
ECE661 Fall2024 HW10
Runlin Duan

duan92@purdue.edu

1 Theory Question

Understanding Overfitting

Overfitting occurs when a model learns the training data too well, capturing
noise and fluctuations that do not generalize to new data. This results in high
performance on the training set but poor performance on unseen data. For
example, we achieved a training accuracy of 95 %, but the model only got
a testing accuracy of 90 % . A potential reason for this is the overfitting of
the model. Overfitting is a fundamental issue discussed in various contexts
within machine learning because it significantly impacts the model’s ability to
function effectively in real-world settings. Techniques such as regularization,
cross-validation, and pruning are employed to prevent overfitting, aiming to
simplify the model and ensure it performs well on both seen and unseen data.

The Reparameterization Trick in Variational Autoencoders

In Variational Autoencoders (VAEs), the reparameterization trick is crucial for
enabling gradient descent through stochastic nodes. The encoder in a VAE out-
puts parameters to a probability distribution, typically Gaussian, characterized
by the mean (µ) and the logarithm of the variance (log σ2):

• Deterministic Component: The encoder outputs the mean (µ) and
log-variance (log σ2) of the latent variables, describing the center and dis-
persion of the latent space points.

• Stochastic Component: Instead of sampling z directly from N (µ, σ2),
the trick introduces an auxiliary noise variable ϵ from a standard normal
distribution N (0, 1).

• Reparameterization: The latent variable z is computed as:

z = µ+ σ ⊙ ϵ

where σ is the standard deviation, computed from the exponential of half
the log-variance to ensure positivity. This formulation maintains random-
ness in z while allowing gradients to be backpropagated through µ and
σ.

1

This method separates the randomness from the learnable parameters, allow-
ing efficient gradient-based optimization of the variational lower bound, which
is critical for the training of VAEs. The reparameterization trick thus enables
VAEs to model complex distributions and generate new data points effectively.

2 Task 1: Face Recognition using PCA and LDA

2.1 PCA

1. Data Loading: Images are loaded and converted into a 1D vector using
the load data function.

vectorized imagei = reshape(imagei,m× n)

2. Normalization: Each vectorized image is normalized to have unit mag-
nitude.

x̃i =
xi

∥xi∥
3. Centering Data: Compute the mean vector x and subtract it from each

image vector to center the data.

X = [x̃1, x̃2, . . . , x̃N]

Xcentered = X − x

wherex = 1
N

∑N
i=1 x̃i is the mean vector from all normalized image vectors.

4. Covariance Matrix: Calculate the covariance matrix C.

C = XcenteredX
T
centered

5. SVD Computation: To reduce complexity using the computation trick
mentioned in the reference, we apply SVD on the smaller matrixXT

centeredXcentered,
yielding eigenvalues and eigenvectors.

XT
centeredXcenteredv = λv

6. Eigenvectors of C: Compute eigenvectors of C as:

u = Xcenteredv

7. Normalization: Normalize the eigenvectors to ensure unit length.

û =
u

∥u∥

8. Dimension Reduction: Select the top P eigenvectors corresponding to
the largest eigenvalues.

W = [û1, û2, . . . , ûP]

9. Projection: Project the data onto the subspace defined by WP .

yi = WT (xi − x)

2

2.2 LDA

1. Class Means: Compute the overall mean m and class-specific means mi

for each class.

mi =
1

|Ci|
∑
k∈Ci

xk

2. Between-Class Scatter:

SB =

C∑
i=1

ni(mi −m)(mi −m)T

where ni is the number of samples in class i.

3. Within-Class Scatter:

SW =

C∑
i=1

∑
k∈Ci

(xk −mi)(xk −mi)
T

4. Fisher’s Criterion: Solve the eigenvalue problem for maximizing the
discriminant:

J(w) =
wTSBw

wTSWw
, SBw = λSWw

5. Applying Yu and Yang Algorithm:

(a) Eigendecomposition of SB: Perform eigendecomposition on SB

to find the matrix V of eigenvectors, with V TSBV = Λ where Λ is
diagonal.

(b) Discard Near-Zero Eigenvalues: Discard eigenvectors correspond-
ing to near-zero eigenvalues in Λ, retaining the most significant di-
rections in a reduced matrix Y .

(c) Matrix Z Construction: Form Z = Y D
−1/2
B , normalizing SB in

the reduced dimensionality space: ZTSBZ = IM×M .

(d) Diagonalize ZTSWZ: Perform eigendecomposition on ZTSWZ to
obtain U such that UTZTSWZU = DW .

(e) Discard Largest Eigenvalues of DW : Eliminate the eigenvectors
associated with the largest eigenvalues ofDW , focusing on minimizing
within-class scatter.

(f) Form Final LDA Eigenvectors: Construct the LDA transfor-
mation matrix WT = ÛTZT , maximizing the Fisher criterion with
eigenvectors retained from U .

6. Dimension Reduction: Same as PCA, we select the top P eigenvectors
as our main components.

3

2.3 Nearest Neighbor Classification

1. Compute Distances: For each test sample xj , compute the Euclidean
distance to all training samples.

d(xj , xi) = ∥xj − xi∥

2. Assign Label: Assign the label of the nearest training sample:

ŷj = yargmini d(xj ,xi)

2.4 Visualization with UMAP

Embedding PCA and LDA Spaces

1. UMAP Reduction: Apply UMAP to reduce the PCA and LDA sub-
spaces to 2 dimensions.

2. Scatter Plots: Create scatter plots for the training and testing data in
both PCA and LDA spaces.

UMAP(X) = {x1, x2, . . . , xN} ⊆ R2

PCA and LDA Visualization

• Training Space: Colors represent ground-truth labels.

• Testing Space: Colors represent predicted labels.

2.5 Results

2.5.1 Accuracy Plot

Here, we provide the result of the plot showing the classification accuracy as a
function of the subspace dimensionality p for both PCA and LDA. The classi-
fication accuracy is defined as:

accuracy =
of test images correctly classified

total # of test images

We provide the accuracy of the PCA and LDA in the Fig 1

4

Figure 1: The accuracy of the PCA and LDA with different p-dimensions

2.5.2 UMAP Plot

We provide the UMAP plot with different p values, including p = [3, 8, 16];
we pick up these values for comparison with the p of autoencoder in the later
section.

Figure 2: UMAP of PCA with the p=3

5

Figure 3: UMAP of LDA with the p=3

Figure 4: UMAP of PCA with the p=8

6

Figure 5: UMAP of LDA with the p=8

Figure 6: UMAP of PCA with the p=16

7

Figure 7: UMAP of LDA with the p=16

3 Task 2: Face Recognition using an Autoen-
coder

Autoencoders are neural networks used for unsupervised learning of compressed
encodings from given data. They are typically used for dimensionality reduction.
In this task, we use the pre-trained autoencoder to get the feature vectors for
given images.

