Contents

1 Task 1

1.1 Part- A
1.2 Part-B
1.3 Part-C

Task 2

2.1 Part- A
2.2 Part-B
2.3 Part - C

Extra Credit
3.1 Part- A
3.2 Part-B
3.3 Part-C

4 Source code

ECE 661 - Computer Vision

Arnav Singh (sing1272@purdue.edu)
September 4, 2024

11
11
12
14

15

mailto:sing1272@purdue.edu

1 Task 1

Our task is to project an image of climber Alex Honnold on three different orientations of wall mounted photo
frame. The four images used in this task are -

(a) imgl. jpg Orientation 1 of the photo frame (b) img2. jpg Orientation 2 of the photo frame
i VS THS 3

A

74 Gi 14

: o (d) alex_honnold. jpg Alex Honnold climbing El Cap-
(c) img3. jpg Orientation 3 of the photo frame itan

Figure 1: Images used in this task.

1.1

Part - A

The solution of this task is carried out in 3 steps:

1.

Read in Alex’s image (imagel) and an orientation of the photo frame (image2). Choose the interest points
both images. For imagel, we will consider the FOUR corners as the interest points. For image2, we will
consider the FOUR corners of the photo frame as interest points. I picked the four corners of the photo
frame using the Python based tool using OpenCV for least amount of manual work.

Once four points are selected from both images, we find a unique homography between the two images.
The equations to find the unique homography is as follows -

x’ hii hia his x
' =Hx = |y | = |hat hoa hos| |y
1 h3r hza haz| |1

o hi1z + higy + his Y = h217 + hagy + has
h31z + haoy + has’ ha1x + haay + ha3

Rearranging the terms gives,

hi1x + his2y + his —hg1za’ — hgoya' = hgsa’
hor@ + haoy + has —hs1zy’ — haoyy' = hasy/

Even though we only have 8 equations for the 9 variables involved, we only care about the solution that
has h33 = 1 because they form an equivalence class.

The unknowns h and the points x, £’ form the following set of equations -

Ah =b

where,)) - L
xz1 y1 1 0 0 0 —zz] —wpa) h11 x)

0 0 0 = w1 1 —myy —ny hi2 Y

2 y2 1 0 0 0 —zawh —yoab h13 xh
{00 0z oy 1 —moyh —yoyh _ |ha R
A= 7 7 h = b= |77
T3 Y3 1 0 0 O —I3T3 —Y3T3 hgg X3

0 0 0 =3 y3 1 —x3y5 —Y3u3 has s

g ya 1 0 0 0 —myzx) —ysa) hs31 x)
10 0 0 =4 w4 1 —z4y) —Yayi| | 32 | A

We use NumPy module’s inbuilt 1inalg.solve method solve the linear equation above. The Python code
for this is as follows -

def find_homography(pl, p2):
Find H such that p2 = H pl

assert len(pl) == len(p2) == 4

A =[]

b = []

for (x, y), (xp, yp) in zip(pl, p2):

A.append ([x, y, 1, 0, 0, 0, -xp*x, -xp*yl)
A.append ([0, O, O, x, y, 1, -yp*x, -yp*xyl)
b.append (xp)
b.append (yp)

np.array (A)
np.array (b)
np.linalg.solve(A, b)
np.append (H, 1)
H.reshape (3, 3)

oo m o=
W ononon

return H

Listing 1: Python function to find homography between 4 sets of points.

3. To apply this transformation, we iterate over the pixels of image2. For each destination coordinate
(dest_coord) on image2, we find the source coordinate (source_coord) on imagel. If source_coord
lies within bounds then we replace the pixel at dest_coord with the pixel at source_coord. To save
computation time, we find a bounding box on the four corners of the picture frame.

1 def apply_homography(imagel, image2):

2 # Function to project entire imagel onto selected points of image2
3 # with general homography

4 selected_points = select_points(image2)

5

6 hli, wil = imagel.shape[:2]

7

8 p = [0, 0O, (w1 -1, 0), (wi - 1, h1 - 1), (0, h1 - 1)]

9

10 H = find_homography(selected_points, p)

11 warped_image = np.copy(image2)

12

13 min_x = np.min(selected_points[:, 0])

14 min_y = np.min(selected_points[:, 1])

15 max_x = np.max(selected_points[:, 0])

16 max_y = np.max(selected_points[:, 1])

17

18 for y in range(min_y, max_y + 1):

19 for x in range(min_x, max_x + 1):

20 dest_coord = np.array([x, y, 1])

21 source_coord = np.dot(H, dest_coord)

22 source_coord /= source_coord[2]

23

24 # Use nearest neighbours

25 source_x, source_y = int(source_coord[0]), int(source_coord[1])
26 if 0 <= source_x < wl and 0 <= source_y < hil:

27 warped_image[y, x, :] = imagel[source_y, source_x, :]
28

29 return warped_image, selected_points

Listing 2: Python function to project imagel on selected points of image?2.

(a) Projection onto orientation 1 (b) Projection onto orientation 2 (c¢) Projection onto orientation 3

Figure 2: General homographic projections of alex_honnold.jpg on imgl.jpg, img2. jpg, img3. jpg.

