
ECE 661 - Computer Vision
Arnav Singh (sing1272@purdue.edu)

September 4, 2024

Contents
1 Task 1 2

1.1 Part - A . 3
1.2 Part - B . 5
1.3 Part - C . 6

2 Task 2 8
2.1 Part - A . 8
2.2 Part - B . 9
2.3 Part - C . 10

3 Extra Credit 11
3.1 Part - A . 11
3.2 Part - B . 12
3.3 Part - C . 14

4 Source code 15

1

mailto:sing1272@purdue.edu

1 Task 1
Our task is to project an image of climber Alex Honnold on three different orientations of wall mounted photo
frame. The four images used in this task are -

(a) img1.jpg Orientation 1 of the photo frame (b) img2.jpg Orientation 2 of the photo frame

(c) img3.jpg Orientation 3 of the photo frame
(d) alex_honnold.jpg Alex Honnold climbing El Cap-
itan

Figure 1: Images used in this task.

2

1.1 Part - A
The solution of this task is carried out in 3 steps:

1. Read in Alex’s image (image1) and an orientation of the photo frame (image2). Choose the interest points
both images. For image1, we will consider the FOUR corners as the interest points. For image2, we will
consider the FOUR corners of the photo frame as interest points. I picked the four corners of the photo
frame using the Python based tool using OpenCV for least amount of manual work.

2. Once four points are selected from both images, we find a unique homography between the two images.
The equations to find the unique homography is as follows -

x′ = Hx =⇒

x′

y′

1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 x
y
1



x′ = h11x + h12y + h13

h31x + h32y + h33
, y′ = h21x + h22y + h23

h31x + h32y + h33

Rearranging the terms gives,

h11x + h12y + h13 −h31xx′ − h32yx′ = h33x′

h21x + h22y + h23 −h31xy′ − h32yy′ = h33y′

Even though we only have 8 equations for the 9 variables involved, we only care about the solution that
has h33 = 1 because they form an equivalence class.
The unknowns h and the points x, x′ form the following set of equations -

Ah = b

where,

A =



x1 y1 1 0 0 0 −x1x′
1 −y1x′

1
0 0 0 x1 y1 1 −x1y′

1 −y1y′
1

x2 y2 1 0 0 0 −x2x′
2 −y2x′

2
0 0 0 x2 y2 1 −x2y′

2 −y2y′
2

x3 y3 1 0 0 0 −x3x′
3 −y3x′

3
0 0 0 x3 y3 1 −x3y′

3 −y3y′
3

x4 y4 1 0 0 0 −x4x′
4 −y4x′

4
0 0 0 x4 y4 1 −x4y′

4 −y4y′
4


h =



h11
h12
h13
h21
h22
h23
h31
h32


b =



x′
1

y′
1

x′
2

y′
2

x′
3

y′
3

x′
4

y′
4


We use NumPy module’s inbuilt linalg.solve method solve the linear equation above. The Python code
for this is as follows -

1 def find_homography (p1 , p2):
2 # Find H such that p2 = H p1
3

4 assert len(p1) == len(p2) == 4
5

6 A = []
7 b = []
8 for (x, y), (xp , yp) in zip(p1 , p2):
9 A. append ([x, y, 1, 0, 0, 0, -xp*x, -xp*y])

10 A. append ([0 , 0, 0, x, y, 1, -yp*x, -yp*y])
11 b. append (xp)
12 b. append (yp)
13

14 A = np. array (A)
15 b = np. array (b)
16 H = np. linalg . solve (A, b)
17 H = np. append (H, 1)
18 H = H. reshape (3, 3)
19

20 return H

Listing 1: Python function to find homography between 4 sets of points.

3

3. To apply this transformation, we iterate over the pixels of image2. For each destination coordinate
(dest_coord) on image2, we find the source coordinate (source_coord) on image1. If source_coord
lies within bounds then we replace the pixel at dest_coord with the pixel at source_coord. To save
computation time, we find a bounding box on the four corners of the picture frame.

1 def apply_homography (image1 , image2):
2 # Function to project entire image1 onto selected points of image2
3 # with general homography
4 selected_points = select_points (image2)
5

6 h1 , w1 = image1 . shape [:2]
7

8 p = [(0 , 0) , (w1 - 1, 0) , (w1 - 1, h1 - 1) , (0, h1 - 1)]
9

10 H = find_homography (selected_points , p)
11 warped_image = np.copy(image2)
12

13 min_x = np.min(selected_points [:, 0])
14 min_y = np.min(selected_points [:, 1])
15 max_x = np.max(selected_points [:, 0])
16 max_y = np.max(selected_points [:, 1])
17

18 for y in range (min_y , max_y + 1):
19 for x in range (min_x , max_x + 1):
20 dest_coord = np. array ([x, y, 1])
21 source_coord = np.dot(H, dest_coord)
22 source_coord /= source_coord [2]
23

24 # Use nearest neighbours
25 source_x , source_y = int(source_coord [0]) , int(source_coord [1])
26 if 0 <= source_x < w1 and 0 <= source_y < h1:
27 warped_image [y, x, :] = image1 [source_y , source_x , :]
28

29 return warped_image , selected_points

Listing 2: Python function to project image1 on selected points of image2.

(a) Projection onto orientation 1 (b) Projection onto orientation 2 (c) Projection onto orientation 3

Figure 2: General homographic projections of alex_honnold.jpg on img1.jpg, img2.jpg, img3.jpg.

