_coordinates(bearl_filepath)
bearl_coordinates [] = bearil_filepath
image_datal] = bearl_coordinates
print (f)

print_with_delimiter (f

)
bear2_coordinates = annotate_pixel_coordinates(bear2_filepath)
bear2_coordinates [] = bear2_filepath
image_datal] = bear2_coordinates
print (f)

print_with_delimiter (f

)
bear3_coordinates = annotate_pixel_coordinates(bear3_filepath)
bear3_coordinates [] = bear3_filepath
image_datal[] = bear3_coordinates
print (f)

print_with_delimiter (f
)

haggis_corners = print_image_corners (haggis_filepath)

45

265

266

267

268

269

image_datal] = haggis_corners
print (f)

Write image data to JSON
write_coordinates_to_json(image_data, json_filename)

Close the log file and reset stdout
logger.close ()

sys.stdout logger.terminal

print (f)

if __name__ ==
task_1_log =
task_2_log =

json_file =

Obtain pixel coordinates for files from Tasks 1 and 2...
task_1(task_1_log, json_file)
task_2(task_2_log, json_file)

Python Code: Script to help complete the extra credit

import cv2

import numpy as np

import os

import matplotlib.pyplot as plt

def create_grid_image(width, height, grid_size):
nmnn
Function to create our desired grid image with an ‘‘arrow-like"

structure in the middle (to help determine orientation)
nmmnn

Create a blank white image
image = np.ones((height, width), dtype=np.uint8) * 255 # 255
for a white image

Draw grid lines
for i in range(0, width, grid_size):
cv2.line(image, (i, 0), (i, height), (0), 1) # Vertical
lines
for j in range (0, height, grid_size):
cv2.line(image, (0, j), (width, j), (0), 1) # Horizontal
lines

46

def

Calculate the center of the grid
center_x = (width // 2) // grid_size # Center in grid units
center_y = C(height // 2) // grid_size # Center in grid units

Define the arrow tip and body relative to the center
arrow_tip = (center_x, center_y) # Center grid position
arrow_body = [

(center_x - 1, center_y),

(center_x - 2, center_y),

(center_x, center_y - 1),

(center_x, center_y + 1),

Draw the arrow tip
cv2.rectangle(
image,
(arrow_tip[0] * grid_size, arrow_tip[1l] * grid_size),
(Carrow_tip[0] + 1) * grid_size, (arrow_tip[1] + 1) x
grid_size),
(o),
_1,

Draw the arrow body
for bx, by in arrow_body:
cv2.rectangle(

image,
(bx * grid_size, by * grid_size),
((bx + 1) * grid_size, (by + 1) * grid_size),
0,
_1’

return image

apply_homography (image, H):

Function to apply a homography matrix to an input image.

NOTE: For this part, we are allowed to use
cv2.warpPerspective (), unlike the prior parts

height, width = image.shapel[:2]

return cv2.warpPerspective(image, H, (width, height))

47

82

83

84

85

90

91

92

93

94

95

96

98

99

100

101

102

103

104

105

106

def

def

def

save_images (images, transformation_type, angles):
nmnn

Function to save our transformed image plots

nmnn

if not os.path.exists("HW2_ images"):
os.makedirs ("HW2_images")

for i, img in enumerate (images):
cv2.imwrite (

f"HW2_images/{transformation_typel}_transformation_angle_{

img,

plot_images (images, transformation_type, angles):

nnn

Function to create side-by-side figures that show
transformations for all available angles

Create a figure for the transformation type

fig, axes = plt.subplots(l, len(images), figsize=(15, 5))

fig.suptitle(f"{transformation_type.capitalize ()}
Transformations", fontsize=16)

for i, (img, angle) in enumerate(zip(images, angles)):
axes[i].imshow (img, cmap="gray")
axes[i].set_title(f"Angle: {angle:.0f} ")
axes[i].axis("off")

Save the figure
plt.savefig(f"HW2_images/{transformation_typel}_transformations.pq
plt.show ()

apply_homography_to_line(H, line):

nnn

Applies a homography transformation to a line in homogeneous
coordinates.

