ECE661 Fall2024 HW10

Runlin Duan
duan92@purdue.edu

1 Theory Question

Understanding Overfitting

Overfitting occurs when a model learns the training data too well, capturing
noise and fluctuations that do not generalize to new data. This results in high
performance on the training set but poor performance on unseen data. For
example, we achieved a training accuracy of 95 %, but the model only got
a testing accuracy of 90 % . A potential reason for this is the overfitting of
the model. Overfitting is a fundamental issue discussed in various contexts
within machine learning because it significantly impacts the model’s ability to
function effectively in real-world settings. Techniques such as regularization,
cross-validation, and pruning are employed to prevent overfitting, aiming to
simplify the model and ensure it performs well on both seen and unseen data.

The Reparameterization Trick in Variational Autoencoders

In Variational Autoencoders (VAEs), the reparameterization trick is crucial for
enabling gradient descent through stochastic nodes. The encoder in a VAE out-
puts parameters to a probability distribution, typically Gaussian, characterized
by the mean (1) and the logarithm of the variance (log o?):

e Deterministic Component: The encoder outputs the mean (u) and
log-variance (log o?) of the latent variables, describing the center and dis-
persion of the latent space points.

e Stochastic Component: Instead of sampling z directly from A (u, 0?),
the trick introduces an auxiliary noise variable € from a standard normal
distribution N(0,1).

e Reparameterization: The latent variable z is computed as:
Z=pu+o0o@®e€

where o is the standard deviation, computed from the exponential of half
the log-variance to ensure positivity. This formulation maintains random-
ness in z while allowing gradients to be backpropagated through p and
.



This method separates the randomness from the learnable parameters, allow-
ing efficient gradient-based optimization of the variational lower bound, which
is critical for the training of VAEs. The reparameterization trick thus enables
VAEs to model complex distributions and generate new data points effectively.

2 Task 1: Face Recognition using PCA and LDA
2.1 PCA

1. Data Loading: Images are loaded and converted into a 1D vector using
the load_data function.

vectorized_image,; = reshape(image;, m X n)

2. Normalization: Each vectorized image is normalized to have unit mag-

nitude.

. e

T; = —
[l

3. Centering Data: Compute the mean vector T and subtract it from each
image vector to center the data.
X =[Z1,%2,...,ZN]
Xcentered = X — T
whereT = % Zf\le Z; is the mean vector from all normalized image vectors.
4. Covariance Matrix: Calculate the covariance matrix C.
C = Xcentered X oo

centered

5. SVD Computation: To reduce complexity using the computation trick
mentioned in the reference, we apply SVD on the smaller matrix XcTenterechentered7
yielding eigenvalues and eigenvectors.

T
XcenterechenteredU =

6. Eigenvectors of C: Compute eigenvectors of C' as:

u= Xcenteredv

7. Normalization: Normalize the eigenvectors to ensure unit length.

R u
U= —"
[l

8. Dimension Reduction: Select the top P eigenvectors corresponding to
the largest eigenvalues.

W = [iy, Qg . . ., Up]

9. Projection: Project the data onto the subspace defined by Wp.
yi = W' (z; - )



2.2 LDA

1. Class Means: Compute the overall mean m and class-specific means m;

for each class. )
m; = Z Tl
C:
| Zl keC;

2. Between-Class Scatter:
c
Sp = an(ml —m)(m; —m)T
i=1

where n; is the number of samples in class i.

3. Within-Class Scatter:

4. Fisher’s Criterion: Solve the eigenvalue problem for maximizing the
discriminant:
wT Sgw

J(U)) = s SB'U} = )\Sww

wT Syrw
5. Applying Yu and Yang Algorithm:

(a) Eigendecomposition of Sg: Perform eigendecomposition on Sp
to find the matrix V of eigenvectors, with V7SV = A where A is
diagonal.

(b) Discard Near-Zero Eigenvalues: Discard eigenvectors correspond-
ing to near-zero eigenvalues in A, retaining the most significant di-
rections in a reduced matrix Y.

(¢) Matrix Z Construction: Form Z = YD§1/2, normalizing Sp in
the reduced dimensionality space: ZTSgZ = Inrx -

(d) Diagonalize ZT Sy Z: Perform eigendecomposition on ZT Sy Z to
obtain U such that UTZT Sy ZU = Dy .

(e) Discard Largest Eigenvalues of Dy : Eliminate the eigenvectors
associated with the largest eigenvalues of Dy, focusing on minimizing
within-class scatter.

(f) Form Final LDA Eigenvectors: Construct the LDA transfor-
mation matrix W7 = UTZT, maximizing the Fisher criterion with
eigenvectors retained from U.

6. Dimension Reduction: Same as PCA, we select the top P eigenvectors
as our main components.



2.3 Nearest Neighbor Classification

1. Compute Distances: For each test sample x;, compute the Euclidean
distance to all training samples.

d(zj,z;) = ||lzj — x|

2. Assign Label: Assign the label of the nearest training sample:

Yy; = yarg min; d(x;,x;)

2.4 Visualization with UMAP
Embedding PCA and LDA Spaces

1. UMAP Reduction: Apply UMAP to reduce the PCA and LDA sub-
spaces to 2 dimensions.

2. Scatter Plots: Create scatter plots for the training and testing data in
both PCA and LDA spaces.

UMAP(X) = {z1,29,...,2n} C R?

PCA and LDA Visualization
e Training Space: Colors represent ground-truth labels.

e Testing Space: Colors represent predicted labels.