The pixel coordinates that were selected in clockwise orientation as the corners of the picture frames are -

• Orientation 1 : (422, 881), (2548, 896), (2405, 2313), (701, 3187)

• Orientation 2 : (535, 1462), (1877, 844), (1953, 2841), (467, 2698)

• Orientation 3 : (1221, 572), (2971, 2321), (1794, 3195), (263, 1808)

4

1.2 Part - B
We must verify that the product of the homographies from orientations from 1 to 2 and 2 to 3 is equal to the
homography from 1 to 3. Following is a Python script to verify the claim -

1 if __name__ == '__main__ ':
2 p1 = np. array ([(422 , 881) , (2548 , 896) , (2405 , 2313) , (701 , 3187)])
3 p2 = np. array ([(535 , 1462) , (1877 , 844) , (1953 , 2841) , (467 , 2698)])
4 p3 = np. array ([(1221 , 572) ,(2971 , 2321) , (1794 , 3195) , (263 , 1808)])
5

6 H12 = find_homography (p1 , p2)
7 H23 = find_homography (p2 , p3)
8 H13 = find_homography (p1 , p3)
9

10 H = np.dot(H23 , H12)
11 H /= H[2, 2]
12

13 print (H13)
14 print (H)
15 print (np.sum(np.abs(H - H13)))
16

17 img1 = cv. imread ("./ HW2_images /img1.jpg")
18 img3 = cv. imread ("./ HW2_images /img3.jpg")
19 warped_image = np.copy(img3)
20 h1 , w1 = img1. shape [:2]
21 h3 , w3 = img3. shape [:2]
22 H13_inverse = np. linalg .inv(H13)
23 for y in range (h3):
24 for x in range (w3):
25 dest_coord = np. array ([x, y, 1])
26 source_coord = np.dot(H13_inverse , dest_coord)
27 source_coord /= source_coord [2]
28 source_x , source_y = int(source_coord [0]) , int(source_coord [1])
29 if 0 <= source_x < w1 and 0 <= source_y < h1:
30 warped_image [y, x, :] = img1[source_y , source_x , :]
31 else:
32 warped_image [y, x, :] = np. array ([0 , 0, 0])

Listing 3: Python implementation to verify closure of the homography group.

The output from this code is shown below. As we can see the two homographies are almost equal.

[[2.38387867e-01 -4.18037010e-01 1.38618046e+03]
[3.45716480e-01 3.89801393e-01 3.46696975e+01]
[-1.74469883e-04 -1.17251577e-05 1.00000000e+00]]

[[2.38387867e-01 -4.18037010e-01 1.38618046e+03]
[3.45716480e-01 3.89801393e-01 3.46696975e+01]
[-1.74469883e-04 -1.17251577e-05 1.00000000e+00]]

1.1881608537485638e-12

Figure 3: Homography H13 applied on img1.jpg showing the image is similar to img3.jpg.

5

1.3 Part - C
The equations related to affine homography estimation are as follows -

x′ = Hx =⇒

x′

y′

1

 =

h11 h12 h13
h21 h22 h23
0 0 1

 x
y
1


x′ = h11x + h12y + h13, y′ = h21x + h22y + h23

Here, we have 8 equations and 6 variables. So, we will use the least squares fit on a over-determined system to
determine the values of the 6 unknowns. They form a system of equations as follows -

A⊤Ah = A⊤b

where,

A =



x1 y1 1 0 0 0
0 0 0 x1 y1 1
x2 y2 1 0 0 0
0 0 0 x2 y2 1
x3 y3 1 0 0 0
0 0 0 x3 y3 1
x4 y4 1 0 0 0
0 0 0 x4 y4 1


h =


h11
h12
h13
h21
h22
h23

 b =



x′
1

y′
1

x′
2

y′
2

x′
3

y′
3

x′
4

y′
4


The Python code for this is as follows -

1 def find_affine_four_points (p1 , p2):
2 # Function to find the affine homography using least squares fit
3 assert len(p1) == len(p2) == 4
4

5 A = []
6 b = []
7 for (x, y), (xp , yp) in zip(p1 , p2):
8 A. append ([x, y, 1, 0, 0, 0])
9 A. append ([0 , 0, 0, x, y, 1])

10 b. append (xp)
11 b. append (yp)
12

13 A = np. array (A)
14 b = np.dot(A.T, np. array (b))
15 S = np.dot(A.T, A)
16 H = np. linalg . solve (S, b)
17 H = H. reshape (2, 3)
18 H = np. vstack ((H, [0, 0, 1]))
19

20 return H

Listing 4: Finding the affine transform using a Least Squares fit.

A similar algorithm is used to apply the transformation. The Python implementation of it is as follows -
1 def apply_affine (image1 , image2):
2 # Function to project entire image1 onto selected points of image2
3 # with affine homography
4 selected_points = select_points (image2)
5

6 h1 , w1 = image1 . shape [:2]
7

8 p = np. array ([(0 , 0) , (w1 - 1, 0) , (w1 - 1, h1 - 1) , (0, h1 - 1)])
9

10 H = find_affine_four_points (selected_points , p)
11 warped_image = np.copy(image2)
12

13 min_x = np.min(selected_points [:, 0])
14 min_y = np.min(selected_points [:, 1])
15 max_x = np.max(selected_points [:, 0])
16 max_y = np.max(selected_points [:, 1])
17

18 for y in range (min_y , max_y + 1):
19 for x in range (min_x , max_x + 1):

6

20 dest_coord = np. array ([x, y, 1])
21 source_coord = np.dot(H, dest_coord)
22

23 source_x , source_y = int(source_coord [0]) , int(source_coord [1])
24 if 0 <= source_x < w1 and 0 <= source_y < h1:
25 warped_image [y, x, :] = image1 [source_y , source_x , :]
26

27 return warped_image , selected_points

Listing 5: Python function to project image1 on selected points of image2 using an affine homography.