3.1 Implementation Details

Our implementation of an autoencoder is built using Pytorch and has been
designed to handle different complexities of input data.

1. Framework: The model is implemented in Pytorch, utilizing its compre-
hensive support for building and training neural networks.

2. Model Training: The autoencoder has been trained on P = {3, 8, 16}.

3. Low-dimensional Projection: We will use the provided code to reduce
the dimension of a given image. Each image is processed to predict a low-
dimensional projection of length P , serving as a reduced representation of
the original data.

4. Nearest neighbor Classifier: After encoding, the nearest neighbor clas-
sifier is employed to classify images based on the reduced representations
provided by the autoencoder.

5. Accuracy Measurement: The classifier’s accuracy is assessed on a test
dataset to evaluate the effectiveness of the learned representations.

8

3.2 Results

3.2.1 Accuracy Plot

Here, we provide the result of the plot showing the classification accuracy as
a function of the subspace dimensionality p for PCA, LDA, and autoencode in
the same plot, in Fig 8.

Figure 8: Classification accuracy as a function of the subspace dimensionality p
for PCA, LDA, and autoencode

3.2.2 UMAP Plot

We provide the UMAP plot of the autoencoder with different p values, where
p = [3, 8, 16].

9

Figure 9: UMAP of Autoencoder with the p=3

Figure 10: UMAP of Autoencoder with the p=8

10

Figure 11: UMAP of Autoencoder with the p=16

3.3 Discissions for Taks1 and Taks2

3.3.1 Classification Accuracy

The results reveal the following key observations about the performance of PCA,
LDA and Autoencoder on the face-detection task:

• At low-dimension, PCA and LDA exhibit low performance, with accura-
cies below 20%. At p = 2, PCA outperforms LDA, achieving an accuracy
of 62.7% compared to LDA’s 54.74%.

• All models reach peak accuracies of over 90 % around p = 5 and maintain
stable performance until a slight decline begins at p = 17 for PCA and
LDA.

• LDA achieves its highest accuracy of 100% at p = 15, Autoencoder
achieves 100% at p = 16,while PCA reaches its maximum accuracy of
99.37% at p = 13.

• LDA converges faster than PCA and Autoencoder

• It seems that the Autoencoder demonstrates slightly better overall per-
formance, particularly at higher dimensions.

These observations suggest that LDA may be better suited for this task,
especially when high accuracy is required in lower-dimensional spaces.

3.3.2 UMAP Plot

The UMAP plots reveal important insights about the effects of different p-
dimensions and feature extraction methods on the classification task. The key
observations are summarized below:

11

• Effect of Increasing p-Dimension:

– As the p-dimension increases, the categories in the UMAP plots be-
come more discrete, and the distances between classes grow larger.

– Higher p-dimensions result in feature vectors that are more separated,
making it easier to classify samples.

– At p = 3, samples from each class are close to each other, with
noticeable overlap between classes. However, at p = 16, the overlap
is significantly reduced, demonstrating improved class separability.

• Comparison of Feature Extraction Methods:

– UMAP visualizations for PCA, LDA, and Autoencoders reveal dis-
tinct patterns, indicating that each method extracts unique feature
representations.

– Despite their differences, all three methods effectively capture the
key information necessary for class separation.

– The observed patterns in the UMAP plots confirm that each method
preserves essential class-related information in its own way.

• Conclusion:

– The UMAP plots validate that PCA, LDA, and Autoencoders are
all reasonable and effective methods for feature extraction in this
classification task.

– Each method provides meaningful feature representations that sup-
port the accurate classification of the data.

4 Task 3: Object Detection using Cascaded Ad-
aBoost Classifiers

Training Phase

Feature Extraction

• Utilize Haar-like features for image analysis, suitable for capturing edge,
line, and textural information.

The Haar filters are represented as follows:

Horizontal:
[
−1 −1 1 1

]

Vertical:


−1
−1
1
1



12

• Integral Image Calculation: Compute integral images to enable rapid
feature calculation, facilitating the summation of pixel values within rect-
angular areas efficiently.

• Feature Generation: Apply Haar filters at every possible position and
scale within the training images. Calculate each feature as:

value(ABCD) = I(D)− I(B)− I(C) + I(A)

where I(x) represents the integral image value at point x, and A,B,C,D
are the corners of the Haar filter.

Construct Weak Classifier

Our implementation of the AdaBoost starts by constructing weak classifiers.

1. Weight Normalization: The weights are normalized to ensure their sum
equals one, maintaining weight distribution integrity across the dataset.

2. Initialization: Variables are initialized to track the minimum error and
the best classifier parameters (feature and threshold).

3. Feature Iteration: For each feature:

(a) Sorting: Data is sorted by feature values to facilitate cumulative
weight calculations.

(b) Error Calculation: We calculate the total weights of positive (Tp)
and negative (Tn) labels. Errors are computed as we update the
cumulative weights Sp and Sn:

Error1 = Sn + (Tp − Sp) and Error2 = Sp + (Tn − Sn)

where Error1 assumes samples below the threshold are negative, and
Error2 assumes they are positive.

(c) Threshold Determination: If the feature value changes, we com-
pute the threshold as the midpoint between consecutive differing fea-
ture values and update the error calculations.

4. Classifier Selection: The classifier that achieves the lowest error is se-
lected, specifying the feature, threshold, and classification rule (above or
below the threshold).

Cascade Construction

The cascade function begins by distributing initial weights equally across all
samples. The cascade aims to maximize the True Positive Rate (TPR) while
minimizing the False Positive Rate (FPR) to achieve specified thresholds.

13

1. Initialization: Start with equal weights for all training samples, combin-
ing positive and negative features and labels into a single dataset.

2. Classifier Training: For each classifier in the cascade, up to a predefined
maximum:

• Train the weak classifier on the current dataset using weighted in-
stances.

• Calculate α for the classifier, where ϵ refers to the error of the clas-
sifer: and α is defined as:

α = ln

(
1
ϵ

1−ϵ

)
• Update the weights for the next iteration, increasing the weights of
misclassified samples.

3. Cascade Evaluation: Aggregate the predictions from all classifiers, weighted
by their respective α values. Adjust the classification threshold to the
minimum score among all correctly classified positive samples:

Threshold = min(Aggregated Predictions of Positive Samples)

4. Performance Metrics: Evaluate the TPR and FPR after adding each
classifier:

TPR =
Number of Correctly Classified Positives

Total Positives

FPR =
Number of Incorrectly Classified Negatives

Total Negatives

If the cascade meets the required TPR and FPR thresholds, terminate the
cascade early.