The pixel coordinates that were selected in clockwise orientation as the corners of the picture frames are -
o Orientation 1 : (422,881), (2548,896), (2405, 2313), (701, 3187)
o Orientation 2 : (535,1462), (1877,844), (1953, 2841), (467, 2698)
 Orientation 3 : (1221,572), (2971, 2321), (1794, 3195), (263, 1808)

1.2 Part-B

We must verify that the product of the homographies from orientations from 1 to 2 and 2 to 3 is equal to the

homography from 1 to 3. Following is a Python script to verify the claim -

if name == ! main Ug

pl = np.array([(422, 881), (2548, 896), (2405, 2313), (701,
p2 = np.array ([(535, 1462), (1877, 844), (1953, 2841), (467,

3187)1)
2698) 1)

p3 np.array ([(1221, 572),(2971, 2321), (1794, 3195), (263, 1808)])
H12 = find_homography(pl, p2)

H23 = find_homography(p2, p3)

H13 = find_homography(pl, p3)

H = np.dot (H23, H12)

H /= H[2, 2]

print (H13)
print (H)
print (np.sum(np.abs(H - H13)))

imgl cv.imread("./HW2_images/imgl. jpg")
img3 cv.imread("./HW2_images/img3. jpg")
warped_image = np.copy(img3)
hli, wi = imgl.shapel[:2]
h3, w3 = img3.shapel[:2]
H13_inverse = np.linalg.inv(H13)
for y in range(h3):
for x in range(w3):
dest_coord = np.array([x, y, 1])
source_coord = np.dot(H13_inverse, dest_coord)
source_coord /= source_coord[2]

source_x, source_y = int(source_coord[0]), int(source_coord[1])

if 0 <= source_x < wl and 0 <= source_y < hl:
warped_image[y, x, :] = imgl[source_y, source_x,
else:
warped_image[y, x, :] = np.array([0, 0, 0])

gl

Listing 3: Python implementation to verify closure of the homography group.

The output from this code is shown below. As we can see the two homographies are almost equal.

[[2.38387867e-01 -4.18037010e-01 1.38618046e+03]
[3.45716480e-01 3.89801393e-01 3.46696975e+01]
[-1.74469883e-04 -1.17251577e-05 1.00000000e+00]]

[[2.38387867e-01 -4.18037010e-01 1.38618046e+03]
[3.45716480e-01 3.89801393e-01 3.46696975e+01]
[-1.74469883e-04 -1.17251577e-05 1.00000000e+00]]

1.1881608537485638e-12

Figure 3: Homography H13 applied on imgl. jpg showing the image is similar to img3. jpg.

1.3 Part - C

The equations related to affine homography estimation are as follows -

x’ hii hiz his x
' =Hx — |y | = |hot hoe hos| |y
1 0 0 1 1

&' = hi1z + hioy + has, Y = hor@ + hooy + hos

Here, we have 8 equations and 6 variables. So, we will use the least squares fit on a over-determined system to
determine the values of the 6 unknowns. They form a system of equations as follows -

1
2
3
+

ATAh=ATb
where,)))
1 Y 1 0 0 0 fﬁ
0 0 0 =y wy 1 hi1 Yi
To Y2 1 0 0 0 h12 $é
|0 0 0 2 oy 1 _ s _ v
A= r3 Y3 1 0 0 0 h = hgl - xg
0 0 0 T3 Y3 1 h22 yé
T4 Ygq 1 0 0 0 h23 xg
[0 0 0 24 yi 1] K

The Python code for this is as follows -

def find_affine_four_points(pl, p2):
Function to find the affine homography using least

assert len(pl) == len(p2) ==
5 A =[]
6 b = [I
7 for (x, y), (xp, yp) in zip(pl, p2):
8 A.append([x, y, 1, 0, 0, 01)
9 .append ([0, O, O, x, y, 11)

A
b.append (xp)
b.append (yp)

= np.array(A)
= np.dot(A.T, A)

= H.reshape (2, 3)
= np.vstack((H, [0,

f==f= ===l /o N o -
1]

return H

= np.dot(A.T, np.array(b))

np.linalg.solve(S, b)

0, 11)

)

squares fit

Listing 4: Finding the affine transform using a Least Squares fit.

A similar algorithm is used to apply the transformation. The Python implementation of it is as follows -

def apply_affine(imagel, image2):

with affine homography

1
2 # Function to project entire imagel onto selected points of image2
3
+

selected_points = select_points(image2)

hil, wl = imagel.shapel[:2]

8 p = np.array([(0, 0), (w1 - 1, 0), (wi - 1, h1 - 1), (0, hi 1)1)
9

H = find_affine_four_points(selected_points, p)

warped_image = np.copy(image2)

min_x = np.min(selected_points[:, 0])

min_y = np.min(selected_points[:, 1])

max_x = np.max(selected_points[:, 0])

max_y = np.max(selected_points[:, 1])

for y in range(min_y, max_y + 1):

for x in range(min_x, max_x + 1):

20 dest_coord = np.array([x, y, 1])

21 source_coord = np.dot(H, dest_coord)

22

23 source_x, source_y = int(source_coord[0]), int(source_coord[1])
24 if 0 <= source_x < wl and 0 <= source_y < hl:

25 warped_image [y, x, :] = imagel[source_y, source_x, :]

26

27 return warped_image, selected_points

Listing 5: Python function to project imagel on selected points of image2 using an affine homography.