2.5 Results
2.5.1 Accuracy Plot

Here, we provide the result of the plot showing the classification accuracy as a
function of the subspace dimensionality p for both PCA and LDA. The classi-
fication accuracy is defined as:

# of test images correctly classified

accuracy =
Y total # of test images

We provide the accuracy of the PCA and LDA in the Fig 1
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Figure 1: The accuracy of the PCA and LDA with different p-dimensions

2.5.2 UMAP Plot

We provide the UMAP plot with different p values, including p = [3,8, 16];
we pick up these values for comparison with the p of autoencoder in the later
section.
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UMAP Embedding of LDA Training Space p = 3
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Figure 3: UMAP of LDA with the p=3
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Figure 4: UMAP

UMAP Embedding of PCA Test Space p = 3
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Figure 5: UMAP of LDA with the p=8
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Figure 6: UMAP of PCA with the p=16
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UMAP Embedding of LDA Training Space p = 16 UMAP Embedding of PCA Test Space p = 16
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Figure 7: UMAP of LDA with the p=16

3 Task 2: Face Recognition using an Autoen-
coder

Autoencoders are neural networks used for unsupervised learning of compressed
encodings from given data. They are typically used for dimensionality reduction.
In this task, we use the pre-trained autoencoder to get the feature vectors for
given images.

3.1 Implementation Details

Our implementation of an autoencoder is built using Pytorch and has been
designed to handle different complexities of input data.

1. Framework: The model is implemented in Pytorch, utilizing its compre-
hensive support for building and training neural networks.

2. Model Training: The autoencoder has been trained on P = {3, 8, 16}.

3. Low-dimensional Projection: We will use the provided code to reduce
the dimension of a given image. Each image is processed to predict a low-
dimensional projection of length P, serving as a reduced representation of
the original data.

4. Nearest neighbor Classifier: After encoding, the nearest neighbor clas-
sifier is employed to classify images based on the reduced representations
provided by the autoencoder.

5. Accuracy Measurement: The classifier’s accuracy is assessed on a test
dataset to evaluate the effectiveness of the learned representations.



3.2 Results
3.2.1 Accuracy Plot

Here, we provide the result of the plot showing the classification accuracy as
a function of the subspace dimensionality p for PCA, LDA, and autoencode in
the same plot, in Fig 8.
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Figure 8: Classification accuracy as a function of the subspace dimensionality p
for PCA, LDA, and autoencode

3.2.2 UMAP Plot

We provide the UMAP plot of the autoencoder with different p values, where
p=[3,8,16].
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Figure 9: UMAP of Autoencoder with the p=3
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Figure 10: UMAP of Autoencoder with the p=8
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Figure 11: UMAP of Autoencoder with the p=16

Discissions for Taksl and Taks2

Classification Accuracy

The results reveal the following key observations about the performance of PCA,
LDA and Autoencoder on the face-detection task:

At low-dimension, PCA and LDA exhibit low performance, with accura-
cies below 20%. At p = 2, PCA outperforms LDA, achieving an accuracy
of 62.7% compared to LDA’s 54.74%.

All models reach peak accuracies of over 90 % around p = 5 and maintain
stable performance until a slight decline begins at p = 17 for PCA and
LDA.

LDA achieves its highest accuracy of 100% at p = 15, Autoencoder
achieves 100% at p = 16,while PCA reaches its maximum accuracy of
99.37% at p = 13.

LDA converges faster than PCA and Autoencoder

It seems that the Autoencoder demonstrates slightly better overall per-
formance, particularly at higher dimensions.

These observations suggest that LDA may be better suited for this task,
especially when high accuracy is required in lower-dimensional spaces.

3.3.2 UMAP Plot

The UMAP plots reveal important insights about the effects of different p-
dimensions and feature extraction methods on the classification task. The key
observations are summarized below:

11



e Effect of Increasing p-Dimension:
— As the p-dimension increases, the categories in the UMAP plots be-
come more discrete, and the distances between classes grow larger.

— Higher p-dimensions result in feature vectors that are more separated,
making it easier to classify samples.

— At p = 3, samples from each class are close to each other, with
noticeable overlap between classes. However, at p = 16, the overlap
is significantly reduced, demonstrating improved class separability.

e Comparison of Feature Extraction Methods:

— UMAP visualizations for PCA, LDA, and Autoencoders reveal dis-
tinct patterns, indicating that each method extracts unique feature
representations.

— Despite their differences, all three methods effectively capture the
key information necessary for class separation.

— The observed patterns in the UMAP plots confirm that each method
preserves essential class-related information in its own way.

e Conclusion:

— The UMAP plots validate that PCA, LDA, and Autoencoders are
all reasonable and effective methods for feature extraction in this
classification task.

— Each method provides meaningful feature representations that sup-
port the accurate classification of the data.

4 Task 3: Object Detection using Cascaded Ad-
aBoost Classifiers

Training Phase
Feature Extraction

e Utilize Haar-like features for image analysis, suitable for capturing edge,
line, and textural information.

The Haar filters are represented as follows:
Horizontal: [—1 -1 1 1}

-1
Vertical:

12



e Integral Image Calculation: Compute integral images to enable rapid
feature calculation, facilitating the summation of pixel values within rect-
angular areas efficiently.

e Feature Generation: Apply Haar filters at every possible position and
scale within the training images. Calculate each feature as:

value(ABCD) = I(D) — I(B) — I(C) + I(A)

where I(z) represents the integral image value at point z, and A, B,C, D
are the corners of the Haar filter.

Construct Weak Classifier

Our implementation of the AdaBoost starts by constructing weak classifiers.

1.

Weight Normalization: The weights are normalized to ensure their sum
equals one, maintaining weight distribution integrity across the dataset.

Initialization: Variables are initialized to track the minimum error and
the best classifier parameters (feature and threshold).

Feature Iteration: For each feature:

(a)
(b)

()

Sorting: Data is sorted by feature values to facilitate cumulative
weight calculations.

Error Calculation: We calculate the total weights of positive (T},)
and negative (T),) labels. Errors are computed as we update the
cumulative weights S, and Sy,:

Errory = S, + (I, —Sp) and Errory =S, + (T, — S,)
where Error; assumes samples below the threshold are negative, and

Errory assumes they are positive.

Threshold Determination: If the feature value changes, we com-
pute the threshold as the midpoint between consecutive differing fea-
ture values and update the error calculations.

4. Classifier Selection: The classifier that achieves the lowest error is se-
lected, specifying the feature, threshold, and classification rule (above or
below the threshold).

