
ECE 661 - Assignment 10

Ali Almuallem, aalmuall@purdue.edu

December 2024

1 Theory Questions

1.1 Overfitting

Overfitting occurs when a model (often a machine learning model) learns the training data very well
but fail to generalize to the testing data. This can be due to the scarcity of the training data, or to
the capacity of the model. In other words, overfitting can be seen as memorizing the training data but
failing to generalize to unseen data. If a model is too complex or too simple for the underlying data, it
may fail to generalize. [2]

In machine learning, however, there is some recent research that argue that overparametrization may
lead to overcome the outfitting phenomnon in what is known as ”Double Descent” [3] which is explained
below.

1.1.1 Do models overfit in the ”modern” overparametrized models?

There is recent research that suggests that as the model complexity gets bigger, the model will ini-
tially overfit to the training data (the under-parametrized region in Fig. 1), but as model gets ”over-
parametrized”, it will reach a point where it will actually gets better in generalization and avoids overfit-
ting. This hypothesis is known in the literature as ”over-parametrization”, which as the name suggests,
make large models (larger than usually necessary for a given problem) and performs well on the training
and testing data. This challenges the usual conventional thinking that very large models will always
yield to overfitting. [4]

Figure 1: Overparametrization. To the left of the interpolation threshold is the classical thinking of
model complexity and overfitting, to the right, the modern hypothesis that suggests that sufficiently
large models do not suffer from overfitting. Figure from: [4]

1.2 Reparameterization Trick

The reparameterization trick is a technique used in VAEs and variational inference in general to overcome
a backpropagation problem through a random sampling step. The issue arises in VAEs when the latent
vector z samples from a distribution, i.e.: z ∼ N (µ, σ), that steps is non-differentable, and therefore the
loss cannot be calculated and backpropagated.

The trick therefore solves this issue by defining a latent vector z according to the following equation:

z = µ+ σ ∗ ϵ (1)

Where ϵ ∼ N (0, 1). Note however, that drawing a sample from, z ∼ N (µ, σ) or ϵ ∼ N (0, 1) is nont-
differntiable. However, imploying the trick in the equation above makes z differentiable despite having
a non-learnable parameter ϵ.

1

The role of the new parameter ϵ is said to give a differentiable degree of freedom to the decoder
(generator) when it generates a new image from the latent vector z. Others describe the new parameter
ϵ as adding noise to the sampled z. [2], [1]

2 Face Recognition using PCA and LDA

The dataset provided has 30 persons faces. Each person has 21 images of their face from slightly different
directions. The first four faces can be seen in Fig. 2 Note: we resized the images to 32 × 32 for faster
computations.

Figure 2: First four persons faces

2.1 Principal Component Analysis: PCA

PCA is a statistical method commonly used for dimentionality reduction tasks. PCA aims to find a lower-
dimensional representation of an underlying high-dimensional data. It tries to find directions (prinicipal
components) that maximizes the variation in the data so that it can be easily dismantled or identified.

PCA achieves that using the following steps:

• Given N vectorized images x⃗i i = 1, 2, ..., N where each image is represented as a column in the
matrix.

• Compute the mean image vector m⃗ = 1
N

∑N
i=1 x⃗i

• Subtract the mean from the images: X =
[
x⃗1 − m⃗ x⃗2 − m⃗ · · · x⃗N − m⃗

]
• To avoid variations due to differences in illumination, normalize the each image in x⃗i

• Calculate the covariance C = 1
N

∑N
i=1

{
(x⃗i − m⃗)(x⃗i − m⃗)T

}
• The above calculation is expensive since it’s XXT so if X is of size 4096 × 1000, the resulting C
is of size 4096× 4096 = +16million which is huge. So, we employ a computational trick described
in [2]. For the interest of conciseness, we refer the reader to the reference for the details.

• We calculate the eigenvectors WK =
[
w⃗1 w⃗2 · · · w⃗K

]
of our covariance matrix.

Figure 3: The first 4 eigen faces

• Each vector w⃗i acts as a feature for classification.

• The data can be then projected onto the new space: y⃗ = WT
K(x⃗− m⃗)

2

Figure 4: PCA accuracy as a function of dimensionality p.

2.2 UMAP for PCA

The UMAP for PCA shows a good overall seaparation between classes that increases with the dimen-
sionality (value of P). However, there are still many classes that are very close to each other or cannot
be disentagled, at least visually by inspecting the plot. We will see that this is slightly different with
LDA.

Figure 5: UMAP for PCA with P=3. Left: training. Right: Testing

Figure 6: UMAP for PCA with P=8. Left: training. Right: Testing

3

Figure 7: UMAP for PCA with P=16. Left: training. Right: Testing

2.3 Linear Discriminant Analysis: LDA

Just like PCA, LDA is another dimensionality reduction method, but unlike PCA, LDA tries to find the
direction of a vector space that maximizes the separability between classes, i.e.: it tries to maximizes
the descrimination between classes. Instead of maximizing the overall variance, LDA aims to maximizes
the between-class s scatter and minimize the within-class scatter.

The steps are generally as follow:

• Let m⃗ be the global mean over all images.

• Define the between-classes scatter as: SB = 1
|C|

∑|C|
i=1(m⃗i − m⃗)(m⃗i − m⃗)T

• Define the within-class scatter as: SW = 1
|C|

∑|C|
i=1

1
|Ci|

∑|Ci|
k=1(x⃗

i
k − m⃗i)(x⃗

i
k − m⃗i)

T

• If w⃗ is the underlying vector space, then w⃗TSBw⃗ is the projection of the between-classes scatter

on w⃗ and w⃗TSww⃗ it the projection of the within-class scatter on w⃗.