The affine projections are -

Figure 4: Affine homographic projections of alex_honnold.jpg on img1.jpg, img2.jpg, img3.jpg.

Of course these projections onto orientation 1, 2 are not very good because of the obtuse camera angles. The
opposite edges of the photo frame which are parallel in the photo frame plane do not remain parallel in the
image plane of the camera. This suggests that homographies 1, 2 are not affine and cannot be approximated
as affine homographies. However, as we see, the camera is head on with the photo frame and the parallel edges
remain almost parallel. This suggests that homography 3 can be approximated using an affine homography and
the projection is considered good.

7

2 Task 2
Perform all three parts from the previous task.
I took pictures of my TV at various angles and chose Wayne Rooney’s Bicycle kick at the Manchester Derby
as the image I want to project on my TV. The images are -

(a) img4.jpg Orientation 1 of the TV (b) img5.jpg Orientation 2 of the TV

(c) img6.jpg Orientation 3 of the TV (d) img4.jpg Orientation 1 of the TV

Figure 5: Images used in this task.

2.1 Part - A
The projected images are -

Figure 6: General homographic projections of rooney.jpg on img4.jpg, img5.jpg, img6.jpg.

The pixel coordinates that were selected in clockwise orientation as the corners of the picture frames are -

• Orientation 1 : (2694, 4045), (523, 1380), (2084, 552), (4226, 2703)

• Orientation 2 : (733, 2399), (2817, 475), (3788, 1694), (1856, 3370)

• Orientation 3 : (361, 1351), (2865, 285), (4055, 2855), (1437, 2865)

8

2.2 Part - B
The code to check the coondition is as follows -

1 if __name__ == '__main__ ':
2 p1 = np. array ([(2694 , 4045) , (523 , 1380) , (2084 , 552) , (4226 , 2703)])
3 p2 = np. array ([(733 , 2399) , (2817 , 475) , (3788 , 1694) , (1856 , 3370)])
4 p3 = np. array ([(361 , 1351) , (2865 , 285) , (4055 , 2855) , (1437 , 2865)])
5

6 H12 = find_homography (p1 , p2)
7 H23 = find_homography (p2 , p3)
8 H13 = find_homography (p1 , p3)
9

10 H = np.dot(H23 , H12)
11 H /= H[2, 2]
12

13 print (H13)
14 print (H)
15 print (np.sum(np.abs(H - H13)))
16

17 img1 = cv. imread ("./ HW2_images /img4.jpg")
18 img3 = cv. imread ("./ HW2_images /img6.jpg")
19

20 warped_image = np.copy(img3)
21 h1 , w1 = img1. shape [:2]
22 h3 , w3 = img3. shape [:2]
23

24 H13_inverse = np. linalg .inv(H13)
25 for y in range (h3):
26 for x in range (w3):
27 dest_coord = np. array ([x, y, 1])
28 source_coord = np.dot(H13_inverse , dest_coord)
29 source_coord /= source_coord [2]
30

31 source_x , source_y = int(source_coord [0]) , int(source_coord [1])
32 if 0 <= source_x < w1 and 0 <= source_y < h1:
33 warped_image [y, x, :] = img1[source_y , source_x , :]
34 else:
35 warped_image [y, x, :] = np. array ([0 , 0, 0])

The output from the code is -

[[7.13797017e-01 -1.97202602e+00 7.33528858e+03]
[2.81150447e+00 -6.77054592e-01 -3.99717553e+01]
[3.25928327e-04 4.13243076e-04 1.00000000e+00]]

[[7.13797017e-01 -1.97202602e+00 7.33528858e+03]
[2.81150447e+00 -6.77054592e-01 -3.99717553e+01]
[3.25928327e-04 4.13243076e-04 1.00000000e+00]]

2.1186388689427293e-12

As we can see the two homographies are almost equal.

Figure 7: Homography H13 applied on img4.jpg showing the image is similar to img6.jpg.

9

2.3 Part - C
The affine projections are -

Figure 8: Affine homographic projections of rooney.jpg on img4.jpg, img5.jpg, img6.jpg.

Again as noticed from the previous task, the orientations 1, 2 of TV are head on and the opposite edges of the
TV in the image plane are almost parallel. Thus, the affine projection does well. On the other hand, orientations
3 is captured when the camera is at an obtuse angle. An affine homography cannot be used to project onto this
orientation of the camera plane.

10

3 Extra Credit
3.1 Part - A

1. Parameterize the rotation homography:
We can see that the rotation homography is part of the Euclidean sub-group in the hierarchy of the
planar projective transforms. The invariant of the this sub-group is distance, as rotation doesn’t change
the distance. In this case, the rotation is done along the Z-axis, is the image is in the XY -plane. The
homography can be written as a function of the angle of rotation α -

Hr(α) =

cos α − sin α 0
sin α cos α 0

0 0 1


2. Parameterize the horizontal tilt homography:

If the image is in the XY -plane, the horizontal tilt can be visualized as a rotation along the Y -axis. This
visualization helps with the parametrization of the homography with the angle of rotation α and can be
written as -

Hh(α) =

 cos α 0 sin α
0 1 0

− sin α 0 cos α

 =

 1 0 tan α
0 sec α 0

− tan α 0 1

 (if cos α ̸= 0)

3. Parameterize the vertical tilt homography:
If the image is in the XY -plane, the vertical tilt can be visualized as a rotation along the X-axis. Similarly,
the parametrization of the homography with the angle of rotation α can be written as -

Hv(α) =

1 0 0
0 cos α sin α
0 − sin α cos α

 =

sec α 0 0
0 1 tan α
0 − tan α 1

 (if cos α ̸= 0)

Figure 9: We shall apply these homographies on an image that has horizontal and vertical lines.