Cascade Construction

The cascade function begins by distributing initial weights equally across all
samples. The cascade aims to maximize the True Positive Rate (TPR) while
minimizing the False Positive Rate (FPR) to achieve specified thresholds.

13



1. Initialization: Start with equal weights for all training samples, combin-
ing positive and negative features and labels into a single dataset.

2. Classifier Training: For each classifier in the cascade, up to a predefined
maximum:

e Train the weak classifier on the current dataset using weighted in-
stances.

e Calculate « for the classifier, where € refers to the error of the clas-
sifer: and « is defined as:

1
o = ln —
1—e¢

e Update the weights for the next iteration, increasing the weights of
misclassified samples.

3. Cascade Evaluation: Aggregate the predictions from all classifiers, weighted
by their respective a values. Adjust the classification threshold to the
minimum score among all correctly classified positive samples:

Threshold = min(Aggregated Predictions of Positive Samples)

4. Performance Metrics: Evaluate the TPR and FPR after adding each
classifier:

Number of Correctly Classified Positives

TPR =
Total Positives

FPR — Number of Incorrectly Classified Negatives

Total Negatives
If the cascade meets the required TPR and FPR thresholds, terminate the
cascade early.

5. Refinement: Focus subsequent training on challenging-to-classify nega-
tive examples by removing those that are correctly classified above the
threshold.

Staging Cascade Classifiers

The cascade configuration is designed to optimize performance through precise
parameters:

e Maximum Stages: Set to 10 to balance refinement and overfitting.

e Target True Positive Rate (TPR): Set at 0.99 to ensure accurate
positive classifications.

e Target False Positive Rate (FPR): Maintained at 0.50 to limit incor-
rect classifications.

e Maximum Weak Classifiers per Stage: Limited to 50 to manage
complexity and processing demands efficiently.

14



4.1 Results

We provide the false positive rate for the training process in the given Fig
12. The false positive and false negative rates over stages during the testing is
provided in Fig. 13

Train FP Rates per Stage of AdaBoost Cascade
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Figure 12: Train FP rates per Stage of AdaBoost Cascade
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Figure 13: Test FP rates per Stage of AdaBoost Cascade

4.2 Discissions

The AdaBoost cascade demonstrates a clear trend of decreasing false positive
rates (FPR) during training, with the training FPR sharply reducing from 48%
at the first stage to 0% by the tenth stage. This decline signifies robust learning
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and optimization capabilities of the model. Conversely, the false negative rates
(FNR) increase from 17.4% to 47.7% over the same stages, indicating a trade-off
between decreasing FPR and increasing FNR (Figure 77).

As the training stage increases, the FPR rate drops down to zero at stage 8;
during the testing, we achieve earlier zero FPR at stage 5. During the testing,
note that we continue removing the correctly classified sample while the stage
increases.

The result achieves the goal of minimizing the FPR while as a trade of
increased FNR.

5 Code

#Task 1 2

import os

import cv2

import numpy as np

# from scipy.linalg import eigh
import matplotlib.pyplot as plt
import umap

from matplotlib import cm

import matplotlib.colors as mcolors
import autoencoder

def load_data(folder_type):

if folder_type not in ["train", "test"]:
raise ValueError("folder_type must be 'train' or
— 'test'")

folder_path = f"facerecognition/{folder_typel}"
if not os.path.exists(folder_path):
raise FileNotFoundError(f"The folder '{folder_path}'
— does not exist.")
images = []
labels = []
for file_name in os.listdir(folder_path):
if file_name.endswith(".png"):
# Extract label from file name
label = int(file_name.split("_")[0])
# print('label’, label)
labels.append(label)
# Load the image
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def

def

image_path = os.path.join(folder_path, file_name)
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
image = image.reshape(1l, -1)[0]

if image is None:
raise ValueError(f"Image at '{image_pathl}' could
— not be loaded.")
images.append (image)
images_array = np.array(images, dtype=np.uint8)
labels_array = np.array(labels, dtype=np.int32)

return images_array, labels_array

normalization(x):

# Compute the L2 morm of each row. Keepdims=True makes the
— output shape (n_rows, 1)

norms = np.linalg.norm(x, axis=1, keepdims=True)

norms [norms == 0] = 1e-10

normalized_x = x / norms

return normalized_x

PCA(X, num_components):

# Transpose X so that columns are samples (features in rows)
X =X.T

# 1. Center the data

mean_vector = np.mean(X, axis=1, keepdims=True) # mean

< computed across rows (for each feature)

X_centered = X - mean_vector

# 2. Compute X°T * X (now correctly as X_centered s

< features in Tows)

XTX = np.dot(X_centered.T, X_centered)

# 3. Apply SVD on the smaller matriz X°T * X

U, S, VT = np.linalg.svd(XTX)

# 4. Compute eigenvectors of the original covariance mairiT
- XX°T

# Since U contains the eigenvectors of X'T * X, we need to
— multiply by X_centered to get the eigenvectors of XX°T
W_hat = np.dot(X_centered, VT)

# print (W_hat)

# W_hat = np.dot(X_centered, U)

# 5. Normalize the eigenvectors to have unit length

W_hat = normalization(W_hat)

# W_hat / np.linalg.norm(W_hat, azis=0)

# 6. Select the top 'nmum_components' eigenvectors
principal_components = W_hat[:, :num_components]
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def

return principal_components, mean_vector

LDA(data, labels, num_components) :
# Ensure labels 2s a 1D array
labels = labels.flatten()

# print(labels)

# Calculate the mean of each class
class_labels = np.unique(labels)

# print(class_labels)

mean_cl = np.array([np.mean(data[labels == cl], axis=0) for
— ¢l in class_labels])

mean_cl = mean_cl.T

# print('mean_cl',mean_cl)
# print('mean_cl, shape',mean_cl.shape)

X = data.T

# 1. Center the data

overall_mean_vec = np.mean(mean_cl, axis=1, keepdims=True)
# overall_mean_vec = np.mean(X, azis=1, keepdims=True)