The affine projections are -

Figure 4: Affine homographic projections of alex_honnold. jpg on imgl.jpg, img2. jpg, img3. jpg.

Of course these projections onto orientation 1, 2 are not very good because of the obtuse camera angles. The
opposite edges of the photo frame which are parallel in the photo frame plane do not remain parallel in the
image plane of the camera. This suggests that homographies 1, 2 are not affine and cannot be approximated
as affine homographies. However, as we see, the camera is head on with the photo frame and the parallel edges
remain almost parallel. This suggests that homography 3 can be approximated using an affine homography and
the projection is considered good.

2 Task 2

Perform all three parts from the previous task.
I took pictures of my TV at various angles and chose Wayne Rooney’s Bicycle kick at the Manchester Derby

as the image I want to project on my TV. The images are -

7

(a) img4. jpg Orientation 1 of the TV (b) img5. jpg Orientation 2 of the TV

DRRATES
. MIVECAATDAN

(c) img6. jpg Orientation 3 of the TV (d) img4.jpg Orientation 1 of the TV

Figure 5: Images used in this task.

2.1 Part- A

The projected images are -

Figure 6: General homographic projections of rooney.jpg on img4. jpg, imgh. jpg, img6. jpg.

The pixel coordinates that were selected in clockwise orientation as the corners of the picture frames are -
o Orientation 1 : (2694,4045), (523, 1380), (2084, 552), (4226, 2703)
o Orientation 2 : (733,2399), (2817,475), (3788, 1694), (1856, 3370)
 Orientation 3 : (361,1351), (2865, 285), (4055, 2855), (1437, 2865)

2.2 Part-B

The code to check the coondition is as follows -

j==]

N

w
oo

_ == '__main__
.array ([(2694,
.array ([(733,
.array ([(361,

4045), (523,

2399), (2817,
1351), (2865,

find_homography (pl, p2)
find_homography (p2, p3)
find_homography (pl, p3)

H = np.dot (H23, H12)
H /= HI[2, 2]

print (H13)

print (

H)

print (np.sum(np.abs(H - H13)))

imgil
img3

1380), (2084, 552), (4226,
475), (3788, 1694), (1856,
285), (4055, 2855), (1437,

cv.imread("./HW2_images/img4. jpg")
cv.imread("./HW2_images/img6.jpg")

warped_image = np.cop
hil, wi = imgl.shape[:2]

h3, w3

img3.shape[:

H13_inverse = np.lina
for y in range(h3):
for x in range(w3):

dest_coord =
source_coord

source_x, source_y = int(source_coord[0]),
if 0 <= source_x < wl and

warped_image [y, x, :]
else:

warped_image [y, x, :]

y (img3)
2]

lg.inv (H13)

np.array ([x, vy,

11)

= np.dot(H13_inverse, dest_coord)
source_coord /= source_coord[2]

The output from the code is -

[[7.13797017e-01 -1.

[2.81150447e+00 -6

[3.25928327e-04 4.

[[7.13797017e-01 -1

N

.81150447e+00 -6.
[3.25928327e-04 4.

13243076e-04

.97202602e+00 7.
77054592e-01 -3.
1.

13243076e-04

2.1186388689427293e-12

0

<= source_y < hil:

imgl [source_y, source_x,

np.array ([0, 0, 0])

97202602e+00 7.
.77054592e-01 -3.
1.

33528858e+03]
99717553e+01]
00000000e+00]]

33528858e+03]
99717553e+01]
00000000e+001]]

As we can see the two homographies are almost equal.

:]

2703) 1)
3370)1)
2865)1)

int (source_coord[1])

Figure 7: Homography H13 applied on img4. jpg showing the image is similar to img6. jpg.

2.3 Part-C

The affine projections are -

Figure 8: Affine homographic projections of rooney. jpg on img4. jpg, imgh. jpg, img6. jpg.

Again as noticed from the previous task, the orientations 1, 2 of TV are head on and the opposite edges of the
TV in the image plane are almost parallel. Thus, the affine projection does well. On the other hand, orientations

3 is captured when the camera is at an obtuse angle. An affine homography cannot be used to project onto this
orientation of the camera plane.

10

3.1

Extra Credit
Part - A

. Parameterize the rotation homography:

We can see that the rotation homography is part of the Euclidean sub-group in the hierarchy of the
planar projective transforms. The invariant of the this sub-group is distance, as rotation doesn’t change
the distance. In this case, the rotation is done along the Z-axis, is the image is in the XY -plane. The
homography can be written as a function of the angle of rotation « -

cosa —sina 0
H,(a)= |sina cosa 0
0 0 1

. Parameterize the horizontal tilt homography:

If the image is in the XY -plane, the horizontal tilt can be visualized as a rotation along the Y-axis. This
visualization helps with the parametrization of the homography with the angle of rotation « and can be
written as -

cosa 0 sina 1 0 tan o
H (o) = 0 1 0 |= 0 secae 0 (if cosa #0)
—sina 0 cosa —tan « 0 1

. Parameterize the vertical tilt homography:

If the image is in the XY -plane, the vertical tilt can be visualized as a rotation along the X-axis. Similarly,
the parametrization of the homography with the angle of rotation o can be written as -

1 0 0 sec o 0 0
H,(o)= |0 cosa sina|l=] 0 1 tana| (if cosa #0)
0 —sina cosa 0 —tana 1

Figure 9: We shall apply these homographies on an image that has horizontal and vertical lines.