11

3.2 Part - B

Figure 10: First row shows rotation. Second row shows horizontal tilting. Third shows vertical tilting.

12

1 if __name__ == '__main__ ':
2 h, w = 512 , 512
3

4 H_norm = normalize_coords (h, w)
5 H_denorm = denormalize_coords (h, w)
6

7 alpha_rotate = [15 , 30, 45, 60, 75, 90]
8 alpha_htilt = [15 , 30, 45, 60, 75, 90]
9 alpha_vtilt = [15 , 30, 45, 60, 75, 90]

10

11 # Create an image with horizontal and vertical lines
12 img = 255 * np.ones ((h, w, 3))
13 for y in range (0, h):
14 for x in range (0, w):
15 if x % 32 == 0:
16 img[y, x, :] = [0, 0, 255]
17 if y % 32 == 0:
18 img[y, x, :] = [255 , 0, 0]
19

20 fig = plt. figure (figsize =(8 , 8))
21 ax = plt. subplot2grid ((4 , len(alpha_rotate)), (0, 2))
22 ax. imshow (img)
23 ax. set_title (" Image ")
24 ax.axis('off ')
25 cv. imwrite (f"./ tilt/img.png", cv. cvtColor (img. astype (np. uint8), cv. COLOR_RGB2BGR))
26

27

28 for i in range (len(alpha_rotate)):
29 H_rotate = rotate_homography (np. deg2rad (alpha_rotate [i]))
30 H_rotate = H_denorm @ H_rotate @ H_norm
31 rotate = cv. warpPerspective (img , H_rotate , (w, h))
32 ax = plt. subplot2grid ((4 , len(alpha_rotate)), (1, i))
33 ax. imshow (rotate)
34 ax. set_title (f" alpha = { alpha_rotate [i]}")
35 ax.axis('off ')
36

37 H_htilt = horizontal_tilt_homography (np. deg2rad (alpha_htilt [i]))
38 H_htilt = H_denorm @ H_htilt @ H_norm
39 htilt = cv. warpPerspective (img , H_htilt , (w, h))
40 htilt = htilt . astype (np. uint8)*255
41 ax = plt. subplot2grid ((4 , len(alpha_rotate)), (2, i))
42 ax. imshow (htilt)
43 ax. set_title (f" alpha = { alpha_htilt [i]}")
44 ax.axis('off ')
45 cv. imwrite (f"./ tilt/ htilt_ {i}. png", cv. cvtColor (htilt , cv. COLOR_RGB2BGR))
46

47 H_vtilt = vertical_tilt_homography (np. deg2rad (alpha_vtilt [i]))
48 H_vtilt = H_denorm @ H_vtilt @ H_norm
49 vtilt = cv. warpPerspective (img , H_vtilt , (w, h))
50 vtilt = vtilt . astype (np. uint8)*255
51 ax = plt. subplot2grid ((4 , len(alpha_rotate)), (3, i))
52 ax. imshow (vtilt)
53 ax. set_title (f" alpha = { alpha_vtilt [i]}")
54 ax.axis('off ')
55 cv. imwrite (f"./ tilt/ vtilt_ {i}. png", cv. cvtColor (vtilt , cv. COLOR_RGB2BGR))
56

57 plt. tight_layout ()
58 plt. savefig ("./ HW2_images /rot.png")
59 plt.show ()

Listing 6: Python code to apply rotation, horizontal and vertical tilt homographies.

13

3.3 Part - C
1. Invariant under Horizontal tilt:

From the image it is clear that under horizontal tilting, the vertical lines stay vertical. This can be proven
using a known relation of how lines transform under planar projective transformations -

l′ = H−⊤l

A vertical line l ≡ x − k = 0 in homogeneous coordinates would be represented as l = (1, 0, −k)⊤

For horizontal tilt by an angle α -

Hh =

 cos α 0 sin α
0 1 0

− sin α 0 cos α


=⇒ H−1

h =

cos α 0 − sin α
0 1 0

sin α 0 cos α


=⇒ H−⊤

h =

 cos α 0 sin α
0 1 0

− sin α 0 cos α


Thus, the line in the range plane would be

l′ = H−⊤
h l =

 cos α 0 sin α
0 1 0

− sin α 0 cos α

  1
0

−k

 =

 cos α − k sin α
0

− sin α − k cos α

 =

 1
0

− sin α+k cos α
cos α−k sin α


This shows that the vertical line still remains vertical.

2. Invariant under Vertical tilt:
Again, from the figures we see that the horizontal lines stay horizontal under vertical tilting. The proof
follows the same steps as above -

l′ = H−⊤l

A vertical line l ≡ y − k = 0 in homogeneous coordinates would be represented as l = (0, 1, −k)⊤

For vertical tilt by an angle α -

Hv =

1 0 0
0 cos α sin α
0 − sin α cos α


=⇒ H−1

v =

1 0 0
0 cos α − sin α
0 sin α cos α


=⇒ H−⊤

v =

1 0 0
0 cos α sin α
0 − sin α cos α


Thus, the line in the range plane would be

l′ = H−⊤
v l =

1 0 0
0 cos α sin α
0 − sin α cos α

  0
1

−k

 =

 0
cos α − k sin α

− sin α − k cos α

 =

 0
1

− sin α+k cos α
cos α−k sin α


This shows that the horizontal line still remains horizontal.