5. Refinement: Focus subsequent training on challenging-to-classify nega-
tive examples by removing those that are correctly classified above the
threshold.

Staging Cascade Classifiers

The cascade configuration is designed to optimize performance through precise
parameters:

• Maximum Stages: Set to 10 to balance refinement and overfitting.

• Target True Positive Rate (TPR): Set at 0.99 to ensure accurate
positive classifications.

• Target False Positive Rate (FPR): Maintained at 0.50 to limit incor-
rect classifications.

• Maximum Weak Classifiers per Stage: Limited to 50 to manage
complexity and processing demands efficiently.

14

4.1 Results

We provide the false positive rate for the training process in the given Fig
12. The false positive and false negative rates over stages during the testing is
provided in Fig. 13

Figure 12: Train FP rates per Stage of AdaBoost Cascade

Figure 13: Test FP rates per Stage of AdaBoost Cascade

4.2 Discissions

The AdaBoost cascade demonstrates a clear trend of decreasing false positive
rates (FPR) during training, with the training FPR sharply reducing from 48%
at the first stage to 0% by the tenth stage. This decline signifies robust learning

15

and optimization capabilities of the model. Conversely, the false negative rates
(FNR) increase from 17.4% to 47.7% over the same stages, indicating a trade-off
between decreasing FPR and increasing FNR (Figure ??).

As the training stage increases, the FPR rate drops down to zero at stage 8;
during the testing, we achieve earlier zero FPR at stage 5. During the testing,
note that we continue removing the correctly classified sample while the stage
increases.

The result achieves the goal of minimizing the FPR while as a trade of
increased FNR.

5 Code

1

2 #Task 1 2

3

4

5 import os

6 import cv2

7 import numpy as np

8 # from scipy.linalg import eigh

9 import matplotlib.pyplot as plt

10 import umap

11 from matplotlib import cm

12 import matplotlib.colors as mcolors

13 import autoencoder

14

15 def load_data(folder_type):

16

17 if folder_type not in ["train", "test"]:

18 raise ValueError("folder_type must be 'train' or

'test'")↪→

19

20 folder_path = f"facerecognition/{folder_type}"

21 if not os.path.exists(folder_path):

22 raise FileNotFoundError(f"The folder '{folder_path}'

does not exist.")↪→

23 images = []

24 labels = []

25 for file_name in os.listdir(folder_path):

26 if file_name.endswith(".png"):

27 # Extract label from file name

28 label = int(file_name.split("_")[0])

29 # print('label',label)

30 labels.append(label)

31 # Load the image

16

32 image_path = os.path.join(folder_path, file_name)

33 image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

34 image = image.reshape(1, -1)[0]

35

36 if image is None:

37 raise ValueError(f"Image at '{image_path}' could

not be loaded.")↪→

38 images.append(image)

39 images_array = np.array(images, dtype=np.uint8)

40 labels_array = np.array(labels, dtype=np.int32)

41

42 return images_array, labels_array

43

44 def normalization(x):

45 # Compute the L2 norm of each row. Keepdims=True makes the

output shape (n_rows, 1)↪→

46 norms = np.linalg.norm(x, axis=1, keepdims=True)

47 norms[norms == 0] = 1e-10

48 normalized_x = x / norms

49

50 return normalized_x

51

52 def PCA(X, num_components):

53 # Transpose X so that columns are samples (features in rows)

54 X = X.T

55 # 1. Center the data

56 mean_vector = np.mean(X, axis=1, keepdims=True) # mean

computed across rows (for each feature)↪→

57 X_centered = X - mean_vector

58 # 2. Compute X^T * X (now correctly as X_centered is

features in rows)↪→

59 XTX = np.dot(X_centered.T, X_centered)

60 # 3. Apply SVD on the smaller matrix X^T * X

61 U, S, VT = np.linalg.svd(XTX)

62 # 4. Compute eigenvectors of the original covariance matrix

XX^T↪→

63 # Since U contains the eigenvectors of X^T * X, we need to

multiply by X_centered to get the eigenvectors of XX^T↪→

64 W_hat = np.dot(X_centered, VT)

65 # print(W_hat)

66 # W_hat = np.dot(X_centered, U)

67 # 5. Normalize the eigenvectors to have unit length

68 W_hat = normalization(W_hat)

69 # W_hat / np.linalg.norm(W_hat, axis=0)

70 # 6. Select the top 'num_components' eigenvectors

71 principal_components = W_hat[:, :num_components]

17

72

73 return principal_components, mean_vector

74

75 def LDA(data, labels, num_components):

76 # Ensure labels is a 1D array

77 labels = labels.flatten()

78 # print(labels)

79 # Calculate the mean of each class

80 class_labels = np.unique(labels)

81

82 # print(class_labels)

83 mean_cl = np.array([np.mean(data[labels == cl], axis=0) for

cl in class_labels])↪→

84 mean_cl = mean_cl.T

85

86 # print('mean_cl',mean_cl)

87 # print('mean_cl,shape',mean_cl.shape)

88

89

90 X = data.T

91 # 1. Center the data

92 overall_mean_vec = np.mean(mean_cl, axis=1, keepdims=True)

93 # overall_mean_vec = np.mean(X, axis=1, keepdims=True)

94

95 Sw_dumy = X-overall_mean_vec

96 mean_i = mean_cl-overall_mean_vec

97 # print('mean_i',mean_i)

98 # Apply computation tricks

99 S_B = np.dot(mean_i.T,mean_i)

100 # Singular Value Decomposition of the between-class scatter

matrix S_B↪→

101 U_B, Sigma_B, V_B_T = np.linalg.svd(S_B)

102 # print(Sigma_B.shape)

103

104 d = (1/np.sqrt(Sigma_B))[:-2]

105 D_b = np.diag(d)

106

107 Y_dumy = np.dot(mean_i, V_B_T)

108 # Normalize the eigenvectors to have unit length

109 Y = normalization(Y_dumy)[:, :-2]

110 Z = np.dot(Y,D_b)

111 zt_sw = np.dot(np.transpose(Z), Sw_dumy)

112 # apply trick

113 S_W = np.dot(zt_sw, zt_sw.T)

114 # print('S_W',S_W.shape)

115 U_B, Sigma_B, V_B_T = np.linalg.svd(S_W)

18

116

117 # np.linalg.svd(sw)