11

3.2 Part-B

Image

alpha = 15 alpha = 30 alpha = 45 alpha = 60 alpha =75 alpha = 90

Lo A A A=
sl AR AN Ak

alpha = 15 alpha = 30 alpha = 45 alpha = 60 alpha =75 alpha = 90

alpha = 15 alpha = 30 alpha = 45 alpha = 60 alpha = 75 alpha = 90

Figure 10: First row shows rotation. Second row shows horizontal tilting. Third shows vertical tilting.

12

19

__name__ == __main_ _

h, w = 512, 512

H_norm = normalize_coords(h, w)
H_denorm = denormalize_coords(h, w)

alpha_rotate = [15, 30, 45, 60, 75, 90]
alpha_htilt = [15, 30, 45, 60, 75, 90]
alpha_vtilt = [15, 30, 45, 60, 75, 90]

Create an image with horizontal and vertical lines
img = 255 * np.ones((h, w, 3))
for y in range(0, h):

for x in range (0, w):

if x % 32 == 0:
imgly, x, :1 = [0, 0, 255]
if y % 32 == 0:

imgly, x, :] [2565, 0, O]

fig = plt.figure(figsize=(8, 8))

ax = plt.subplot2grid((4, len(alpha_rotate)), (0, 2))

ax.imshow (img)

ax.set_title("Image")

ax.axis('off')

cv.imwrite(f"./tilt/img.png", cv.cvtColor (img.astype(np.uint8), cv.COLOR_RGB2BGR))

for i in range(len(alpha_rotate)):
H_rotate = rotate_homography(np.deg2rad(alpha_rotate[i]))
H_rotate = H_denorm @ H_rotate @ H_norm
rotate = cv.warpPerspective(img, H_rotate, (w, h))
ax = plt.subplot2grid((4, len(alpha_rotate)), (1, i))
ax.imshow (rotate)
ax.set_title(f"alpha = {alpha_rotate[i]l}")
ax.axis('off"')

H_htilt = horizontal_tilt_homography(np.deg2rad(alpha_htilt[i]))

H_htilt = H_denorm @ H_htilt @ H_norm

htilt = cv.warpPerspective(img, H_htilt, (w, h))

htilt = htilt.astype(np.uint8) *255

ax = plt.subplot2grid((4, len(alpha_rotate)), (2, i))

ax.imshow (htilt)

ax.set_title(f"alpha = {alpha_htilt[i]}")

ax.axis('off')

cv.imwrite(f"./tilt/htilt_{i}.png", cv.cvtColor (htilt, cv.COLOR_RGB2BGR))

H_vtilt = vertical_tilt_homography(np.deg2rad(alpha_vtilt[i]))

H_vtilt = H_denorm @ H_vtilt @ H_norm

vtilt = cv.warpPerspective (img, H_vtilt, (w, h))

vtilt = vtilt.astype(np.uint8) *255

ax = plt.subplot2grid((4, len(alpha_rotate)), (3, i))

ax.imshow (vtilt)

ax.set_title(f"alpha = {alpha_vtilt[il}")

ax.axis('off ')

cv.imwrite(£f"./tilt/vtilt_{il}.png", cv.cvtColor (vtilt, cv.COLOR_RGB2BGR))

plt.tight_layout ()
plt.savefig("./HW2_images/rot.png")
plt.show ()

Listing 6: Python code to apply rotation, horizontal and vertical tilt homographies.

13

3.3 Part-C

1. Invariant under Horizontal tilt:

From the image it is clear that under horizontal tilting, the vertical lines stay vertical. This can be proven
using a known relation of how lines transform under planar projective transformations -

U!'=HT1l

A vertical line I = x — k = 0 in homogeneous coordinates would be represented as I = (1,0, —k) "
For horizontal tilt by an angle « -

cosae 0 sina
H; = 0 1 0
—sina 0 cosa

cosae 0 —sina
= H,'=| 0 1 0
sinaa 0 cosa

cosae 0 sina
= H,"=| 0 1 0
—sina 0 cosa

Thus, the line in the range plane would be

cosae 0 sina 1 cosa — ksina 1
UV'=H,"l=| 0 1 0 0| = 0 = 0
—sina 0 cosa —k —sina — kcosa _sinatkcosa

cos a—ksin «
This shows that the vertical line still remains vertical.