Inputs:

- H: 3x3 numpy array representing the homography matrix.

- line: 3x1 numpy array (column vector) representing the line
in homogeneous coordinates (ax + by + c = 0).

Returns "transformed_line": 3x1 numpy array (column vector)
representing the transformed line.

nnn

48

langles [1]:

lg”)

107 # Compute the inverse transpose of the homography matrix
108 H_inv_transpose = np.linalg.inv(H).T

109
110 # Apply the transformation

111 transformed_line = H_inv_transpose @ line
112

113 return transformed_line

116 |def normalize_line(line):

nmnn

118 Normalizes a line in homogeneous coordinates by dividing by the
third coordinate.

120 Inputs:
121 - line: 3x1 numpy array (column vector) representing the line
in homogeneous coordinates.

124 Returns "normalized_line": 3x1 numpy array (column vector)

representing the normalized line.
nmnn

126 return line / line [2]

127

128

120 |1if __mame__ == "__main__":

130 # Define the image dimensions and grid size
131 width, height = 500, 500

132 grid_size = 50 # Size of the grid cells

133
134 # Create the grid image

135 input_image = create_grid_image(width, height, grid_size)
136 cv2.imwrite (f"HW2 images/original_grid.png", input_image)

138 # Define the list of angles in degrees
139 angles = [15, 45, -45]
140

141 # Normalization and de-normalization homographies

142 H_norm = np.array([[2 / width, O, -1], [0, 2 / height, -1], [0,
0, 111

143

144 H_de_norm = np.array(

145 [[width / 2, O, width / 2], [0, height / 2, height / 2],

[0, 0, 111

146)

147

148 # Lists to store output images for each transformation type

49

166

167

168

169

170

189

190

191

rotated_images = []
horz_tilt_images = []
vert_tilt_images (]

for angle in angles:
alpha = np.radians(angle) # Convert degrees to radians

Rotation homography matrix
H_rot = np.array(
L
[np.cos(alpha), -np.sin(alpha), 0],
[np.sin(alpha), np.cos(alpha), 0],
o, o, 11,

Horizontal tilting homography matrix
H_horz_tilt = np.array(

[
[np.cos(alpha), O, -np.sin(alpha)l,
[0, 1, 07,
[np.sin(alpha), O, np.cos(alpha)l,
]

Vertical tilting homography matrix
H_vert_tilt = np.array(

[
(1, o, 0],
[0, np.cos(alpha), np.sin(alpha)l,
[0, -np.sin(alpha), np.cos(alpha)l,
]

Composite homographies

H_composite_rot = H_de_norm @ H_rot @ H_norm

H_de_norm @ H_horz_tilt @ H_norm
H_de_norm @ H_vert_tilt @ H_norm

H_composite_horz_tilt
H_composite_vert_tilt

Apply the transformations

rotated_image = apply_homography(input_image,
H_composite_rot)

horz_tilt_image = apply_homography(input_image,
H_composite_horz_tilt)

vert_tilt_image = apply_homography(input_image,
H_composite_vert_tilt)

50

Append the results to the corresponding lists
rotated_images.append(rotated_image)
horz_tilt_images.append (horz_tilt_image)
vert_tilt_images.append(vert_tilt_image)

Save images

save_images (rotated_images, , angles)
save_images (horz_tilt_images, , angles)
save_images (vert_tilt_images, , angles)

Plot and save figures

plot_images(rotated_images, , angles)
plot_images (horz_tilt_images, , angles)
plot_images(vert_tilt_images, , angles)
print ()

Extra Credit Problem 3

line_x_parallel = np.array([0, 1, -1]).reshape(3, 1)
line_y_parallel np.array([1, 0, -1]).reshape(3, 1)

alpha = 15
alpha_rad = np.radians(alpha)

Horizontal tilting homography matrix
H_horz_tilt = np.array(

[
[np.cos(alpha_rad), 0, -np.sin(alpha_rad)],
(o, 1, ol,
[np.sin(alpha_rad), O, np.cos(alpha_rad)],
]