118

119 # multiply by X to get eigenvecs of XX'

120 W = np.dot(Z, V_B_T)

121 W = normalization(W)

122 # retain first p eigen vecs

123 W_p = W[:, :num_components]

124

125 return W_p

126

127 def NN_classifier(train_space, test_space, train_labels,

test_labels):↪→

128

129 # Number of test samples

130 num_test_samples = test_space.shape[1]

131

132 # Placeholder for predicted labels

133 predicted_labels = np.zeros(num_test_samples,

dtype=train_labels.dtype)↪→

134

135 # Iterate over each test sample

136 for i in range(num_test_samples):

137 # Compute L2 distance from the i-th test sample to all

training samples↪→

138 distances = np.linalg.norm(train_space - test_space[:,

i].reshape(-1, 1), axis=0)↪→

139

140 # Find the index of the closest training sample

141 nearest_index = np.argmin(distances)

142

143 # Assign the label of the nearest training sample

144 predicted_labels[i] = train_labels[nearest_index]

145

146 # Calculate accuracy

147 correct_predictions = np.sum(predicted_labels ==

test_labels)↪→

148 accuracy = (correct_predictions / num_test_samples) * 100

149

150 return accuracy,predicted_labels

151

152 def PCA_LDA_Auto_plot():

153 train_data, train_labels = load_data("train")

154 test_data, test_labels = load_data("test")

155

156 print('train_labels',train_labels.shape)

19

157

158 train_data_n = normalization(train_data)

159 test_data_n = normalization(test_data)

160

161 # num_components = 5

162

163 accuracy_PCA = []

164 accuracy_LDA = []

165

166 for i in range(1,21):

167 num_components = i

168

169 # print('run pca')

170 PCA_pc, mean_vector = PCA(train_data_n, num_components)

171 LDA_W_p = LDA(train_data_n,train_labels,num_components)

172

173

174 train_data_center = train_data.T - mean_vector

175 test_data_center = test_data.T -mean_vector

176

177 PCA_train_space = np.dot(PCA_pc.T, train_data_center)

178 LDA_train_space = np.dot(LDA_W_p.T, train_data_center)

179

180 # print('PCA_train_space.shape',PCA_train_space.shape)

181

182 PCA_test_space = np.dot(PCA_pc.T, test_data_center)

183 LDA_test_space = np.dot(LDA_W_p.T, test_data_center)

184

185 # print('PCA_test_space.shape',PCA_test_space.shape)

186

187 accuracy_P,predicted_labels_p =

NN_classifier(PCA_train_space, PCA_test_space,

train_labels, test_labels)

↪→

↪→

188 accuracy_L,predicted_labels_p =

NN_classifier(LDA_train_space, LDA_test_space,

train_labels, test_labels)

↪→

↪→

189

190 accuracy_PCA.append(accuracy_P)

191 accuracy_LDA.append(accuracy_L)

192

193

194 autoencoder_acc = []

195 for p in [3, 8, 16]:

196 train_data,train_label,test_data,test_label =

autoencoder.autoencoder_features(p)↪→

197 # print(train_data.shape)

20

198 accuracy_a,predicted_labels_a =

NN_classifier(train_data.T, test_data.T,

train_label, test_label)

↪→

↪→

199 autoencoder_acc.append(accuracy_a)

200

201 # print(autoencoder_acc)

202

203 # import matplotlib.pyplot as plt

204

205 # Assuming accuracy_PCA and accuracy_LDA are populated as in

your code↪→

206 num_components = list(range(1, 21)) # x-axis: 1 to 20

207

208 # Plot the accuracies

209 plt.figure(figsize=(10, 6))

210 plt.plot(num_components, accuracy_PCA, marker='o',

label='PCA Accuracy')↪→

211 plt.plot(num_components, accuracy_LDA, marker='s',

label='LDA Accuracy')↪→

212 # plt.plot([3, 8, 16], autoencoder_acc, marker='*',

label='autoencoder Accuracy')↪→

213

214

215 for i, (x, y) in enumerate(zip(num_components,

accuracy_PCA)):↪→

216 if (i-1) % 2 == 0: # Add text for every 5th point

217 plt.text(x, y, f"{y:.2f}", fontsize=10, ha='right',

va='bottom')↪→

218 for i, (x, y) in enumerate(zip(num_components,

accuracy_LDA)):↪→

219 if (i-1) % 2 == 0: # Add text for every 5th point

220 plt.text(x, y, f"{y:.2f}", fontsize=10, ha='right',

va='bottom')↪→

221

222

223 for x, y in zip([3, 8, 16], autoencoder_acc):

224 plt.text(x, y, f"{y:.2f}", fontsize=10, ha='right',

va='bottom')↪→

225

226 # Add labels, title, and legend

227 plt.xticks(ticks=range(1, 21, 1)) # Set x-axis ticks from 1

to 20↪→

228 plt.xlabel('p-dimension', fontsize=12)

229 plt.ylabel('Accuracy', fontsize=12)

230 plt.title('Accuracy vs p-dimensions', fontsize=14)

231 plt.legend(fontsize=12)

21

232 plt.grid(True)

233

234 # Show the plot

235 plt.tight_layout()

236 plt.show()

237

238 def auto_encoder_plot():

239

240 autoencoder_acc = []

241 for p in [3, 8, 16]:

242 train_data,train_label,test_data,test_label =

autoencoder.autoencoder_features(p)↪→

243 # print(train_data.shape)

244 accuracy_a,predicted_labels_a =

NN_classifier(train_data.T, test_data.T,

train_label, test_label)

↪→

↪→

245 autoencoder_acc.append(accuracy_a)

246

247 print(autoencoder_acc)

248

249 # import matplotlib.pyplot as plt

250

251 # Assuming accuracy_PCA and accuracy_LDA are populated as in

your code↪→

252 num_components = list(range(1, 21)) # x-axis: 1 to 20

253

254

255 # Plot the accuracies

256 plt.figure(figsize=(10, 6))

257 # plt.plot(num_components, accuracy_PCA, marker='o',

label='PCA Accuracy')↪→

258 # plt.plot(num_components, accuracy_LDA, marker='s',

label='LDA Accuracy')↪→

259 plt.plot([3, 8, 16], autoencoder_acc, marker='*', label='LDA

Accuracy')↪→

260

261 # Add labels, title, and legend

262 plt.xticks(ticks=range(1, 21, 1)) # Set x-axis ticks from 1

to 20↪→

263 plt.xlabel('Number of Components', fontsize=12)

264 plt.ylabel('Accuracy', fontsize=12)

265 plt.title('Accuracy vs Number of Components', fontsize=14)