2. Invariant under Vertical tilt:

Again, from the figures we see that the horizontal lines stay horizontal under vertical tilting. The proof
follows the same steps as above -

U/'=H"T1l

A vertical line I =y — k = 0 in homogeneous coordinates would be represented as I = (0,1, —k)T

For vertical tilt by an angle « -

1 0 0
H,= |0 cosa sina
0 —sina cosa

1 0 0
= H,'=|0 cosa —sina
0 sina cosa

1 0 0
= H;"=|0 cosa sina
0 —sina cosa
Thus, the line in the range plane would be
1 0 0 0 0 0
!'=H,"l=|0 cosa sina 1| =] cosa—ksina | = 1
0 —sina cosa| |—k —sina — kcosa —sinatkcosa

cos a—ksin «

This shows that the horizontal line still remains horizontal.

14

4 Source code

import cv2 as cv
import numpy as np

class ClickRecorder:

def

Object to record clicked points

def __init__(self):
self.clicked_points = []
def mouse_callback(self, event, x, y, flags, param):

if event == cv.EVENT_LBUTTONDOWN :
self.clicked_points.append((x, y))
print (£"Clicked point: {self.clicked_points[-1]1}")
def get_clicked_points(self):
return self.clicked_points

select_points (img) :

Function to select and return selected points on an image
click_recorder = ClickRecorder ()
cv.namedWindow ("select_points",
cv.resizeWindow ("select_points",
cv.imshow("select_points", img)
cv.setMouseCallback("select_points",
cv.waitKey (0)

print (£"All selected points:
cv.destroyAllWindows ()

cv.WINDOW_NORMAL)
600, 600)

click_recorder .mouse_callback)

{click_recorder.get_clicked_points()}")

return np.array(click_recorder.get_clicked_points())

def find_homography(pl, p2):
Find H such that p2 = H pl
assert len(pl) == len(p2) == 4
A =[]
b = []
for (x, y), (xp, yp) in =zip(pl, p2):
A.append([x, y, 1, 0, 0, O, -xp*x, -xp*xyl)
A.append ([0, O, O, x, y, 1, -yp*x, -yp*yl)
b.append (xp)
b.append (yp)
A = np.array(A)
b = np.array(b)
H = np.linalg.solve(A, b)
H = np.append(H, 1)
H = H.reshape (3, 3)
return H
def apply_homography(imagel, image2):

Function to project entire imagel onto selected points of image2
with general homography

selected_points = select_points(image2)

hi, wil = imagel.shape[:2]

p = [(0, 0), (w1 -1, 0), (wi - 1, h1 - 1), (0O, hl1 - 1)]
H = find_homography(selected_points, p)

warped_image = np.copy(image2)

min_x = np.min(selected_points[:, 0])

min_y = np.min(selected_points[:, 1])

max_x = np.max(selected_points[:, 0])

max_y = np.max(selected_points[:, 1])

15

72 for y in range(min_y, max_y + 1):

73 for x in range(min_x, max_x + 1):

74 dest_coord = np.array([x, y, 1])

75 source_coord = np.dot(H, dest_coord)
6 source_coord /= source_coord[2]

8 # Use nearest neighbours

79 source_x, source_y = int(source_coord[0]), int(source_coord[1])
80 if 0 <= source_x < wl and 0 <= source_y < hil:

81 warped_imagel[y, x, :] = imagel[source_y, source_x, :]

82

83 return warped_image, selected_points

s5 def find_affine_four_points(pl, p2):

86 # Function to find the affine homography using least squares fit
87 assert len(pl) == len(p2) == 4

88

89 A = []

90 b = []

91 for (x, y), (xp, yp) in =zip(pl, p2):

92 A.append([x, y, 1, 0, 0, 0])

93 A.append ([0, O, O, x, y, 11)
94 b.append (xp)

95 b.append (yp)

96

o7 A = np.array(A)

98 b = np.dot(A.T, np.array(b))

99 S = np.dot(A.T, A)

100 H = np.linalg.solve(S, b)

101 H = H.reshape(2, 3)

102 H = np.vstack((H, [0, O, 1]))

103
104 return H
105
106

107 def apply_affine(imagel, image2):

108 # Function to project entire imagel onto selected points of image2
109 # with affine homography
110 selected_points = select_points(image2)

111
112 hli, wil = imagel.shape[:2]

114 p = np.array([(0, 0), (wi - 1, 0), (w1 - 1, h1 - 1), (0, hl - 1)])
115

116 H = find_affine_four_points(selected_points, p)

117 warped_image = np.copy(image2)

118

119 min_x = np.min(selected_points[:, 0])

120 min_y = np.min(selected_points[:, 1])

121 max_x = np.max(selected_points[:, 0])

122 max_y = np.max(selected_points[:, 1])

123

124 for y in range(min_y, max_y + 1):

125 for x in range(min_x, max_x + 1):

126 dest_coord = np.array([x, y, 11)

127 source_coord = np.dot(H, dest_coord)

128

120 source_x, source_y = int(source_coord[0]), int(source_coord[1])
130 if 0 <= source_x < wl and 0 <= source_y < hil:

131 warped_image [y, x, :] = imagel[source_y, source_x, :]

133 return warped_image, selected_points
135 # Extra credit

157 def normalize_coords(h, w):

138 # Homography to normalize the coordinates
139 H = np.array([[2/w, O, -1],

140 [0, 2/h, -11,

141 (o, o, 111)

142
143 return H
144

16

def

def

def

def

denormalize_coords (h, w):