Vertical tilting homography matrix
H_vert_tilt = np.array(

[
(1, o, o],
[0, np.cos(alpha_rad), np.sin(alpha_rad)],
[0, -np.sin(alpha_rad), np.cos(alpha_rad)],
]

Apply homography to both lines

Horizontal Tilt

51

240 prlnt (f ”\n=== ”)

241 print (£"Applying Horizontal Tilt: {alpha} degrees")

242 print (f"===")

243 horz_tilt_x_parallel = apply_homography_to_line(H_horz_tilt,
line_x_parallel)

244 horz_tilt_y_parallel = apply_homography_to_line(H_horz_tilt,

line_y_parallel)

245

246 print (f"Horizontally tilted x_parallel (UNNORMALIZED):
{horz_tilt_x_parallel.T}")
247 print (f"Horizontally tilted y_parallel (UNNORMALIZED):

{horz_tilt_y_parallel.T}")

249 # Normalize the results
250 horz_tilt_x_parallel = normalize_line(horz_tilt_x_parallel)

251 horz_tilt_y_parallel = normalize_line(horz_tilt_y_parallel)

252

253 print (f"Horizontally tilted x_parallel:
{horz_tilt_x_parallel.T}")

254 print (f"Horizontally tilted y_parallel:

{horz_tilt_y_parallel.T}")

256 # Vertical Tilt

257 print (f"\n===")

258 print (f"Applying Vertical Tilt: {alpha} degrees")

259 print (f ===z ==s==s=s==s==S==S=S=S=S=S=S=SS=S=S=S=S==S======== ")

260 vert_tilt_x_parallel = apply_homography_to_line(H_vert_tilt,
line_x_parallel)

261 vert_tilt_y_parallel = apply_homography_to_line(H_vert_tilt,

line_y_parallel)

262

263 print (f"Vertically tilted x_parallel (UNNORMALIZED):
{vert_tilt_x_parallel.T}")
264 print (f"Vertically tilted y_parallel (UNNORMALIZED):

{vert_tilt_y_parallel.T}")

265

266 # Normalize the results

267 vert_tilt_x_parallel = normalize_line(vert_tilt_x_parallel)

268 vert_tilt_y_parallel = normalize_line(vert_tilt_y_parallel)

269

270 print (f"Vertically tilted x_parallel: {vert_tilt_x_parallel.T}")
271 print (f"Vertically tilted y_parallel: {vert_tilt_y_parallel.T}")

Python Code: Helper functions and classes

1 | import sys

52

import cv2
import math
import tkinter as tk

class to print both to terminal and log file
class Logger:

def

def __init__(self, log_file):

self .terminal = sys.stdout # Save the original stdout
self.log_file open(log_file, "w'"

def write(self, message):
self.terminal .write(message) # Print to terminal
self.log_file.write(message) # Write to log file

def flush(self):
self.terminal.flush() # Ensure terminal flushes its buffer
self.log_file.flush() # Ensure file flushes its buffer

def close(self):
self.log_file.close() # Close the file

center_window (window_name, image):
nmnn

Centers an OpenCV window on the screen

Inputs:
window_name: The name of the OpenCV window._
image: The image displayed in the window, needed to get its

size.
mnn

Initialize tkinter to fetch screen size
root = tk.Tk()

screen_width = root.winfo_screenwidth ()
screen_height = root.winfo_screenheight ()
root.destroy() # Close the tkinter window

Get image dimensions
image_height, image_width = image.shape[:2]

Calculate the position to center the window
x_pos = math.floor((screen_width - image_width) // 2)
y_pos math.floor ((screen_height - image_height) // 2.5)

Move the 0OpenCV window to the calculated position

53

a8 cv2.moveWindow (window_name, xX_pos, y_pos)
49
50
51 |def print_with_delimiter (text, delimiter="%"):

nnn

53 Prints the given text surrounded by a specified delimiter,
54 with lines of the delimiter above and below the text.

56 Inputs:
57 text: The string to be surrounded and printed.
58 delimiter: The character(s) to surround and print the lines.

nmnn

60 # Create the line of delimiters
61 delimiter_line = delimiter * (len(text) + 4) # +4 for the
delimiters on either side

62

63 # Print the delimiter line above

64 print (f"\n{delimiter_linel}")

65

66 # Print the text surrounded by delimiters

67 print (f"{delimiter} {text} {delimiterl}")
69 # Print the delimiter line below
70 print (delimiter_line)

73 |import numpy as np

76 |def print_threeXthree_array(array, decimals=3):
nnmnn

78 Nicely prints a 3x3 NumPy array with formatted alignment.

79

80 Inputs:

81 array (np.ndarray): A 3x3 NumPy array to print.