266 plt.legend(fontsize=12)

267 plt.grid(True)

268

269 # Show the plot

22

270 plt.tight_layout()

271 plt.show()

272

273 def UMAP_PCA_LDA():

274 train_data, train_labels = load_data("train")

275 test_data, test_labels = load_data("test")

276

277 train_data_n = normalization(train_data)

278 test_data_n = normalization(test_data)

279

280 accuracy_PCA = []

281 accuracy_LDA = []

282

283 # for i in range(1, 21):

284 num_components = 16

285

286 # Run PCA and LDA to get the spaces

287 PCA_pc, mean_vector = PCA(train_data_n, num_components)

288 LDA_W_p = LDA(train_data_n, train_labels, num_components)

289

290 train_data_center = train_data.T - mean_vector

291 test_data_center = test_data.T - mean_vector

292

293 PCA_train_space = np.dot(PCA_pc.T, train_data_center)

294 LDA_train_space = np.dot(LDA_W_p.T, train_data_center)

295

296 PCA_test_space = np.dot(PCA_pc.T, test_data_center)

297 LDA_test_space = np.dot(LDA_W_p.T, test_data_center)

298

299 # Get prediction results using NN classifier

300 accuracy_P, predicted_labels_PCA =

NN_classifier(PCA_train_space, PCA_test_space,

train_labels, test_labels)

↪→

↪→

301 accuracy_L, predicted_labels_LDA =

NN_classifier(LDA_train_space, LDA_test_space,

train_labels, test_labels)

↪→

↪→

302

303 accuracy_PCA.append(accuracy_P)

304 accuracy_LDA.append(accuracy_L)

305

306 # # p = [3,8,16]

307 # p = 3

308 # train_data,train_label,test_data,test_label =

autoencoder.autoencoder_features(p)↪→

23

309 # accuracy_a,predicted_labels_a =

NN_classifier(train_data.T, test_data.T, train_label,

test_label)

↪→

↪→

310

311 # Apply UMAP to reduce PCA and LDA spaces to 2D

312 # if num_components == 5: # Example: Apply UMAP only for

p=5↪→

313 print('run umap')

314 umap_model = umap.UMAP(n_components=2, random_state=42)

315 print('PCA_train_space',PCA_train_space.shape)

316 # UMAP on PCA spaces

317 PCA_train_umap = umap_model.fit_transform(PCA_train_space.T)

318 PCA_test_umap = umap_model.transform(PCA_test_space.T)

319

320 print('PCA_train_umap',PCA_train_umap.shape)

321 # UMAP on LDA spaces

322 LDA_train_umap = umap_model.fit_transform(LDA_train_space.T)

323 LDA_test_umap = umap_model.transform(LDA_test_space.T)

324

325 # Define a colormap for labels 1 to 30

326 num_labels = 30

327 cmap = cm.get_cmap('tab20b', num_labels) # Ensure the

colormap has 30 colors↪→

328 norm = mcolors.Normalize(vmin=1, vmax=num_labels) #

Normalize for the range 1-30↪→

329

330 # Plot PCA UMAP embeddings

331 plt.figure(figsize=(12, 6))

332 plt.subplot(1, 2, 1)

333 sc = plt.scatter(PCA_train_umap[:, 0], PCA_train_umap[:, 1],

c=train_labels, cmap=cmap, norm=norm, alpha=0.7)↪→

334 plt.title(f"UMAP Embedding of PCA Training Space p =

{num_components}")↪→

335 plt.xlabel("Dimension 1")

336 plt.ylabel("Dimension 2")

337 cb = plt.colorbar(sc, label="Ground Truth Labels")

338 # cb.set_ticks(range(0, num_labels,5)) # Set ticks from 1

to 30↪→

339 # cb.set_ticklabels(range(1, num_labels + 1)) # Label ticks

from 1 to 30↪→

340 # plt.show()

341

342 # plt.figure(figsize=(12, 6))

343 plt.subplot(1, 2, 2)

344 sc = plt.scatter(PCA_test_umap[:, 0], PCA_test_umap[:, 1],

c=predicted_labels_PCA, cmap=cmap, norm=norm, alpha=0.7)↪→

24

345 plt.title(f"UMAP Embedding of PCA Test Space p =

{num_components}")↪→

346 plt.xlabel("Dimension 1")

347 plt.ylabel("Dimension 2")

348 cb = plt.colorbar(sc, label="Predicted Labels")

349

350 plt.show()

351

352 plt.figure(figsize=(12, 6))

353 plt.subplot(1, 2, 1)

354 sc = plt.scatter(LDA_train_umap[:, 0], LDA_train_umap[:, 1],

c=train_labels, cmap=cmap, norm=norm, alpha=0.7)↪→

355 plt.title(f"UMAP Embedding of LDA Training Space p =

{num_components}")↪→

356 plt.xlabel("Dimension 1")

357 plt.ylabel("Dimension 2")

358 cb = plt.colorbar(sc, label="Ground Truth Labels")

359

360 plt.subplot(1, 2, 2)

361 sc = plt.scatter(LDA_test_umap[:, 0], LDA_test_umap[:, 1],

c=predicted_labels_LDA, cmap=cmap, norm=norm, alpha=0.7)↪→

362 plt.title(f"UMAP Embedding of PCA Test Space p =

{num_components}")↪→

363 plt.xlabel("Dimension 1")

364 plt.ylabel("Dimension 2")

365 cb = plt.colorbar(sc, label="Predicted Labels")

366

367 plt.show()

368

369 def UMAP_autoencoder():

370

371 # p = [3,8,16]

372 num_components = 16

373 train_data,train_label,test_data,test_label =

autoencoder.autoencoder_features(num_components)↪→

374 accuracy_a,predicted_labels_a = NN_classifier(train_data.T,

test_data.T, train_label, test_label)↪→

375

376 # Apply UMAP to reduce PCA and LDA spaces to 2D

377 # if num_components == 5: # Example: Apply UMAP only for

p=5↪→

378 print('run umap')

379 umap_model = umap.UMAP(n_components=2, random_state=42)

380 print('train_data',train_data.shape)

381 # UMAP on PCA spaces

382 encoder_train_umap = umap_model.fit_transform(train_data)

25

383 encoder_test_umap = umap_model.transform(test_data)

384

385 # Define a colormap for labels 1 to 30

386 num_labels = 30

387 cmap = cm.get_cmap('tab20b', num_labels) # Ensure the

colormap has 30 colors↪→

388 norm = mcolors.Normalize(vmin=1, vmax=num_labels) #

Normalize for the range 1-30↪→

389

390 # Plot PCA UMAP embeddings

391 plt.figure(figsize=(12, 6))