Homography to de-normalize the coordinates

H = np.array([[w/2, 0, w/2],
[0, h/2, h/2],
o, o, 111)

return H

rotate_homography (alpha):

Homography to rotate along the z-axis

H = np.array([[np.cos(alpha), -np.sin(alpha), 0],

[np.sin(alpha), np.cos(alpha), 0]

(o, o, 111
return H

horizontal_tilt_homography (alpha):

Homography to rotate along the y-axis
H = np.array ([[np.cos(alpha), 0, np.sin(alpha)],

o, 1, ol,

>

[-np.sin(alpha), O, np.cos(alpha)ll)

return H

vertical_tilt_homography (alpha):

Homography to rotate along the x-axis

H = np.array([[1, O, 0],

[0, np.cos(alpha), np.sin(alpha)],
[0, -np.sin(alpha), np.cos(alpha)ll)

return H

Listing 7: Python code which contains all the functions.

import cv2 as cv
import numpy as np
import os

from homography import apply_homography

if

__name__ == __main__":

img_dir = "./HW2_images/"

img_filenames = ["imgl.jpg", "img2.jpg",
file_path = "points_tl.txt"

j =0

"img3.jpg",

for i, img_filename in enumerate (img_filenames[:-1]):

path = os.path.join(img_dir, img_filename)

img2 = cv.imread (path)

path = os.path.join(img_dir, img_filenames[-1])

imgl = np.array(cv.imread(path))

W, P

Mark the selected points
text = ['P', 'Q', 'R', 'S']

apply_homography (imgl, img2)

cv.namedWindow ("points", cv.WINDOW_NORMAL)
cv.resizeWindow ("points", 600, 600)

font = cv.FONT_HERSHEY_SIMPLEX
fontScale = 8

color = (0, 0, 255)

thickness = 50

img2 = cv.putText(img2, text[0],
img2 = cv.putText (img2, text[1],
img2 = cv.putText(img2, text[2],
img2 = cv.putText (img2, text[3],
cv.imshow ("points", img2)
cv.imwrite (os.path. join(img_dir,

plo],
pl1l,
pl2],
pl3],

f"points_{il}. jpg"),

font
font
font
font

cv.namedWindow ("warped", cv.WINDOW_NORMAL)
cv.resizeWindow ("warped", 600, 600)

17

5>

s>

s>

s>

fontScale, color
fontScale, color
fontScale, color
fontScale, color
img2)

s

s

5>

s>

"alex_honnold. jpg"]

thickness
thickness
thickness
thickness

s

cv
cv
cv

CVv.

.LINE_AA)
.LINE_AA)
.LINE_AA)

LINE_AA)

10

CcVv.

cv.imshow ("warped", w)

cv.imwrite (os.path.join(img_dir, f"warped_{il}.jpg"), w)

Save the points in a .txt file

line_number = 3 * j + i

with open(file_path, 'r') as f:
lines = f.readlines ()

if line_number >= len(lines):

lines.append (f"img{i+1}: {p.flatten()} \n")

else:

lines[line_number] = f"img{i+1}: {p.flatten()} \n"

with open(file_path, 'w') as f:
f.writelines (lines)

cv.waitKey (0)

destroyAllWindows ()

Listing 8: Python driver code to run Part - A of Task 1.

import cv2 as cv
import numpy as np

from homography import find_homography

__name__ == __main__

pl = np.array([(422, 881), (2548, 896),
p2 = np.array ([(535, 1462), (1877, 844),
p3 = np.array ([(1221, 572) ,(2971, 2321),
H12 find_homography (pl, p2)

H23 = find_homography(p2, p3)

H13 = find_homography(pl, p3)

H = np.dot (H23, H12)

H /= H[2, 2]

print (H13)
print (H)
print (np.sum(np.abs(H - H13)))

imgl = cv.imread("./HW2_images/imgl.jpg")
img3 = cv.imread("./HW2_images/img3. jpg")

cv
cv
cv
CVv.

.namedWindow ("warped", cv.WINDOW_NORMAL)
.resizeWindow ("warped", 600, 600)
.imshow ("warped", imgl)

waitKey (0)

warped_image = np.copy(img3)

hi,
h3,

wl = imgl.shapel[:2]
w3 img3.shape [:2]

H13_inverse = np.linalg.inv(H13)

for

CV.
CcVv.
CVv.
CcVv.

y in range (h3):

for x in range(w3):
dest_coord = np.array([x, y, 11)
source_coord = np.dot(H13_inverse,
source_coord /= source_coord[2]

(2405,
(1953,
(1794,

2313), (701,
2841), (467,

3195) ,

dest_coord)

source_x, source_y = int(source_coord[0]),
if 0 <= source_x < wl and 0 <= source_y < hil:
warped_image[y, x, :] = imgl[source_y,

else:

warped_image [y, x, :] = np.array([O,

namedWindow ("warped", cv.WINDOW_NORMAL)
resizeWindow ("warped", 600, 600)

imshow ("warped", warped_image)
waitKey (0)

.destroyWindow ("warped")

0,

(263,

3187)1)
2698)1)
1808) 1)

int (source_coord[1])

source_x,

01)

:]

Listing 9: Python driver code to run Part - B of Task 1.