Sw_dumy = X-overall_mean_vec

mean_i = mean_cl-overall_mean_vec

# print('mean_<',mean_1)

# Apply computation tricks

S_B = np.dot(mean_i.T,mean_i)

# Singular Value Decomposition of the between-class scatter
— matriz S_B

U_B, Sigma_B, V_B_T = np.linalg.svd(S_B)

# print (Sigma_B.shape)

d = (1/np.sqrt(Sigma_B)) [:-2]
D_b = np.diag(d)

Y_dumy = np.dot(mean_i, V_B_T)

# Normalize the etigenvectors to have unit length
Y = normalization(Y_dumy) [:, :-2]

Z = np.dot(Y,D_b)

zt_sw = np.dot(np.transpose(Z), Sw_dumy)

# apply trick

S_W = np.dot(zt_sw, zt_sw.T)

# print('S_W',S_W.shape)

U_B, Sigma_B, V_B_T = np.linalg.svd(S_W)
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138

def

def

# np.linalg. svd(sw)

# multiply by X to get eigenvecs of XX'
W = np.dot(Z, V_B_T)

W = normalization(W)

# retain first p eigen vecs

W_p = W[:, :num_components]

return W_p

NN_classifier(train_space, test_space, train_labels,
test_labels):

# Number of test samples
num_test_samples = test_space.shape[1]

# Placeholder for predicted labels
predicted_labels = np.zeros(num_test_samples,
— dtype=train_labels.dtype)

# Iterate over each test sample

for i in range(num_test_samples):
# Compute L2 distance from the i-th test sample to all
— training samples
distances = np.linalg.norm(train_space - test_spacel:,
— i].reshape(-1, 1), axis=0)

# Find the index of the closest training sample
nearest_index = np.argmin(distances)

# Assign the label of the nearest training sample
predicted_labels[i] = train_labels[nearest_index]

# Calculate accuracy

correct_predictions = np.sum(predicted_labels ==

— test_labels)

accuracy = (correct_predictions / num_test_samples) * 100
return accuracy,predicted_labels

PCA_LDA_Auto_plot():

train_data, train_labels = load_data("train")

test_data, test_labels = load_data("test")

print('train_labels',train_labels.shape)
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train_data_n = normalization(train_data)
test_data_n = normalization(test_data)

# num_components = 5

(]
(]

accuracy_PCA
accuracy_LDA

for i in range(1,21):
num_components = i

# print ('run pca')

PCA_pc, mean_vector = PCA(train_data_n, num_components)
LDA_W_p = LDA(train_data_n,train_labels,num_components)

train_data_center = train_data.T - mean_vector
test_data_center = test_data.T —mean_vector

PCA_train_space = np.dot(PCA_pc.T, train_data_center)
LDA_train_space

# print ('PCA_train_space.shape',PCA_train_space.shape)

PCA_test_space = np.dot(PCA_pc.T, test_data_center)
LDA_test_space = np.dot(LDA_W_p.T, test_data_center)

# print ('PCA_test_space.shape',PCA_test_space.shape)

accuracy_P,predicted_labels_p =

— NN_classifier (PCA_train_space, PCA_test_space,
— train_labels, test_labels)
accuracy_L,predicted_labels_p =

— NN_classifier (LDA_train_space, LDA_test_space,
« train_labels, test_labels)

accuracy_PCA.append(accuracy_P)
accuracy_LDA.append(accuracy_L)

autoencoder_acc = []

for p in [3, 8, 16]:
train_data,train_label,test_data,test_label =
— autoencoder.autoencoder_features(p)
# print (train_data. shape)
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231

accuracy_a,predicted_labels_a =

< NN_classifier(train_data.T, test_data.T,
« train_label, test_label)
autoencoder_acc.append(accuracy_a)

# print (autoencoder_acc)
# import matplotlib.pyplot as plt

# Assuming accuracy_PCA and accuracy_LDA are populated as in
— your code
num_components = list(range(l, 21)) # z-azis: 1 to 20

# Plot the accuracies

plt.figure(figsize=(10, 6))
plt.plot(num_components, accuracy_PCA, marker='o',
<~ label='PCA Accuracy')

plt.plot(num_components, accuracy_LDA, marker='s',
— label='LDA Accuracy')

# plt.plot([3, 8, 16], autoencoder_acc, marker='s',
< label='autoencoder Accuracy')

for i, (x, y) in enumerate(zip(num_components,
< accuracy_PCA)):
if (i-1) % 2 == 0: # Add texzt for every 5th point
plt.text(x, y, f"{y:.2f}", fontsize=10, ha='right',
— va='bottom')
for i, (x, y) in enumerate(zip(num_components,
— accuracy_LDA)):
if (i-1) % 2 == 0: # Add texzt for every 5th point
plt.text(x, y, £"{y:.2f}", fontsize=10, ha='right',
<~ va='bottom')

for x, y in zip([3, 8, 16], autoencoder_acc):
plt.text(x, y, £"{y:.2f}", fontsize=10, ha='right',
< va='bottom')

# Add labels, title, and legend

plt.xticks(ticks=range(l, 21, 1)) # Set z-azis ticks from 1
-~ to 20

plt.xlabel('p-dimension', fontsize=12)
plt.ylabel('Accuracy', fontsize=12)

plt.title('Accuracy vs p-dimensions', fontsize=14)
plt.legend(fontsize=12)
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253
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265
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268

269

def

plt.grid(True)

# Show the plot
plt.tight_layout ()
plt.show()

auto_encoder_plot():

autoencoder_acc = []

for p in [3, 8, 16]:
train_data,train_label,test_data,test_label =
— autoencoder.autoencoder_features(p)
# print (train_data.shape)
accuracy_a,predicted_labels_a =
— NN_classifier(train_data.T, test_data.T,
<« train_label, test_label)
autoencoder_acc.append(accuracy_a)

print (autoencoder_acc)
# wmport matplotledb.pyplot as plt

# Assuming accuracy_PCA and accuracy_LDA are populated as in
— your code
num_components = list(range(l, 21)) # z-azis: 1 to 20