82 decimals (int): Number of decimal places to format the
numbers.

83 rn

84 # Check if the input array is 3x3

85 if array.shape != (3, 3):

86 raise ValueError ("Input array must be a 3x3 NumPy array.")

87

88 # Use NumPy’s set_printoptions to control formatting

89 with np.printoptions(precision=decimals, suppress=True):

90 for row in array:

91 print (" ".join(f"{val:8.3f}" for wval in row))

54

JSON File: HW2 Image

Data

424,
2547,
2399,
684

856,
880,
2290,
3171

524,
1866,
1950,
464

1441,
820,
2810,
2690

1217,
2971,
1790,
248

560,
2302,
3179,
1801

95

60

61

62

63

64

65

66

67

68

69

71

72

73

74

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

1,

"filepath":

"filepath":

"filepath":

"alex":
“X
1,
Ily
1,
},
"bearl":
”X
1,
Ily
1,
},
"bear2":
”X
1,
Ily
1,
},
"bear3":

{

L
600,
2030,
2030,
728

L
1045,
1185,
2346,
2798

{

[
961,
2271,
2246,
989

[
1417,
1321,
2730,
2454

{

"HW2_images/alex_honnold. jpg"

"HW2_images/bearl. jpg"

"HW2_images/bear2. jpg"

56

720,
2623,
1670,
128

760,
1573,
3375,
2162

Log File: Task 1 PQRS Coordinates

K 3K 3k 3k K sk sk 3k sk sk kR skosk kR skosk R sk sk kR skosk sk sk skosk ok skosk kR skosk sk sk sk ok skosk sk ok sk sk ok ok sk ok

* Annotating Coordinates for: HW2_images/imgl.jpg =
KKk sk sk skosk skoskoskoskosk skosk skosk skeosk sk sk sk skosk skosk skoskosksk sk skosk skosk skeosk sk sk sk sk sk skosk skok skosk kok sk sk
Image size: Width = 3024, Height = 4032, Channels = 3
P: [424, 856]

Q: [2547, 880]
R: [2399, 2290]
S: [684, 3171]
Annotated image saved as: HW2.images/imgl_annotated.jpg

57

K3k skosk sk sk sk skoskoskosk sk skoskoskoskoskosk sk sk skoskosk sk sk sk skosk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk ok ok ok ok kok

* Annotating Coordinates for: HW2_images/img2.jpg

>k 3k 3kosk sk sk sk skoskoskosk sk skoskoskosk skosk skosk sk skosk sk sk skoskosk sk sk sk skoskoskoskoskoskoskoskoskoskoskosk sk sk sk kokokokok
Image size: Width = 3024, Height = 4032, Channels = 3
P: [524, 1441]

Q: [1866, 820]
R: [1950, 2810]
S: [464, 2690]
Annotated image saved as: HW2.images/img2_annotated.jpg

K 3Kk sk ok skosk sk sk skosk ok skosk sk sk skosk sk sk sk kR skosk sk sk skosk ok skosk kR skosk sk sk sk sk ok skosk skok sk sk ok ok sk ok

* Annotating Coordinates for: HW2.images/img3.jpg =

sk ok o ok oK ok ok K koK kK K KK koK K kK K KKk KK koK K kKK kK R KK K K K kKK koK ok ok
Image size: Width = 3024, Height = 4032, Channels = 3
P: [1217, 560]

Q: [2971, 2302]
R: [1790, 3179]
S: [248, 1801]
Annotated image saved as: HW2.images/img3_annotated.jpg