18

import cv2 as cv
import numpy as np
import os

from homography import apply_affine

if __name__ == _

img_dir =

img_filenames

file_path

j 1

for i,
path os.
img2 = cv.
path = os
imgl = np.
w’ P =

cv

import
import
import

cv.namedWindow ("affine",

main _
"./HW2_images/"
= ["imgl. jpg",

"points_t1l.txt"

imread (path)

.path. join(img_dir,
array(cv.imread (path))

path. join(img_dir,

apply_affine (imgl, img2)

"img2.jpg",

cv.resizeWindow("affine", 600, 600)
cv.imshow("affine", w)
cv.imwrite (os.path. join(img_dir,

line_number = 3 * j + i

with open(file_path,

lines

if line_number >=
lines.append (f"img{i+1}:

else:

'r') as f:

= f.readlines ()

lines[line_number]

with open(file_path,

f.writelines (lines)

cv.waitKey (0)

cv2 as cv
numpy as np

oS

.destroyAllWindows ()

len(lines):

f'img{i+1}:
'w') as f:

fraffine_{i}. jpg"),

img_filename)

cv.WINDOW_NORMAL)

"img3.jpg",

img_filename in enumerate(img_filenames[:-1]):

img_filenames [-1])

{p.flatten()} \n")

{p.flatten ()} \n"

w)

"alex_honnold. jpg"]

Listing 10: Python driver code to run Part - C of Task 1.

from homography import apply_homography

if __name__ == _

img_dir =

img_filenames

file_path

j 0

for i,
path = os.
img2 = cv.
path os
imgl = np
w’ P =
text =

cv.namedWindow ("points",

main _
"./HW2_images/"
= ["img4.jpg",

"points_t2.txt"

apply_homography (imgl,

imread (path)

.path.join(img_dir,

path. join(img_dir,

.array(cv.imread (path))

[lPI, @0, 0RO,

‘S']

"img5.jpg",

img2)

cv.resizeWindow("points", 600, 600)

font = cv.FONT_HERSHEY_SIMPLEX
fontScale = 8

color (0, 0, 255)

thickness = 50

img2 = cv.putText(img2, text[0],
img2 cv.putText (img2, text[1],
img2 = cv.putText(img2, text[2],
img2 = cv.putText (img2, text[3],
cv.imshow ("points", img2)

plol,
pl1l,
pl2],
pl3]l,

img_filename)

cv.WINDOW_NORMAL)

font
font
font
font

19

"img6.jpg",

5

s>

s

s

img_filename in enumerate (img_filenames[:-1]):

img_filenames [-1])

fontScale
fontScale
fontScale
fontScale

s

s

color
color
color
color

"rooney. jpg"]

5

>

s

s>

thickness
thickness
thickness
thickness

s

s

CV.
.LINE_AA)
.LINE_AA)
.LINE_AA)

cVv
cVv
cVv

LINE_AA)

10

cv.imwrite (os.path. join(img_dir, f"points_{i+3}.jpg"), img2)
cv.namedWindow ("warped", cv.WINDOW_NORMAL)

cv.resizeWindow ("warped", 600, 600)

cv.imshow ("warped", w)

cv.imwrite (os.path.join(img_dir, f"warped_{i+3}.jpg"), w)

line_number = 3 * j + i
with open(file_path, 'r') as f:
lines = f.readlines ()
if line_number >= len(lines):
lines.append (f"img{i+1}: {p.flatten()} \n")
else:
lines[line_number] = f"img{i+1}: {p.flatten()} \n"
with open(file_path, 'w') as f:
f.writelines (lines)

cv.waitKey (0)

cv.destroyAllWindows ()
Listing 11: Python driver code to run Part - A of Task 2.

import cv2 as cv
import numpy as np
import os

from homography import find_homography, select_points

if

__name__ == '_ _main__
pl = np.array ([(2694, 4045), (523, 1380), (2084, 552), (4226, 2703)1)
p2 = np.array ([(733, 2399), (2817, 475), (3788, 1694), (1856, 3370)]1)

p3 = np.array ([(361, 1351), (2865, 285), (4055, 2855), (1437, 2865)])

H12 = find_homography(pl, p2)
H23 = find_homography(p2, p3)
H13 = find_homography(pl, p3)
H = np.dot (H23, H12)

H /= H[2, 2]

print (H13)
print (H)
print (np.sum(np.abs(H - H13)))

imgl = cv.imread("./HW2_images/img4.jpg")
img3 cv.imread("./HW2_images/img6.jpg")

cv.namedWindow ("warped", cv.WINDOW_NORMAL)
cv.resizeWindow ("warped", 600, 600)
cv.imshow("warped", imgl)

cv.waitKey (0)

warped_image = np.copy(img3)
hli, wi = imgl.shapel[:2]
h3, w3 = img3.shapel[:2]