# Plot the accuracies

plt.figure(figsize=(10, 6))

# plt.plot (num_components, accuracy_PCA, marker='o',

< label='PCA Accuracy')

# plt.plot (num_components, accuracy_LDA, marker='s',

< label='LDA Accuracy')

plt.plot([3, 8, 16], autoencoder_acc, marker='*', label='LDA
— Accuracy')

# Add labels, title, and legend

plt.xticks(ticks=range(1l, 21, 1)) # Set z-azts ticks from 1
- to 20

plt.xlabel('Number of Components', fontsize=12)
plt.ylabel('Accuracy', fontsize=12)

plt.title('Accuracy vs Number of Components', fontsize=14)
plt.legend(fontsize=12)

plt.grid(True)

# Show the plot
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def

plt.tight_layout()
plt.show()

UMAP_PCA_LDAQ):
train_data, train_labels = load_data("train")
test_data, test_labels = load_data("test")

train_data_n = normalization(train_data)
test_data_n = normalization(test_data)

(]
(]

accuracy_PCA
accuracy_LDA

# for 4 in range(1, 21):
num_components = 16

# Run PCA and LDA to get the spaces
PCA_pc, mean_vector = PCA(train_data_n, num_components)
LDA_W_p = LDA(train_data_n, train_labels, num_components)

train_data_center = train_data.T - mean_vector
test_data_center = test_data.T - mean_vector

PCA_train_space = np.dot(PCA_pc.T, train_data_center)
LDA_train_space = np.dot(LDA_W_p.T, train_data_center)

PCA_test_space = np.dot(PCA_pc.T, test_data_center)
LDA_test_space = np.dot(LDA_W_p.T, test_data_center)

# Get prediction results using NN classifier
accuracy_P, predicted_labels_PCA =

— NN_classifier (PCA_train_space, PCA_test_space,
— train_labels, test_labels)

accuracy_L, predicted_labels_LDA =

— NN_classifier (LDA_train_space, LDA_test_space,
« train_labels, test_labels)

accuracy_PCA.append(accuracy_P)
accuracy_LDA.append(accuracy_L)

##p = [3,8,16]

#p =3

# train_data,train_label,test_data,test_label =
< autoencoder.autoencoder_features(p)
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# accuracy_a,predicted_labels_a =
< NN_classtifier(train_data.T, test_data.T, train_label,
« test_label)

# Apply UMAP to reduce PCA and LDA spaces to 2D

# 1f num_components == 5: # Ezample: Apply UMAP only for

- p=5

print('run umap')

umap_model = umap.UMAP(n_components=2, random_state=42)
print ('PCA_train_space',PCA_train_space.shape)

# UMAP on PCA spaces

PCA_train_umap = umap_model.fit_transform(PCA_train_space.T)
PCA_test_umap = umap_model.transform(PCA_test_space.T)

print ('PCA_train_umap',PCA_train_umap.shape)

# UMAP on LDA spaces

LDA_train_umap = umap_model.fit_transform(LDA_train_space.T)
LDA_test_umap = umap_model.transform(LDA_test_space.T)

# Define a colormap for labels 1 to 30

num_labels = 30

cmap = cm.get_cmap('tab20b', num_labels) # Ensure the
— colormap has 30 colors

norm = mcolors.Normalize(vmin=1, vmax=num_labels) #
— Normalize for the range 1-30

# Plot PCA UMAP embeddings

plt.figure(figsize=(12, 6))

plt.subplot(l, 2, 1)

sc = plt.scatter(PCA_train_umap[:, 0], PCA_train_umap[:, 1],
— c=train_labels, cmap=cmap, norm=norm, alpha=0.7)
plt.title(£"UMAP Embedding of PCA Training Space p =

— {num_components}")

plt.xlabel("Dimension 1")

plt.ylabel("Dimension 2")

cb = plt.colorbar(sc, label="Ground Truth Labels")

# cb.set_ticks(range(0, num_labels,5)) # Set ticks from 1
- to 30

# cb.set_ticklabels(range(1, num_labels + 1)) # Label ticks
— from 1 to 30

# plt.show()

# plt. figure(figsize=(12, 6))

plt.subplot(l, 2, 2)

sc = plt.scatter(PCA_test_umap[:, 0], PCA_test_umapl[:, 1],
— c=predicted_labels_PCA, cmap=cmap, norm=norm, alpha=0.7)
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plt.title(f"UMAP Embedding of PCA Test Space p =
< {num_components}")

plt.xlabel("Dimension 1")

plt.ylabel("Dimension 2")

cb = plt.colorbar(sc, label="Predicted Labels")

plt.show()

plt.figure(figsize=(12, 6))

plt.subplot(l, 2, 1)

sc = plt.scatter(LDA_train_umap([:, O], LDA_train_umap([:, 1],
< c=train_labels, cmap=cmap, norm=norm, alpha=0.7)
plt.title(£"UMAP Embedding of LDA Training Space p =

— {num_components}")

plt.xlabel("Dimension 1")

plt.ylabel("Dimension 2")

cb = plt.colorbar(sc, label="Ground Truth Labels")

plt.subplot(l, 2, 2)

sc = plt.scatter(LDA_test_umap[:, 0], LDA_test_umap[:, 1],
- c=predicted_labels_LDA, cmap=cmap, norm=norm, alpha=0.7)
plt.title(£"UMAP Embedding of PCA Test Space p =

— {num_components}")

plt.xlabel("Dimension 1")

plt.ylabel("Dimension 2")

cb = plt.colorbar(sc, label="Predicted Labels")

plt.show()
UMAP_autoencoder () :

#p = [3,8,16]

num_components = 16
train_data,train_label,test_data,test_label =

— autoencoder.autoencoder_features (num_components)
accuracy_a,predicted_labels_a = NN_classifier(train_data.T,
— test_data.T, train_label, test_label)