14

4 Source code

1 import cv2 as cv
2 import numpy as np
3

4

5 class ClickRecorder :
6 # Object to record clicked points
7 def __init__ (self):
8 self. clicked_points = []
9

10 def mouse_callback (self , event , x, y, flags , param):
11 if event == cv. EVENT_LBUTTONDOWN :
12 self. clicked_points . append ((x, y))
13 print (f" Clicked point : {self. clicked_points [-1]}")
14

15 def get_clicked_points (self):
16 return self. clicked_points
17

18

19 def select_points (img):
20 # Function to select and return selected points on an image
21 click_recorder = ClickRecorder ()
22 cv. namedWindow (" select_points ", cv. WINDOW_NORMAL)
23 cv. resizeWindow (" select_points ", 600 , 600)
24 cv. imshow (" select_points ", img)
25 cv. setMouseCallback (" select_points ", click_recorder . mouse_callback)
26 cv. waitKey (0)
27 print (f"All selected points : { click_recorder . get_clicked_points ()}")
28 cv. destroyAllWindows ()
29

30 return np. array (click_recorder . get_clicked_points ())
31

32

33 def find_homography (p1 , p2):
34 # Find H such that p2 = H p1
35

36 assert len(p1) == len(p2) == 4
37

38 A = []
39 b = []
40 for (x, y), (xp , yp) in zip(p1 , p2):
41 A. append ([x, y, 1, 0, 0, 0, -xp*x, -xp*y])
42 A. append ([0 , 0, 0, x, y, 1, -yp*x, -yp*y])
43 b. append (xp)
44 b. append (yp)
45

46 A = np. array (A)
47 b = np. array (b)
48 H = np. linalg . solve (A, b)
49 H = np. append (H, 1)
50 H = H. reshape (3, 3)
51

52 return H
53

54

55 def apply_homography (image1 , image2):
56 # Function to project entire image1 onto selected points of image2
57 # with general homography
58 selected_points = select_points (image2)
59

60 h1 , w1 = image1 . shape [:2]
61

62 p = [(0 , 0) , (w1 - 1, 0) , (w1 - 1, h1 - 1) , (0, h1 - 1)]
63

64 H = find_homography (selected_points , p)
65 warped_image = np.copy(image2)
66

67 min_x = np.min(selected_points [:, 0])
68 min_y = np.min(selected_points [:, 1])
69 max_x = np.max(selected_points [:, 0])
70 max_y = np.max(selected_points [:, 1])
71

15

72 for y in range (min_y , max_y + 1):
73 for x in range (min_x , max_x + 1):
74 dest_coord = np. array ([x, y, 1])
75 source_coord = np.dot(H, dest_coord)
76 source_coord /= source_coord [2]
77

78 # Use nearest neighbours
79 source_x , source_y = int(source_coord [0]) , int(source_coord [1])
80 if 0 <= source_x < w1 and 0 <= source_y < h1:
81 warped_image [y, x, :] = image1 [source_y , source_x , :]
82

83 return warped_image , selected_points
84

85 def find_affine_four_points (p1 , p2):
86 # Function to find the affine homography using least squares fit
87 assert len(p1) == len(p2) == 4
88

89 A = []
90 b = []
91 for (x, y), (xp , yp) in zip(p1 , p2):
92 A. append ([x, y, 1, 0, 0, 0])
93 A. append ([0 , 0, 0, x, y, 1])
94 b. append (xp)
95 b. append (yp)
96

97 A = np. array (A)
98 b = np.dot(A.T, np. array (b))
99 S = np.dot(A.T, A)

100 H = np. linalg . solve (S, b)
101 H = H. reshape (2, 3)
102 H = np. vstack ((H, [0, 0, 1]))
103

104 return H
105

106

107 def apply_affine (image1 , image2):
108 # Function to project entire image1 onto selected points of image2
109 # with affine homography
110 selected_points = select_points (image2)
111

112 h1 , w1 = image1 . shape [:2]
113

114 p = np. array ([(0 , 0) , (w1 - 1, 0) , (w1 - 1, h1 - 1) , (0, h1 - 1)])
115

116 H = find_affine_four_points (selected_points , p)
117 warped_image = np.copy(image2)
118

119 min_x = np.min(selected_points [:, 0])
120 min_y = np.min(selected_points [:, 1])
121 max_x = np.max(selected_points [:, 0])
122 max_y = np.max(selected_points [:, 1])
123

124 for y in range (min_y , max_y + 1):
125 for x in range (min_x , max_x + 1):
126 dest_coord = np. array ([x, y, 1])
127 source_coord = np.dot(H, dest_coord)
128

129 source_x , source_y = int(source_coord [0]) , int(source_coord [1])
130 if 0 <= source_x < w1 and 0 <= source_y < h1:
131 warped_image [y, x, :] = image1 [source_y , source_x , :]
132

133 return warped_image , selected_points
134

135 # Extra credit
136

137 def normalize_coords (h, w):
138 # Homography to normalize the coordinates
139 H = np. array ([[2/w, 0, -1],
140 [0, 2/h, -1],
141 [0, 0, 1]])
142

143 return H
144

16

145 def denormalize_coords (h, w):
146 # Homography to de - normalize the coordinates
147 H = np. array ([[w/2, 0, w/2] ,
148 [0, h/2, h/2] ,
149 [0, 0, 1]])
150

151 return H
152

153 def rotate_homography (alpha):
154 # Homography to rotate along the z-axis
155 H = np. array ([[np.cos(alpha), -np.sin(alpha), 0],
156 [np.sin(alpha), np.cos(alpha), 0],
157 [0, 0, 1]])
158

159 return H
160

161 def horizontal_tilt_homography (alpha):
162 # Homography to rotate along the y-axis
163 H = np. array ([[np.cos(alpha), 0, np.sin(alpha)],
164 [0, 1, 0],
165 [-np.sin(alpha), 0, np.cos(alpha)]])
166

167 return H
168

169 def vertical_tilt_homography (alpha):
170 # Homography to rotate along the x-axis
171 H = np. array ([[1 , 0, 0],
172 [0, np.cos(alpha), np.sin(alpha)],
173 [0, -np.sin(alpha), np.cos(alpha)]])
174

175

176 return H

Listing 7: Python code which contains all the functions.