392 plt.subplot(1, 2, 1)

393 sc = plt.scatter(encoder_train_umap[:, 0],

encoder_train_umap[:, 1], c=train_label, cmap=cmap,

norm=norm, alpha=0.7)

↪→

↪→

394 plt.title(f"UMAP Embedding of autoencoder Training Space p =

{num_components}")↪→

395 plt.xlabel("Dimension 1")

396 plt.ylabel("Dimension 2")

397 cb = plt.colorbar(sc, label="Ground Truth Labels")

398

399 plt.subplot(1, 2, 2)

400 sc = plt.scatter(encoder_test_umap[:, 0],

encoder_test_umap[:, 1], c=predicted_labels_a,

cmap=cmap, norm=norm, alpha=0.7)

↪→

↪→

401 plt.title(f"UMAP Embedding of autoencoder Test Space p =

{num_components}")↪→

402 plt.xlabel("Dimension 1")

403 plt.ylabel("Dimension 2")

404 cb = plt.colorbar(sc, label="Predicted Labels")

405

406 plt.show()

407

408 # UMAP_autoencoder()

409 # auto_encoder_plot()

410 PCA_LDA_Auto_plot()

411 # UMAP_PCA_LDA()

412

413

414

415 #TASK 3

416 import numpy as np

417 import cv2

418 import glob

419 import os

420 import matplotlib.pyplot as plt

26

421

422 def load_data(folder_type):

423 # Specify the base path for the folders

424 base_path = 'CarDetection'

425

426 # Construct full paths for the positive and negative image

directories↪→

427 pos_path = os.path.join(base_path, folder_type, 'positive')

428 neg_path = os.path.join(base_path, folder_type, 'negative')

429

430 # Function to load images from a directory

431 def load_images_from_folder(folder):

432 images = []

433 for filename in os.listdir(folder):

434 img_path = os.path.join(folder, filename)

435 # Read the image using cv2

436 img = cv2.imread(img_path, cv2.IMREAD_COLOR)

437 if img is not None:

438 # Optionally, convert the image from BGR to RGB

439 img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

440 images.append(img)

441 else:

442 print(f"Failed to load image at {img_path}")

443 return np.array(images)

444

445 # Load positive and negative images

446 image_array_pos = load_images_from_folder(pos_path)

447 image_array_neg = load_images_from_folder(neg_path)

448

449 # Generate label arrays

450 label_array_pos = np.ones(len(image_array_pos))

451 label_array_neg = np.zeros(len(image_array_neg))

452

453 return image_array_pos, image_array_neg, label_array_pos,

label_array_neg↪→

454

455

456 def integral_image(image):

457 """ Compute the integral image using a data type that can

handle larger numbers to avoid overflow. """↪→

458 # Ensure the data type is large enough to handle the sums

459 return np.cumsum(np.cumsum(image.astype(np.int64), axis=0),

axis=1)↪→

460

461 def haar_feature(ii, top_left, width, height, orientation):

462 x, y = top_left

27

463 try:

464 if orientation == 'horizontal':

465 mid = y + height // 2

466 if y + 2 * height > ii.shape[1]:

467 return 0

468 white = ii[x + width, mid] - ii[x, mid]

469 black = ii[x + width, y + height] - ii[x, y +

height]↪→

470 else:

471 mid = x + width // 2

472 if x + 2 * width > ii.shape[0]:

473 return 0

474 white = ii[mid, y + height] - ii[mid, y]

475 black = ii[x + width, y + height] - ii[x, y +

height]↪→

476

477 feature = white - black

478 if feature > np.iinfo(np.int32).max: # Check if feature

value is too large↪→

479 print("Feature computation overflow: ", feature)

480 return feature

481 except IndexError:

482 # print("IndexError with parameters:", x, y, width,

height, orientation)↪→

483 return 0

484

485 def extract_features(images):

486 """ Extract Haar features from a set of images, each image

is 20x40 pixels. """↪→

487 features = []

488 for image in images:

489 ii = integral_image(image)

490 img_features = []

491 # Define feature sizes and positions here:

492 for width in range(1, 21, 4): # Adjust for plausible

widths↪→

493 for height in range(1, 41, 4): # Adjust for

plausible heights↪→

494 for x in range(21 - width): # Avoid going out

of x bounds↪→

495 for y in range(41 - height): # Avoid going

out of y bounds↪→

496 # Horizontal feature, check bounds

inside the function↪→

497 if y + 2 * height <= 40: # Adjusted

bounds for horizontal feature↪→

28

498 feature_val = haar_feature(ii, (x,

y), width, height, 'horizontal')↪→

499 img_features.append(feature_val)

500 # Vertical feature, check bounds inside

the function↪→

501 if x + 2 * width <= 20: # Adjusted

bounds for vertical feature↪→

502 feature_val = haar_feature(ii, (x,

y), width, height, 'vertical')↪→

503 img_features.append(feature_val)

504 features.append(img_features)

505

506 return np.array(features)

507

508 def weak_classifier(weights, feats, labels):

509 # Normalize the weights

510 weights /= np.sum(weights)

511

512 # Initialize variables to track the best classifier

513 min_error = np.inf

514 best_weak_cl = None

515 best_pred = None

516

517 # Iterate over each feature

518 n_samples, n_features = feats.shape

519 for feature_index in range(n_features):

520

521 # Sort features and related labels and weights

522 sorted_indices = np.argsort(feats[:, feature_index])

523 sorted_feats = feats[sorted_indices, feature_index]

524 sorted_weights = weights[sorted_indices]

525 sorted_labels = labels[sorted_indices]

526

527 # Calculate total positive and negative weights

528 Tp = np.sum(sorted_weights[sorted_labels == 1])

529 Tn = np.sum(sorted_weights[sorted_labels == 0])

530 print('running weak_classifier TP',Tp)

531 # Initialize cumulative sums

532 Sp = 0 # Cumulative sum of weights for positive labels

533 Sn = 0 # Cumulative sum of weights for negative labels

534 err1 = Tp # Initial error if all are predicted as

positive (threshold at -inf)↪→

535 err2 = Tn # Initial error if all are predicted as

negative (threshold at +inf)↪→

536

537 for i in range(n_samples - 1):

29

538 if sorted_labels[i] == 1:

539 Sp += sorted_weights[i]

540 else:

541 Sn += sorted_weights[i]

542

543 # Compute errors for both polarities

544 err1 = Sn + (Tp - Sp) # Samples below threshold are

negative↪→

545 err2 = Sp + (Tn - Sn) # Samples below threshold are

positive↪→

546

547 # Check if we can split at this point

548 if sorted_feats[i] != sorted_feats[i + 1]:

549 threshold = (sorted_feats[i] + sorted_feats[i +

1]) / 2.0↪→

550 if err1 < min_error:

551 min_error = err1

552 best_weak_cl = [feature_index, threshold,

'>=']↪→

553 best_pred = np.where(feats[:, feature_index]

>= threshold, 1, 0)↪→

554 if err2 < min_error:

555 min_error = err2

556 best_weak_cl = [feature_index, threshold,

'<']↪→

557 best_pred = np.where(feats[:, feature_index]

< threshold, 1, 0)↪→

558

559 return best_weak_cl, min_error, best_pred

560

561 def update_weights(weights, predictions, labels, alpha):

562 """ Update weights of the training samples. """

563 weights *= np.exp(alpha * (predictions != labels))

564 return weights / weights.sum()

565

566 def cascade(train_pos_feature, train_neg_feature, label_pos,

label_neg, req_tpr, req_fpr, max_num_weak_clf):↪→

567 n_pos = train_pos_feature.shape[0]

568 n_neg = train_neg_feature.shape[0]

569

570 features = np.vstack((train_pos_feature, train_neg_feature))

571 labels = np.concatenate((label_pos, label_neg))

572 weights = np.ones(n_pos + n_neg) / (n_pos + n_neg)

573 classifiers = []

574

575 print('running cascade')

30

576

577 for _ in range(max_num_weak_clf):

578 clf, error, predictions = weak_classifier(weights,

features, labels)↪→

579 alpha = 0.5 * np.log((1 - error) / max(error, 1e-10))

580 classifiers.append((clf, alpha))

581

582 weights = update_weights(weights, predictions, labels,

alpha)↪→

583

584 # Calculate cascade output

585 agg_predictions = np.zeros(n_pos + n_neg)

586 for clf, alpha in classifiers:

587 predictions = np.where(features[:,

clf['feature_index']] < clf['threshold'], 1, -1)

if clf['inequality'] == 'lt' else

np.where(features[:, clf['feature_index']] >=

clf['threshold'], 1, -1)

↪→

↪→

↪→

↪→

588 agg_predictions += alpha * predictions

589

590 # Determine classification threshold

591 threshold = np.min(agg_predictions[:n_pos]) # Min among

positives↪→

592

593 # Evaluate

594 classified_pos = (agg_predictions[:n_pos] >= threshold)

595 classified_neg = (agg_predictions[n_pos:] >= threshold)

596

597 TPR = np.mean(classified_pos)

598 FPR = np.mean(classified_neg)

599

600 print('TPR',TPR)

601 print('FPR',FPR)

602

603 if TPR >= req_tpr and FPR <= req_fpr:

604 break # Early stopping

605

606 # Refinement of dataset

607 misclassified_neg_indices = np.where(agg_predictions[n_pos:]

< threshold)[0]↪→

608 refined_neg_features =

train_neg_feature[misclassified_neg_indices]↪→

609 refined_neg_labels = label_neg[misclassified_neg_indices]

610

611 return refined_neg_features, refined_neg_labels,

classifiers, {'TPR': TPR, 'FPR': FPR}↪→

31

612

613 def load_or_initialize_cascade(filename):

614 """ Attempt to load a previously saved cascade model, or

initialize new structures if none exist. """↪→

615 if os.path.exists(filename):

616 with np.load(filename) as data:

617 return list(data['classifiers']),

list(data['alphas']), list(data['fprs'])↪→

618 else:

619 return [], [], []

620

621 def save_cascade(filename, classifiers, alphas, fprs):

622 """ Save the cascade model to a compressed file. """

623 np.savez_compressed(filename, classifiers=classifiers,

alphas=alphas, fprs=fprs)↪→

624

625 def training_function(tr_pos_ft, tr_neg_ft, tr_pos_lbl,

tr_neg_lbl, max_stages, req_tpr, req_fpr, max_num_weak_clf):↪→

626 filename = 'classifier_stages.npz'

627 classifier_stages, weight_stages, false_positive_rates =

load_or_initialize_cascade(filename)↪→

628

629 if len(classifier_stages) >= max_stages:

630 print("Loaded pre-trained model with sufficient

stages.")↪→

631 return classifier_stages, weight_stages,

false_positive_rates↪→

632

633 current_neg_ft = tr_neg_ft

634 current_neg_lbl = tr_neg_lbl

635

636 while len(classifier_stages) < max_stages:

637 refined_neg_ft, refined_neg_lbl, stage_classifiers,

metrics = cascade(↪→

638 tr_pos_ft, current_neg_ft, tr_pos_lbl,

current_neg_lbl, req_tpr, req_fpr,

max_num_weak_clf

↪→

↪→

639)

640

641 classifier_stages.append(stage_classifiers)

642 weight_stages.extend([clf[1] for clf in

stage_classifiers]) # Assuming clf tuple contains

(classifier, alpha)

↪→

↪→

643 false_positive_rates.append(metrics['FPR'])

644

32

645 # Refine dataset by removing correctly classified

negatives↪→

646 current_neg_ft = refined_neg_ft

647 current_neg_lbl = refined_neg_lbl

648

649 print('false_positive_rates',false_positive_rates)

650 # Early stopping if FPR is already below required or no

negatives left↪→

651 if metrics['FPR'] <= req_fpr or len(current_neg_ft) ==

0:↪→

652 print("Early stopping: FPR threshold met or no

negatives left.")↪→

653 break

654

655 save_cascade(filename, classifier_stages, weight_stages,

false_positive_rates)↪→

656 return classifier_stages, weight_stages,

false_positive_rates↪→

657

658 def load_trained_cascade(filename):

659 """ Load the trained cascade model from a compressed file.