# Apply UMAP to reduce PCA and LDA spaces to 2D

# 1f num_components == 5: # Example: Apply UMAP only for
- p=b

print('run umap')

umap_model = umap.UMAP(n_components=2, random_state=42)
print('train_data',train_data.shape)

# UMAP on PCA spaces

encoder_train_umap = umap_model.fit_transform(train_data)
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408
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oder_test_umap = umap_model.transform(test_data)

# Define a colormap for labels 1 to 30
num_labels = 30
cmap = cm.get_cmap('tab20b', num_labels) # Ensure the

s
nor:

—

colormap has 30 colors
m = mcolors.Normalize(vmin=1, vmax=num_labels) #
Normalize for the range 1-30

# Plot PCA UMAP embeddings

plt.figure(figsize=(12, 6))
plt.subplot(l, 2, 1)
sc = plt.scatter(encoder_train_umap[:, 0],
— encoder_train_umap[:, 1], c=train_label, cmap=cmap,
— norm=norm, alpha=0.7)
plt.title(£f"UMAP Embedding of autoencoder Training Space p =
— {num_components}")
plt.xlabel("Dimension 1")
plt.ylabel("Dimension 2")
cb = plt.colorbar(sc, label="Ground Truth Labels")
plt.subplot(l, 2, 2)
sc = plt.scatter(encoder_test_umap[:, 0],
— encoder_test_umapl[:, 1], c=predicted_labels_a,
< cmap=cmap, norm=norm, alpha=0.7)
plt.title(£"UMAP Embedding of autoencoder Test Space p =
— {num_components}")
plt.xlabel("Dimension 1")
plt.ylabel("Dimension 2")
cb = plt.colorbar(sc, label="Predicted Labels")
plt.show()
# UMAP_autoencoder()
# auto_encoder_plot()
PCA_LDA_Auto_plot()
# UMAP_PCA_LDA()
#TASK 3
import numpy as np
import cv2
import glob
import os
import matplotlib.pyplot as plt

26




458

459

460

461

462

def

def

def

load_data(folder_type):
# Specify the base path for the folders
base_path = 'CarDetection'

# Construct full paths for the positive and negative image
— directories

pos_path = os.path.join(base_path, folder_type, 'positive')
neg_path = os.path.join(base_path, folder_type, 'negative')

# Function to load images from a directory
def load_images_from_folder(folder):
images = []
for filename in os.listdir(folder):
img_path = os.path.join(folder, filename)
# Read the image using cv2
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
if img is not None:
# Optionally, convert the image from BGR to RGB
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
images.append (img)
else:
print(f"Failed to load image at {img_pathl}")
return np.array(images)

# Load positive and megative images
image_array_pos = load_images_from_folder (pos_path)
image_array_neg = load_images_from_folder (neg_path)

# Generate label arrays
label_array_pos = np.ones(len(image_array_pos))
label_array_neg = np.zeros(len(image_array_neg))

return image_array_pos, image_array_neg, label_array_pos,
— label_array_neg

integral_image (image) :

"-Compute the integral image using a data type that can
— handle larger numbers to avoid overflow. """

# Ensure the data type ts large enough to handle the sums
return np.cumsum(np.cumsum(image.astype(np.int64), axis=0),
— axis=1)

haar_feature(ii, top_left, width, height, orientation):
X, y = top_left
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def

try:
if orientation == 'horizontal':
mid = y + height // 2
if y + 2 * height > ii.shape[1]:
return 0
white = ii[x + width, mid] - iil[x, mid]
black = ii[x + width, y + height] - iilx, y +
— height]
else:
mid = x + width // 2
if x + 2 * width > ii.shape[0]:
return 0
white = ii[mid, y + height] - iil[mid, y]
black = ii[x + width, y + height] - iil[x, y +
~ height]

feature = white - black
if feature > np.iinfo(up.int32) .max: # Check <f feature
— value 1s too large
print ("Feature computation overflow:
return feature
except IndexError:
# print ("IndexError with parameters:", =, y, width,
— height, orientation)
return O

", feature)

extract_features(images):
""" Extract Haar features from a set of images, each image
— 158 20z40 pizels. """
features = []
for image in images:
ii = integral_image (image)
img_features = []
# Define feature sizes and positions here:
for width in range(l, 21, 4): # Adjust for plausible
— widths
for height in range(l, 41, 4): # Adjust for
— plausible heights
for x in range(21 - width): # Avotd going out
— of z bounds
for y in range(41 - height): # Avoid going
— out of y bounds
# Horizontal feature, check bounds
— 1inside the function
if y + 2 * height <= 40: # Adjusted
— bounds for horizontal feature
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feature_val = haar_feature(ii, (x,
— y), width, height, 'horizontal')
img_features.append(feature_val)

# Vertical feature, check bounds inside

— the function

if x + 2 * width <= 20: # Adjusted

— bounds for wertical feature
feature_val = haar_feature(ii, (x,
— y), width, height, 'vertical')
img_features.append(feature_val)

features.append(img_features)

return np.array(features)

weak_classifier(weights, feats, labels):
# Normalize the weights
weights /= np.sum(weights)

# Initialize variables to track the best classtifier
min_error = np.inf

best_weak_cl = None

best_pred = None

# Iterate over each feature
n_samples, n_features = feats.shape
for feature_index in range(n_features):

# Sort features and related labels and weights
sorted_indices = np.argsort(feats[:, feature_index])
sorted_feats = feats[sorted_indices, feature_index]
sorted_weights = weights[sorted_indices]
sorted_labels = labels[sorted_indices]

# Calculate total positive and negative weights

Tp = np.sum(sorted_weights[sorted_labels == 1])

Tn = np.sum(sorted_weights[sorted_labels == 0])
print('running weak_classifier TP',Tp)

# Inittalize cumulative sums

Sp = 0 # Cumulative sum of weights for positive labels
Sn = 0 # Cumulative sum of weights for negative labels
errl = Tp # Initial error if all are predicted as