1 import cv2 as cv
2 import numpy as np
3 import os
4

5 from homography import apply_homography
6

7 if __name__ == " __main__ ":
8 img_dir = "./ HW2_images /"
9 img_filenames = ["img1.jpg", "img2.jpg", "img3.jpg", " alex_honnold .jpg"]

10 file_path = " points_t1 .txt"
11 j = 0
12 for i, img_filename in enumerate (img_filenames [: -1]):
13

14 path = os.path.join(img_dir , img_filename)
15 img2 = cv. imread (path)
16

17 path = os.path.join(img_dir , img_filenames [-1])
18 img1 = np. array (cv. imread (path))
19

20 w, p = apply_homography (img1 , img2)
21

22 # Mark the selected points
23 text = ['P', 'Q', 'R', 'S']
24 cv. namedWindow (" points ", cv. WINDOW_NORMAL)
25 cv. resizeWindow (" points ", 600 , 600)
26 font = cv. FONT_HERSHEY_SIMPLEX
27 fontScale = 8
28 color = (0, 0, 255)
29 thickness = 50
30 img2 = cv. putText (img2 , text [0] , p[0] , font , fontScale , color , thickness , cv. LINE_AA)
31 img2 = cv. putText (img2 , text [1] , p[1] , font , fontScale , color , thickness , cv. LINE_AA)
32 img2 = cv. putText (img2 , text [2] , p[2] , font , fontScale , color , thickness , cv. LINE_AA)
33 img2 = cv. putText (img2 , text [3] , p[3] , font , fontScale , color , thickness , cv. LINE_AA)
34 cv. imshow (" points ", img2)
35 cv. imwrite (os.path.join(img_dir , f" points_ {i}. jpg"), img2)
36

37

38 cv. namedWindow (" warped ", cv. WINDOW_NORMAL)
39 cv. resizeWindow (" warped ", 600 , 600)

17

40 cv. imshow (" warped ", w)
41 cv. imwrite (os.path.join(img_dir , f" warped_ {i}. jpg"), w)
42

43 # Save the points in a .txt file
44 line_number = 3 * j + i
45 with open(file_path , 'r') as f:
46 lines = f. readlines ()
47 if line_number >= len(lines):
48 lines . append (f"img{i+1}: {p. flatten ()} \n")
49 else:
50 lines [line_number] = f"img{i+1}: {p. flatten ()} \n"
51 with open(file_path , 'w') as f:
52 f. writelines (lines)
53

54 cv. waitKey (0)
55

56 cv. destroyAllWindows ()

Listing 8: Python driver code to run Part - A of Task 1.

1 import cv2 as cv
2 import numpy as np
3

4 from homography import find_homography
5

6 if __name__ == '__main__ ':
7 p1 = np. array ([(422 , 881) , (2548 , 896) , (2405 , 2313) , (701 , 3187)])
8 p2 = np. array ([(535 , 1462) , (1877 , 844) , (1953 , 2841) , (467 , 2698)])
9 p3 = np. array ([(1221 , 572) ,(2971 , 2321) , (1794 , 3195) , (263 , 1808)])

10

11 H12 = find_homography (p1 , p2)
12 H23 = find_homography (p2 , p3)
13 H13 = find_homography (p1 , p3)
14

15 H = np.dot(H23 , H12)
16 H /= H[2, 2]
17

18 print (H13)
19 print (H)
20 print (np.sum(np.abs(H - H13)))
21

22 img1 = cv. imread ("./ HW2_images /img1.jpg")
23 img3 = cv. imread ("./ HW2_images /img3.jpg")
24

25 cv. namedWindow (" warped ", cv. WINDOW_NORMAL)
26 cv. resizeWindow (" warped ", 600 , 600)
27 cv. imshow (" warped ", img1)
28 cv. waitKey (0)
29

30 warped_image = np.copy(img3)
31 h1 , w1 = img1. shape [:2]
32 h3 , w3 = img3. shape [:2]
33

34 H13_inverse = np. linalg .inv(H13)
35 for y in range (h3):
36 for x in range (w3):
37 dest_coord = np. array ([x, y, 1])
38 source_coord = np.dot(H13_inverse , dest_coord)
39 source_coord /= source_coord [2]
40

41 source_x , source_y = int(source_coord [0]) , int(source_coord [1])
42 if 0 <= source_x < w1 and 0 <= source_y < h1:
43 warped_image [y, x, :] = img1[source_y , source_x , :]
44 else:
45 warped_image [y, x, :] = np. array ([0 , 0, 0])
46

47 cv. namedWindow (" warped ", cv. WINDOW_NORMAL)
48 cv. resizeWindow (" warped ", 600 , 600)
49 cv. imshow (" warped ", warped_image)
50 cv. waitKey (0)
51 cv. destroyWindow (" warped ")

Listing 9: Python driver code to run Part - B of Task 1.