"""↪→

660 data = np.load(filename)

661 return data['classifiers'], data['alphas'],data['fprs']

662

663 def apply_classifier(features, classifier):

664 """ Apply a weak classifier to the given features. """

665 feature_index, threshold, polarity = classifier

666 if polarity == 'lt':

667 return features[:, feature_index] < threshold

668 else:

669 return features[:, feature_index] >= threshold

670

671 def testing_function(trained_cascade, test_positive_features,

test_negative_features):↪→

672 # = trained_cascade

673 classifiers, alphas,_ =

load_trained_cascade(trained_cascade)↪→

674 # Combine test features

675 test_features = np.vstack((test_positive_features,

test_negative_features))↪→

676 # Labels for computing metrics

677 test_labels =

np.hstack((np.ones(len(test_positive_features)),

np.zeros(len(test_negative_features))))

↪→

↪→

678

33

679 false_positive_rates = []

680 false_negative_rates = []

681 # Aggregate predictions from each stage

682 stage_predictions = np.zeros(test_features.shape[0])

683

684 for i, stage in enumerate(classifiers):

685 stage_sum = np.zeros(test_features.shape[0])

686 for clf, alpha in zip(stage, alphas[i]):

687 predictions = apply_classifier(test_features, clf)

688 stage_sum += alpha * (2 * predictions - 1) #

Convert boolean to {-1, 1}↪→

689

690 # Calculate the threshold for binary classification

691 threshold = np.sum(alphas[i]) * 0.5

692 stage_output = (stage_sum > threshold).astype(int)

693

694 # Calculate FPR and FNR

695 positive_test_predictions =

stage_output[:len(test_positive_features)]↪→

696 negative_test_predictions =

stage_output[len(test_positive_features):]↪→

697

698 FPR = np.mean(negative_test_predictions == 1)

699 FNR = np.mean(positive_test_predictions == 0)

700

701 false_positive_rates.append(FPR)

702 false_negative_rates.append(FNR)

703 # Update stage_predictions for final output

704 stage_predictions = stage_output

705

706 # Reporting results

707 print("False Positive Rates by stage:",

false_positive_rates)↪→

708 print("False Negative Rates by stage:",

false_negative_rates)↪→

709

710 return false_positive_rates, false_negative_rates

711

712 def plot_adaboost_rates(te_FP_rates, te_FN_rates, tr_FP_rates):

713 # Define stages with an increment of 1 starting from 1

714 stages = list(range(1, len(te_FP_rates) + 1))

715

716 # Plot te_FP and te_FN rates on the first plot

717 plt.figure(figsize=(12, 6))

718 plt.plot(stages, te_FP_rates, label='Test False Positive

Rate (te_FP)', marker='o', linestyle='-', linewidth=2)↪→

34

719 plt.plot(stages, te_FN_rates, label='Test False Negative

Rate (te_FN)', marker='s', linestyle='-', linewidth=2)↪→

720

721 # Annotate te_FP and te_FN rates

722 for i, rate in enumerate(te_FP_rates):

723 plt.text(stages[i], rate, f"{rate:.2f}", fontsize=9,

ha='center', va='bottom')↪→

724 for i, rate in enumerate(te_FN_rates):

725 plt.text(stages[i], rate, f"{rate:.2f}", fontsize=9,

ha='center', va='bottom')↪→

726

727 # Configure x-axis with integer steps

728 plt.xticks(stages) # Ensure the x-axis only shows integers

at each step↪→

729

730 # Add labels, title, legend, and grid

731 plt.xlabel('Stage', fontsize=12)

732 plt.ylabel('Rate', fontsize=12)

733 plt.title('Test FP and FN Rates per Stage of AdaBoost

Cascade', fontsize=14)↪→

734 plt.legend(fontsize=10)

735 plt.grid(alpha=0.3)

736 plt.tight_layout()

737 plt.show()

738

739 # Plot tr_FP rates on a separate plot

740 plt.figure(figsize=(12, 6))

741 plt.plot(stages, tr_FP_rates, label='Train False Positive

Rate (tr_FP)', marker='d', linestyle='-', linewidth=2,

color='green')

↪→

↪→

742

743 # Annotate tr_FP rates

744 for i, rate in enumerate(tr_FP_rates):

745 plt.text(stages[i], rate, f"{rate:.2f}", fontsize=9,

ha='center', va='bottom')↪→

746

747 # Configure x-axis with integer steps

748 plt.xticks(stages) # Ensure the x-axis only shows integers

at each step↪→

749

750 # Add labels, title, legend, and grid

751 plt.xlabel('Stage', fontsize=12)

752 plt.ylabel('Rate', fontsize=12)

753 plt.title('Train FP Rates per Stage of AdaBoost Cascade',

fontsize=14)↪→

754 plt.legend(fontsize=10)

35

755 plt.grid(alpha=0.3)

756 plt.tight_layout()

757 plt.show()

758

759 def adaboost():

760

761 train_pos, train_neg,tr_label_pos,tr_label_neg =

load_data('train')↪→

762 test_pos, test_neg,_,_ = load_data('test')

763

764 # print(train_pos.shape)

765

766 # train_pos_feature = extract_features(train_pos)

767 # train_neg_feature = extract_features(train_neg)

768 # test_pos_feature = extract_features(test_pos)

769 # test_neg_feature = extract_features(test_neg)

770

771

772 #

np.save('./task3npy/train_pos_feature.npy',train_pos_feature)↪→

773 #

np.save('./task3npy/train_neg_feature.npy',train_neg_feature)↪→

774 #

np.save('./task3npy/test_neg_feature.npy',test_neg_feature)↪→

775 #

np.save('./task3npy/test_pos_feature.npy',test_pos_feature)↪→

776

777 # print('saved features')

778

779 # np.save('train_pos_feature.npy',train_pos_feature)

780 train_pos_feature =

np.load('./task3npy/train_pos_feature.npy')↪→

781 train_neg_feature =

np.load('./task3npy/train_neg_feature.npy')↪→

782 test_neg_feature =

np.load('./task3npy/test_neg_feature.npy')↪→

783 test_pos_feature =

np.load('./task3npy/test_pos_feature.npy')↪→

784

785 # 710*14160

786 print('loaded features')

787

788 train_pos_label = np.ones((train_pos.shape[0]))

789 train_neg_label = np.zeros((train_neg.shape[0]))

790 test_pos_label = np.ones((test_pos.shape[0]))

791 test_neg_label = np.zeros((test_neg.shape[0]))

36

792

793 max_stages = 20

794 # Required true positive rate (TPR) at each stage

795 target_tpr = 0.99

796 # Required false positive rate (FPR) at each stage

797 target_fpr = 0.50

798 # Maximum number of weak classifiers per stage

799 max_num_wclf = 50

800

801 print('start training')

802 classifier_stages, weight_stages, false_positive_rates =

training_function(train_pos_feature, train_neg_feature,

tr_label_pos, tr_label_neg, max_stages, target_tpr,

target_fpr, max_num_wclf)

↪→

↪→

↪→

803

804 filename = 'classifier_stages.npz'

805 te_FP_rates, te_FN_rates = testing_function(filename,

test_pos_feature, test_neg_feature)↪→

806

807 plot_adaboost_rates(te_FP_rates, te_FN_rates)

808

809 adaboost()

810

811

812

813

814

815

816

817

818

37