— positive (threshold at -inf)

err2 = Tn # Initial error <if all are predicted as

< mnegative (threshold at +inf)

for i in range(n_samples - 1):
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if sorted_labels[i] ==

Sp += sorted_weights[i]
else:

Sn += sorted_weights[i]

# Compute errors for both polarities

errl = Sn + (Tp - Sp) # Samples below threshold are
— negative

err2 = Sp + (Tn - Sn) # Samples below threshold are
— Dpositive

# Check <f we can split at this point

if sorted_feats[i] != sorted_feats[i + 1]:
threshold = (sorted_feats[i] + sorted_feats[i +
-~ 11) / 2.0

if errl < min_error:
min_error = errl
best_weak_cl = [feature_index, threshold,
o '>="]
best_pred = np.where(feats[:, feature_index]
— >= threshold, 1, 0)
if err2 < min_error:
min_error = err?2
best_weak_cl = [feature_index, threshold,
o '<']
best_pred = np.where(feats[:, feature_index]
< < threshold, 1, 0)

return best_weak_cl, min_error, best_pred

def update_weights(weights, predictions, labels, alpha):
" Update wetghts of the training samples. """
weights *= np.exp(alpha * (predictions != labels))
return weights / weights.sum()

def cascade(train_pos_feature, train_neg_feature, label_pos,
— label_neg, req_tpr, req_fpr, max_num_weak_clf):

n_pos = train_pos_feature.shape[0]

n_neg = train_neg_feature.shape[0]

features = np.vstack((train_pos_feature, train_neg_feature))
labels = np.concatenate((label_pos, label_neg))
weights = np.ones(n_pos + n_neg) / (n_pos + n_neg)

classifiers = []

print('running cascade')
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for _ in range(max_num_weak_clf):
clf, error, predictions = weak_classifier(weights,
— features, labels)
alpha = 0.5 * np.log((1 - error) / max(error, 1le-10))
classifiers.append((clf, alpha))

weights = update_weights(weights, predictions, labels,
— alpha)

# Calculate cascade output
agg_predictions = np.zeros(n_pos + n_neg)
for clf, alpha in classifiers:
predictions = np.where(features[:,
— clf['feature_index']] < clf['threshold'], 1, -1)
— if clf['inequality'] == 'lt' else
— np.where(features[:, clf['feature_index']] >=
— clf['threshold'], 1, -1)
agg_predictions += alpha * predictions

# Determine classtfication threshold
threshold = np.min(agg_predictions[:n_pos]) # Min among
— positives

# Evaluate
classified_pos = (agg_predictions[:n_pos] >= threshold)
classified_neg = (agg_predictions[n_pos:] >= threshold)

TPR
FPR

np.mean(classified_pos)
np.mean(classified_neg)

print('TPR',TPR)
print ('FPR',FPR)

if TPR >= req_tpr and FPR <= req_fpr:
break # Early stopping

# Refinement of dataset

misclassified_neg_indices = np.where(agg_predictions[n_pos:]
— < threshold) [0]

refined_neg_features =

— train_neg_feature[misclassified_neg_indices]
refined_neg_labels = label_neg[misclassified_neg_indices]

return refined_neg_features, refined_neg_labels,
< classifiers, {'TPR': TPR, 'FPR': FPR}
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def load_or_initialize_cascade(filename):
- Attempt to load a previously saved cascade model, or
— 1initialize new structures if none exist. """
if os.path.exists(filename):
with np.load(filename) as data:
return list(datal['classifiers']),
— list(data['alphas']), list(datal'fprs'])
else:
return [1, [1, []

def save_cascade(filename, classifiers, alphas, fprs):
""" Save the cascade model to a compressed file. """
np.savez_compressed(filename, classifiers=classifiers,
— alphas=alphas, fprs=fprs)

def training function(tr_pos_ft, tr_neg ft, tr_pos_1bl,

< tr_neg_1lbl, max_stages, req_tpr, req_fpr, max_num_weak_clf):
filename = 'classifier_stages.npz'
classifier_stages, weight_stages, false_positive_rates =
— load_or_initialize_cascade(filename)

if len(classifier_stages) >= max_stages:
print("Loaded pre-trained model with sufficient
— stages.")
return classifier_stages, weight_stages,
— false_positive_rates

current_neg_ft = tr_neg_ft
current_neg_lbl = tr_neg_lbl

while len(classifier_stages) < max_stages:
refined_neg_ft, refined_neg_1bl, stage_classifiers,
< metrics = cascade(
tr_pos_ft, current_neg_ft, tr_pos_1bl,
— current_neg_lbl, req_tpr, req_fpr,
— max_num_weak_clf

classifier_stages.append(stage_classifiers)
weight_stages.extend([clf[1] for clf in

— stage_classifiers]) # Assuming clf tuple contains
< (classifter, alpha)
false_positive_rates.append(metrics['FPR'])
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def

def

# Refine dataset by removing correctly classtified
— negatives

current_neg_ft = refined_neg_ft

current_neg_lbl = refined_neg_lbl

print('false_positive_rates',false_positive_rates)
# Early stopping +f FPR ts already below required or mo
— negatives left
if metrics['FPR'] <= req_fpr or len(current_neg ft) ==
- 0:

print ("Early stopping: FPR threshold met or no

< negatives left.")

break

save_cascade(filename, classifier_stages, weight_stages,
— false_positive_rates)

return classifier_stages, weight_stages,

— false_positive_rates

load_trained_cascade(filename) :

""" Load the trained cascade model from a compressed file.
nmnn

data = np.load(filename)

return datal'classifiers'], datal'alphas'],datal['fprs']

apply_classifier(features, classifier):
" Apply a weak classifier to the given features.
feature_index, threshold, polarity = classifier
if polarity == 'lt':

return features[:, feature_index] < threshold
else:

return features[:, feature_index] >= threshold

nmnn

testing_function(trained_cascade, test_positive_features,
test_negative_features):
# = trained_cascade
classifiers, alphas,_ =
— load_trained_cascade(trained_cascade)
# Combine test features
test_features = np.vstack((test_positive_features,
— test_negative_features))
# Labels for computing metrics
test_labels =
— np.hstack((np.ones(len(test_positive_features)),
— np.zeros(len(test_negative_features))))
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false_positive_rates []

false_negative_rates = []