KK Sk sk R skosk sk sk skoskok sk sk kR skosk kR skosk sk sk sk kR skosk kR skosk sk sk sk kR skosk kR skosk sk sk sk kR skosk kR skosk sk ok sk sk okok
* Extracting Image Corners for: HW2.images/alex_honnold.jpg x
sk ok o ok K ok oK K koK KK K oK K kKK kK K oK K koK K KK R KK K K K KKK KK R KK K oK K KK R KK K K K K K K KKk
Image corners for HW2_images/alex_honnold.jpg:

P: [0, 0]

Q: [782, 0]
R: [782, 664]
S: [0, 664]

Coordinates saved to img_data.json

Log File: Task 2 PQRS Coordinates

sk ok ok ok oK ok oK K KK KK K KK KKK KK R kK koK K KK K KK R KK K K K KKK KK R K K R K K K KOk
* Annotating Coordinates for: HW2.images/bearl.jpg =x
K 3Kk sk ok skosk sk sk sk kR kosk kR skosk sk sk sk sk ok skosk sk sk skosk sk skosk kR skosk kR sk sk ok skosk kR sk sk sk ok sk sk ok
Image size: Width = 3024, Height = 4032, Channels = 3
P: [600, 1045]

Q: [2030, 1185]
R: [2030, 2346]
S: [728, 2798]

Annotated image saved as: HW2.images/bearl _annotated.jpg

58

Sk ok kKK KKK R kKR S KK SR KK K KKK SR KK KKK R KK R KK R KK R kK ok
* Annotating Coordinates for: HW2_.images/bear2.jpg *
Sk kK KKK K KO R KK KK R KK R KK KK R KK R KK R KK R R KRR R kK ok
Image size: Width = 3024, Height = 4032, Channels = 3
P: [961, 1417]

Q: [2271, 1321]
R: [2246, 2730]
S: [989, 2454]

Annotated image saved as: HW2.images/bear2_annotated.jpg

ok o ok oKk ok K koK R ok KK ok K koK kK R ok Kk ok koK kK R ok Kk ok koK R kK R ok Ok K R kK oK
* Annotating Coordinates for: HW2_.images/bear3.jpg *
Sk o koK K oK K KK R K KKK KK K KK K KK KK K KK K KK K KK KKK KK R KK K KK R K KKK
Image size: Width = 3024, Height = 4032, Channels = 3
P: [720, 760]

Q: [2623, 1573]
R: [1670, 3375]
S: [128, 2162]

Annotated image saved as: HW2_.images/bear3_annotated.jpg

sk ok o ok K ok ok K koK kK koK K kKK KK Sk K K R oK K KK R kK K K K R KK KK R KK R K K kKR KKk ok o ok
* Extracting Image Corners for: HW2_.images/haggis.png x*
Sk o kK K oK K KK K KO KK K KK K KK K K K K K KK R KK K K KKK KK K KK K K K KK R KK R Kk ok
Image corners for HW2.images/haggis.png:

P: [0, 0]

Q: [1398,]
R: [1398, 693]
S: [0, 693]

Coordinates saved to img_data.json

Environment File: Python packages in conda environ-
ment

name: ece661
channels:
— conda—forge
— defaults
dependencies:
— _libgce_mutex=0.1=conda_forge