18

1 import cv2 as cv
2 import numpy as np
3 import os
4

5 from homography import apply_affine
6

7 if __name__ == '__main__ ':
8 img_dir = "./ HW2_images /"
9 img_filenames = ["img1.jpg", "img2.jpg", "img3.jpg", " alex_honnold .jpg"]

10 file_path = " points_t1 .txt"
11 j = 1
12 for i, img_filename in enumerate (img_filenames [: -1]):
13

14 path = os.path.join(img_dir , img_filename)
15 img2 = cv. imread (path)
16

17 path = os.path.join(img_dir , img_filenames [-1])
18 img1 = np. array (cv. imread (path))
19

20 w, p = apply_affine (img1 , img2)
21 cv. namedWindow (" affine ", cv. WINDOW_NORMAL)
22 cv. resizeWindow (" affine ", 600 , 600)
23 cv. imshow (" affine ", w)
24 cv. imwrite (os.path.join(img_dir , f" affine_ {i}. jpg"), w)
25

26 line_number = 3 * j + i
27 with open(file_path , 'r') as f:
28 lines = f. readlines ()
29 if line_number >= len(lines):
30 lines . append (f"img{i+1}: {p. flatten ()} \n")
31 else:
32 lines [line_number] = f"img{i+1}: {p. flatten ()} \n"
33 with open(file_path , 'w') as f:
34 f. writelines (lines)
35

36 cv. waitKey (0)
37

38 cv. destroyAllWindows ()

Listing 10: Python driver code to run Part - C of Task 1.

1 import cv2 as cv
2 import numpy as np
3 import os
4

5 from homography import apply_homography
6

7 if __name__ == " __main__ ":
8 img_dir = "./ HW2_images /"
9 img_filenames = ["img4.jpg", "img5.jpg", "img6.jpg", " rooney .jpg"]

10 file_path = " points_t2 .txt"
11 j = 0
12 for i, img_filename in enumerate (img_filenames [: -1]):
13

14 path = os.path.join(img_dir , img_filename)
15 img2 = cv. imread (path)
16

17 path = os.path.join(img_dir , img_filenames [-1])
18 img1 = np. array (cv. imread (path))
19

20 w, p = apply_homography (img1 , img2)
21

22 text = ['P', 'Q', 'R', 'S']
23 cv. namedWindow (" points ", cv. WINDOW_NORMAL)
24 cv. resizeWindow (" points ", 600 , 600)
25 font = cv. FONT_HERSHEY_SIMPLEX
26 fontScale = 8
27 color = (0, 0, 255)
28 thickness = 50
29 img2 = cv. putText (img2 , text [0] , p[0] , font , fontScale , color , thickness , cv. LINE_AA)
30 img2 = cv. putText (img2 , text [1] , p[1] , font , fontScale , color , thickness , cv. LINE_AA)
31 img2 = cv. putText (img2 , text [2] , p[2] , font , fontScale , color , thickness , cv. LINE_AA)
32 img2 = cv. putText (img2 , text [3] , p[3] , font , fontScale , color , thickness , cv. LINE_AA)
33 cv. imshow (" points ", img2)

19

34 cv. imwrite (os.path.join(img_dir , f" points_ {i+3}. jpg"), img2)
35 cv. namedWindow (" warped ", cv. WINDOW_NORMAL)
36 cv. resizeWindow (" warped ", 600 , 600)
37 cv. imshow (" warped ", w)
38 cv. imwrite (os.path.join(img_dir , f" warped_ {i+3}. jpg"), w)
39

40 line_number = 3 * j + i
41 with open(file_path , 'r') as f:
42 lines = f. readlines ()
43 if line_number >= len(lines):
44 lines . append (f"img{i+1}: {p. flatten ()} \n")
45 else:
46 lines [line_number] = f"img{i+1}: {p. flatten ()} \n"
47 with open(file_path , 'w') as f:
48 f. writelines (lines)
49

50 cv. waitKey (0)
51

52 cv. destroyAllWindows ()

Listing 11: Python driver code to run Part - A of Task 2.

1 import cv2 as cv
2 import numpy as np
3 import os
4

5 from homography import find_homography , select_points
6 if __name__ == '__main__ ':
7 p1 = np. array ([(2694 , 4045) , (523 , 1380) , (2084 , 552) , (4226 , 2703)])
8 p2 = np. array ([(733 , 2399) , (2817 , 475) , (3788 , 1694) , (1856 , 3370)])
9 p3 = np. array ([(361 , 1351) , (2865 , 285) , (4055 , 2855) , (1437 , 2865)])

10

11 H12 = find_homography (p1 , p2)
12 H23 = find_homography (p2 , p3)
13 H13 = find_homography (p1 , p3)
14

15 H = np.dot(H23 , H12)
16 H /= H[2, 2]
17

18 print (H13)
19 print (H)
20 print (np.sum(np.abs(H - H13)))
21

22 img1 = cv. imread ("./ HW2_images /img4.jpg")
23 img3 = cv. imread ("./ HW2_images /img6.jpg")
24

25 cv. namedWindow (" warped ", cv. WINDOW_NORMAL)
26 cv. resizeWindow (" warped ", 600 , 600)
27 cv. imshow (" warped ", img1)
28 cv. waitKey (0)
29

30 warped_image = np.copy(img3)
31 h1 , w1 = img1. shape [:2]
32 h3 , w3 = img3. shape [:2]
33

34 H13_inverse = np. linalg .inv(H13)
35 for y in range (h3):
36 for x in range (w3):
37 dest_coord = np. array ([x, y, 1])
38 source_coord = np.dot(H13_inverse , dest_coord)
39 source_coord /= source_coord [2]
40

41 source_x , source_y = int(source_coord [0]) , int(source_coord [1])
42 if 0 <= source_x < w1 and 0 <= source_y < h1:
43 warped_image [y, x, :] = img1[source_y , source_x , :]
44 else:
45 warped_image [y, x, :] = np. array ([0 , 0, 0])
46

47 cv. namedWindow (" warped ", cv. WINDOW_NORMAL)
48 cv. resizeWindow (" warped ", 600 , 600)
49 cv. imshow (" warped ", warped_image)
50 cv. waitKey (0)

20

51 cv. destroyWindow (" warped ")

Listing 12: Python driver code to run Part - B of Task 2.