H13_inverse = np.linalg.inv(H13)
for y in range (h3):
for x in range(w3):
dest_coord = np.array([x, y, 1])
source_coord = np.dot(H13_inverse, dest_coord)
source_coord /= source_coord[2]

source_x, source_y = int(source_coord[0]), int(source_coord[1])
if 0 <= source_x < wl and 0 <= source_y < hil:

warped_image[y, x, :] = imgl[source_y, source_x, :]
else:

warped_image[y, x, :] = np.array([0, 0, 0])

cv.namedWindow ("warped", cv.WINDOW_NORMAL)
cv.resizeWindow("warped", 600, 600)
cv.imshow("warped", warped_image)
cv.waitKey (0)

20

cv.destroyWindow ("warped")

import cv2 as c

import numpy as np

import os

v

Listing 12: Python driver code to run Part - B of Task 2.

from homography import apply_affine

if __name__ ==

__main__"':

img_dir = "./HW2_images/"
= ["img4.jpg", "imgh.jpg", "img6.jpg",
"points_t2.txt"

img_filenam
file_path =
j=1

es

for i, img_filename in enumerate (img_filenames[:-1]):

path = os.path.join(img_dir, img_filename)

img2 = cv.imread (path)

path = os.path.join(img_dir, img_filenames[-1])
imgl = np.array(cv.imread(path))

w, p = apply_affine(imgl, img2)

cv.namedWindow ("affine", cv.WINDOW_NORMAL)
cv.resizeWindow("affine", 600, 600)

cv.imshow("affine",
cv.imwrite (os.path.join(img_dir,

line_number =

with open(file_path, 'r') as f:

= f.readlines ()

if line_number >=
lines.append (f"img{i+1}: {p.flatten()} \n")

lin

else:

lines[line_number] = f"img{i+1}: {p.flatten()} \n"

es

W)

3 % § + i

len(lines):

with open(file_path, 'w') as f:
f.writelines (lines)

cv.waitKey (0)

cv.destroyAllWindows ()

import cv2 as c

import numpy as np

v

Listing 13: Python driver code to run Part - C of Task 2.

import matplotlib.pyplot as plt

from homography import normalize_coords,

horizontal_tilt_homography, vertical_tilt_homography

if __name__ == '__main__"':
h, w = 512, 512
H_norm = normalize_coords(h, w)

H_denorm =

denormalize_coords (h, w)

alpha_rotate [15, 30, 45, 60, 75, 90]
alpha_htilt = [15, 30, 45, 60, 75, 90]
alpha_vtilt = [15, 30, 45, 60, 75, 90]

Create an

image with horizontal and vertical lines
img = 255 * np.omnes((h, w, 3))
for y in range (O,

h):

"rooney.jpg"]

f'affine_{i+3}.jpg"), w)

denormalize_coords, rotate_homography,

for x in range (0, w):

if x % 32 == 0:
imgly, x, :1 = [0, 0, 255]
if y % 32 == 0:

img [y, x, :] [255, 0, O]

fig = plt.figure(figsize=(8, 8))
ax = plt.subplot2grid((4, len(alpha_rotate)), (0, 2))

21

ax.imshow (img)
ax.set_title("Image")
ax.axis ('off"')

cv.imwrite(f"./tilt/img.png", cv.cvtColor (img.astype(np.uint8), cv.COLOR_RGB2BGR))

for i in range(len(alpha_rotate)):
H_rotate = rotate_homography(np.deg2rad(alpha_rotatel[i]))
H_rotate = H_denorm @ H_rotate @ H_norm
rotate = cv.warpPerspective(img, H_rotate, (w, h))
ax = plt.subplot2grid((4, len(alpha_rotate)), (1, i))
ax.imshow(rotate)
ax.set_title(f"alpha = {alpha_rotate[i]l}")
ax.axis('off"')

H_htilt = horizontal_tilt_homography(np.deg2rad(alpha_htilt[i]))
H_htilt = H_denorm @ H_htilt @ H_norm

htilt = cv.warpPerspective(img, H_htilt, (w, h))

htilt = htilt.astype(np.uint8) *255

ax = plt.subplot2grid((4, len(alpha_rotate)), (2, i))

ax.imshow (htilt)

ax.set_title(f"alpha = {alpha_htilt[i]}")

ax.axis('off"')

cv.imwrite(f"./tilt/htilt_{i}.png", cv.cvtColor (htilt, cv.COLOR_RGB2BGR))

H_vtilt = vertical_tilt_homography(np.deg2rad(alpha_vtilt[i]))
H_vtilt = H_denorm @ H_vtilt @ H_norm

vtilt = cv.warpPerspective(img, H_vtilt, (w, h))

vtilt = vtilt.astype(np.uint8) *255

ax = plt.subplot2grid((4, len(alpha_rotate)), (3, i))
ax.imshow (vtilt)

ax.set_title(f"alpha = {alpha_vtilt[i]l}")

ax.axis ('off')

cv.imwrite(£f"./tilt/vtilt_{il}.png", cv.cvtColor (vtilt, cv.COLOR_RGB2BGR))

plt.tight_layout ()
plt.savefig("./HW2_images/rot.png")
plt.show ()

Listing 14: Python driver code to run extra credit assignment.

22

	Task 1
	Part - A
	Part - B
	Part - C

	Task 2
	Part - A
	Part - B
	Part - C

	Extra Credit
	Part - A
	Part - B
	Part - C

	Source code