59

_openmp_mutex=4.5=2_gnu
asttokens=2.4.1=pyhd8edlab_0
bzip2=1.0.8=hbeeel8b_6
ca—certificates =2024.8.30=hbccal054_0
comm=0.2.2=pyhd8edlab_0
debugpy=1.6.7=py312h6a678d5_0
decorator=5.1.1=pyhd8edlab_0
exceptiongroup=1.2.2=pyhd8edlab_0
executing=2.0.1=pyhd8edlab_0
expat=2.6.2=h6a678d5_0
importlib—metadata=8.4.0=pyha770c72_0
importlib_metadata=8.4.0=hd8edlab_0
ipykernel =6.29.5=pyh3099207_0
ipython=8.27.0=pyh707e725_0
jedi=0.19.1=pyhd8edlab_0
jupyter_client =8.6.2=pyhd8edlab_0
jupyter_core=5.7.2=py312h06a4308_0
ld _impl_linux —64=2.38=h1181459_1
libffi=3.4.4=h6a678d5_1
libgcc=14.1.0=h77fa898_1
libgcc—mg=14.1.0=h69a702a_1
libgomp=14.1.0=h77fa898_1
libsodium=1.0.18=h36c2eal_1
libstdexx—ng=11.2.0=h1234567_1
libuuid=1.41.5=hbeeel8b_0
matplotlib—inline=0.1.7=pyhd8edlab_0
ncurses=6.4=h6a678d5_0
nest—asyncio=1.6.0=pyhd8edlab_0
openssl=3.3.1=hb9d3cd8_3
packaging=24.1=pyhd8edlab_0
parso=0.8.4=pyhd8edlab_0
pexpect=4.9.0=pyhd8edlab_0
pickleshare=0.7.5=py_1003
pip=24.2=py312h06a4308_0
platformdirs=4.2.2=pyhd8edlab_0
prompt—toolkit=3.0.47=pyha770c72_0
psutil=5.9.0=py312hbeeel8b_0
ptyprocess=0.7.0=pyhd3deb0d_0
pure_eval=0.2.3=pyhd8edlab_0
pygments=2.18.0=pyhd8edlab_0
python=3.12.4=h5148396_1
python—dateutil=2.9.0=pyhd8edlab_0
pyzmq=25.1.2=py312h6a678d5_0
readline=8.2=hb5eeel8b_0
setuptools=72.1.0=py312h06a4308_0

60

— six=1.16.0=pyh6c4a22f_0
— sqlite=3.45.3=hbeeel8b_0
— stack_data=0.6.2=pyhd8edlab_0
— tk=8.6.14=h39e8969_0
— tornado=6.4.1=py312hbeeel8b_0
— traitlets=5.14.3=pyhd8edlab_0
— typing_extensions=4.12.2=pyha770c¢72_0
— tzdata=2024a=h04d1e81_0
— wewidth=0.2.13=pyhd8edlab_0
— wheel=0.43.0=py312h06a4308_0
— xz=5.4.6=hbeeel8b_1
— zeromq=4.3.5=h6a678d5_0
— zipp=3.20.1=pyhd8edlab_0
— zlib=1.2.13=hbeeel8b_1
— pip:

— black==24.8.0

— click==8.1.7

— contourpy==1.3.0

— cycler==0.12.1

— fonttools==4.53.1

— imageio==2.35.1

— kiwisolver==1.4.5

— lazy—loader==0.4

— matplotlib==3.9.2

— mypy—extensions==1.0.0

— networkx==3.3

— numpy==2.1.0

— opencv—python==4.10.0.84

— pathspec==0.12.1

— pillow==10.4.0

— pyparsing==3.1.4

— scikit —image==0.24.0

— scipy==1.14.1

— tifffile ==2024.8.28

prefix: /home/gooseneck/anaconda3/envs/ece661

61

References

1]
2]

Fiction Taxonomy Fandom. Wild Haggis. https://fiction-taxonomy.fandom. com/
wiki/Wild_haggis. Image used from webpage, Accessed: 2024-09-04.

GeeksforGeeks. Displaying the Coordinates of the Points Clicked on the Image using
Python-OpenCV. https://www.geeksforgeeks.org/displaying-the-coordinates-
of -the-points-clicked-on-the-image-using-python-opencv/. Accessed: 2024-
09-04.

Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. 4th ed. Harlow,
Essex, England: Pearson Education Limited, 2018. 1SBN: 978-1-292-22304-9.

NumPy Developers. NumPy: Linear algebra (numpy.linalg.lstsq). Accessed: 2024-09-04.
2024. URL: https://numpy.org/doc/stable/reference/generated/numpy.linalg.
lstsq.html.

NumPy Developers. NumPy: Linear algebra (numpy.linalg.solve). Accessed: 2024-09-04.
2024. URL: https://numpy.org/doc/stable/reference/generated/numpy.linalg.
solve.html.

NumPy Developers. numpy.rint. Online; accessed 2024-09-04. 2023. URL: https://
numpy .org/doc/stable/reference/generated/numpy.rint.html.

62