# Aggregate predictions from each stage
stage_predictions = np.zeros(test_features.shape[0])

for i, stage in enumerate(classifiers):
stage_sum = np.zeros(test_features.shape[0])
for clf, alpha in zip(stage, alphas[i]):
predictions = apply_classifier(test_features, clf)
stage_sum += alpha * (2 * predictions - 1) #
— Convert boolean to {-1, 1}

# Calculate the threshold for binary classification
threshold = np.sum(alphas[i]) * 0.5
stage_output = (stage_sum > threshold) .astype(int)

# Calculate FPR and FNR
positive_test_predictions =

- stage_output[:len(test_positive_features)]
negative_test_predictions =

— stage_output[len(test_positive_features):]

FPR = np.mean(negative_test_predictions == 1)
FNR = np.mean(positive_test_predictions == 0)

false_positive_rates.append (FPR)
false_negative_rates.append (FNR)
# Update stage_predictions for final output
stage_predictions = stage_output

# Reporting results

print("False Positive Rates by stage:",
— false_positive_rates)

print("False Negative Rates by stage:",
- false_negative_rates)

return false_positive_rates, false_negative_rates

plot_adaboost_rates(te_FP_rates, te_FN_rates, tr_FP_rates):
# Define stages with an increment of 1 starting from 1
stages = list(range(l, len(te_FP_rates) + 1))

# Plot te_FP and te_FN rates on the first plot
plt.figure(figsize=(12, 6))

plt.plot(stages, te_FP_rates, label='Test False Positive
— Rate (te_FP)', marker='o', linestyle='-', linewidth=2)
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plt.plot(stages, te_FN_rates, label='Test False Negative
— Rate (te_FN)', marker='s', linestyle='-', linewidth=2)

# Annotate te_FP and te_FN rates

for i, rate in enumerate(te_FP_rates):
plt.text(stages[i], rate, f"{rate:.2f}", fontsize=9,
— ha='center', va='bottom')

for i, rate in enumerate(te_FN_rates):
plt.text(stages[i], rate, f"{rate:.2f}", fontsize=9,
— ha='center', va='bottom')

# Configure z-axts with integer steps
plt.xticks(stages) # Ensure the z—azis only shows integers
— at each step

# Add labels, title, legend, and grid
plt.xlabel('Stage', fontsize=12)

plt.ylabel('Rate', fontsize=12)

plt.title('Test FP and FN Rates per Stage of AdaBoost
«» Cascade', fontsize=14)

plt.legend(fontsize=10)

plt.grid(alpha=0.3)

plt.tight_layout()

plt.show()

# Plot tr_FP rates on a separate plot
plt.figure(figsize=(12, 6))

plt.plot(stages, tr_FP_rates, label='Train False Positive
< Rate (tr_FP)', marker='d', linestyle='-', linewidth=2,
— color='green')

# Annotate tr_FP rates

for i, rate in enumerate(tr_FP_rates):
plt.text(stages[i], rate, f"{rate:.2f}", fontsize=9,
< ha='center', va='bottom')

# Configure z-azxts with integer steps
plt.xticks(stages) # Ensure the z-azis only shows integers
— at each step

# Add labels, title, legend, and grid
plt.xlabel('Stage', fontsize=12)

plt.ylabel('Rate', fontsize=12)

plt.title('Train FP Rates per Stage of AdaBoost Cascade',
— fontsize=14)

plt.legend(fontsize=10)
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plt.grid(alpha=0.3)
plt.tight_layout ()
plt.show()

adaboost () :

train_pos, train_neg,tr_label_pos,tr_label_neg =
— load_data('train')

test_pos, test_neg,_,_ = load_data('test')

# print (train_pos.shape)

# train_pos_feature = extract_features(train_pos)
# train_neg_feature = extract_features(train_neg)

# test_pos_feature = extract_features(test_pos)
# test_neg_feature = extract_features(test_neg)

np.save('./task3npy/train_pos_feature.npy', train_pos_feat]

np.save('./task3npy/train_neg_feature.npy', train_neg_feat]

%£%£%

- np.save('./task3npy/test_neg_feature.npy’', test_neg_featun
< np.save('./task3npy/test_pos_feature.npy',test_pos_featun
# print ('saved features')

# np.save('train_pos_feature.npy', train_pos_feature)
train_pos_feature =

— np.load('./task3npy/train_pos_feature.npy')
train_neg_feature =

— np.load('./task3npy/train_neg_feature.npy')
test_neg_feature =

— np.load('./task3npy/test_neg_feature.npy')
test_pos_feature =

— np.load('./task3npy/test_pos_feature.npy')

# 710%14160
print('loaded features')

train_pos_label = np.ones((train_pos.shape[0]))
train_neg_label = np.zeros((train_neg.shape[0]))
test_pos_label = np.ones((test_pos.shape[0]))
test_neg_label = np.zeros((test_neg.shape[0]))
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max_stages = 20

# Required true positive rate (TPR) at each stage
target_tpr = 0.99

# Required false posttive rate (FPR) at each stage
target_fpr = 0.50

# Mazimum number of weak classifiers per stage
max_num_wclf = 50

print('start training')

classifier_stages, weight_stages, false_positive_rates =

< training_function(train_pos_feature, train_neg_feature,
— tr_label_pos, tr_label_neg, max_stages, target_tpr,

— target_fpr, max_num_wclf)

filename = 'classifier_stages.npz'
te_FP_rates, te_FN_rates = testing_function(filename,
— test_pos_feature, test_neg_feature)

plot_adaboost_rates(te_FP_rates, te_FN_rates)

adaboost ()
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