1 import cv2 as cv
2 import numpy as np
3 import os
4

5 from homography import apply_affine
6

7 if __name__ == '__main__ ':
8 img_dir = "./ HW2_images /"
9 img_filenames = ["img4.jpg", "img5.jpg", "img6.jpg", " rooney .jpg"]

10 file_path = " points_t2 .txt"
11 j = 1
12 for i, img_filename in enumerate (img_filenames [: -1]):
13

14 path = os.path.join(img_dir , img_filename)
15 img2 = cv. imread (path)
16

17 path = os.path.join(img_dir , img_filenames [-1])
18 img1 = np. array (cv. imread (path))
19

20 w, p = apply_affine (img1 , img2)
21 cv. namedWindow (" affine ", cv. WINDOW_NORMAL)
22 cv. resizeWindow (" affine ", 600 , 600)
23 cv. imshow (" affine ", w)
24 cv. imwrite (os.path.join(img_dir , f" affine_ {i+3}. jpg"), w)
25

26 line_number = 3 * j + i
27 with open(file_path , 'r') as f:
28 lines = f. readlines ()
29 if line_number >= len(lines):
30 lines . append (f"img{i+1}: {p. flatten ()} \n")
31 else:
32 lines [line_number] = f"img{i+1}: {p. flatten ()} \n"
33 with open(file_path , 'w') as f:
34 f. writelines (lines)
35

36 cv. waitKey (0)
37

38 cv. destroyAllWindows ()

Listing 13: Python driver code to run Part - C of Task 2.

1 import cv2 as cv
2 import numpy as np
3 import matplotlib . pyplot as plt
4

5 from homography import normalize_coords , denormalize_coords , rotate_homography , \
6 horizontal_tilt_homography , vertical_tilt_homography
7

8 if __name__ == '__main__ ':
9 h, w = 512 , 512

10

11 H_norm = normalize_coords (h, w)
12 H_denorm = denormalize_coords (h, w)
13

14 alpha_rotate = [15 , 30, 45, 60, 75, 90]
15 alpha_htilt = [15 , 30, 45, 60, 75, 90]
16 alpha_vtilt = [15 , 30, 45, 60, 75, 90]
17

18 # Create an image with horizontal and vertical lines
19 img = 255 * np.ones ((h, w, 3))
20 for y in range (0, h):
21 for x in range (0, w):
22 if x % 32 == 0:
23 img[y, x, :] = [0, 0, 255]
24 if y % 32 == 0:
25 img[y, x, :] = [255 , 0, 0]
26

27 fig = plt. figure (figsize =(8 , 8))
28 ax = plt. subplot2grid ((4 , len(alpha_rotate)), (0, 2))

21

29 ax. imshow (img)
30 ax. set_title (" Image ")
31 ax.axis('off ')
32 cv. imwrite (f"./ tilt/img.png", cv. cvtColor (img. astype (np. uint8), cv. COLOR_RGB2BGR))
33

34

35 for i in range (len(alpha_rotate)):
36 H_rotate = rotate_homography (np. deg2rad (alpha_rotate [i]))
37 H_rotate = H_denorm @ H_rotate @ H_norm
38 rotate = cv. warpPerspective (img , H_rotate , (w, h))
39 ax = plt. subplot2grid ((4 , len(alpha_rotate)), (1, i))
40 ax. imshow (rotate)
41 ax. set_title (f" alpha = { alpha_rotate [i]}")
42 ax.axis('off ')
43

44 H_htilt = horizontal_tilt_homography (np. deg2rad (alpha_htilt [i]))
45 H_htilt = H_denorm @ H_htilt @ H_norm
46 htilt = cv. warpPerspective (img , H_htilt , (w, h))
47 htilt = htilt . astype (np. uint8)*255
48 ax = plt. subplot2grid ((4 , len(alpha_rotate)), (2, i))
49 ax. imshow (htilt)
50 ax. set_title (f" alpha = { alpha_htilt [i]}")
51 ax.axis('off ')
52 cv. imwrite (f"./ tilt/ htilt_ {i}. png", cv. cvtColor (htilt , cv. COLOR_RGB2BGR))
53

54 H_vtilt = vertical_tilt_homography (np. deg2rad (alpha_vtilt [i]))
55 H_vtilt = H_denorm @ H_vtilt @ H_norm
56 vtilt = cv. warpPerspective (img , H_vtilt , (w, h))
57 vtilt = vtilt . astype (np. uint8)*255
58 ax = plt. subplot2grid ((4 , len(alpha_rotate)), (3, i))
59 ax. imshow (vtilt)
60 ax. set_title (f" alpha = { alpha_vtilt [i]}")
61 ax.axis('off ')
62 cv. imwrite (f"./ tilt/ vtilt_ {i}. png", cv. cvtColor (vtilt , cv. COLOR_RGB2BGR))
63

64 plt. tight_layout ()
65 plt. savefig ("./ HW2_images /rot.png")
66 plt.show ()

Listing 14: Python driver code to run extra credit assignment.

22

	Task 1
	Part - A
	Part - B
	Part - C

	Task 2
	Part - A
	Part - B
	Part - C

	Extra Credit
	Part - A
	Part - B
	Part - C

	Source code