• Use the Fisher Discriminant Function to maximizes the between-class and minimize the within-class
scatter as follows: J(w⃗) = w⃗TSBw⃗

w⃗TSW w⃗

• The Fisher function must satisfy SBw⃗ = λSW w⃗ for some constant λ.

• If the within-class scatter is assumed non-singular, the problem can be trasnformed into an eigen-
decomposition problem as follows: S−1

W SBw⃗ = λw⃗

• Additional steps might be needed if it is singular. For the sake of conciseness, we refer the reader
for [2] for more details.

Figure 8: LDA result as a function of dimensionality.

4

2.4 Overall observation of PCA and LDA

In general, both methods performed similarity with LDA performing a notch better. It could be that
PCA needs more dimenstionality. It could also be the nature of PCA objective, as it does not work on
the variance between and within classes, but rather the overall variance, which makes LDA better in
some situations. However, the obtained results still achieved pretty good accuracy with both methods.

Figure 9: A comparison between LDA and PCA

2.5 UMAP for LDA

The LDA UMAP plots are much more discriminatory than PCA. The seaparation is ”cleaner”, i.e.: there
is only slight or no overlap between classes. Looking at P=3 graphs, we can see only few classes that
overlap, and as the dimensionality gets larger P > 3, those overlaps disappear. This is supported by the
accuracy plots provided earlier, which shows a very high accuracy on the testing dataset as P increases.

Figure 10: UMAP for LDA with P=3. Left: training. Right: Testing

Figure 11: UMAP for LDA with P=8. Left: training. Right: Testing

5

Figure 12: UMAP for LDA with P=16. Left: training. Right: Testing

3 Face Recognition using an Autoencoder

We utilized the provided code and obtain the testing accuracies on different network that were pre-
trained on different dimensionalities, namely: P = 3, 8, 16. As expected, the accuracy increased as the
dimensionality insreases, reaching 100% with P = 16 as seen in Fig. 13. We will compare the autoencoder
results against PCA and LDA in a later subsection, and detail the accuracies in Table. 1

Figure 13: The pre-trained autoencoder result as a function of dimensionality

3.1 UMAP for Autoencoder

Figure 14: UMAP for Autoencoder with P=3. Left: training. Right: Testing

6

Figure 15: UMAP for Autoencoder with P=8. Left: training. Right: Testing

Figure 16: UMAP for Autoencoder with P=16. Left: training. Right: Testing

3.2 Overall comparison: LDA v.s. Autoencoder v.s. PCA

We compare the results of the provided pre-trained autoencoder against our implemented LDA and
PCA on the testing data for P values of 3, 8, and 16. As we can see from Fig. 17, the LDA performed
the best, especially when the dimensionality was low (P=3), but it has almost the same accuracy as the
autoencoder when the dimensionality is sufficiently large (P=16). The PCA in our experiment performed
well but slighly lower than the other two methods, which suggests that it could be an issue with the
PCA not having the same discrimination power as the LDA and autoencoder, as it does not seek to
”descriminate” in its objective function like the LDA does.

Figure 17: The testing accuracy result for P= 3, 8, 16 for LDA, Autoencoder, and PCA.

7

P = 3 P = 8 P = 16
Autoencoder 90.159% 99.048% 100%

PCA 87.937% 96.984% 97.937%
LDA 96.667% 100% 100%

Table 1: Accuracy results with different dimensionality P . Highest values are in bold

4 Object Detection using Cascaded AdaBoost Classifiers

AdaBoost, short for Adaptive Boosting, is a learning algorithm that combines multiple ”weak” classifiers
into a single ”strong” classifier. A weak classifier here is one that performs slighly better than random
chance, while a strong classifier achieves high accuracy rates and low false positive and false negative
rates.

The idea behind the cascaded classifers relies on the exponential rule, where if we have a true positive
rate of xTP = 0.99 and a false positive rate of xFP = 0.3 as a start, having 10 classifiers would yield:
x10
TP = 0.9910 ≈ 0.90 and x10

FP = 0.3010 ≈ 0.000006.
The general outline for how AdaBoost works is as follows. For detailed steps and intuition, we refer

the reader to the comprehensive guide by Prof. Kak [2]:

• Compute image features. There are multiple ways to do that. I choose to implement HAAR like
features with windw of sizes: 2, 4, 8, 16.

• We initilize a weight matrix uniformly w. They are then updated for each sample to determine
wether it should be considered in the next iterations.

• Get a weak classifier that specifically targets the training samples that were misclassified by the
previous weak classifier (if any). We’ll denote it as ht

• Apply ht to all training data. The classifier can bee seen as a mapping ht : X 7→ {−1, 1}

• If Dt is the probability distribution, we use the following equation to measure the weighted mis-
clssification rate Prob{ht(xi) ̸= yi where yi is the label

ϵt =
1

2

m∑
i=1

Dt(xi) · |ht(xi)− yi| (2)

• We calculate the trust factor for the current classifier

αt =
1

2
ln

(
1− ϵt
ϵt

)
(3)

• Update the probability distribution for the next iteration

Dt+1(xi) =
Dt(xi)e

−αtyiht(xi)

Zt
(4)

Where Zt is a normalization factor. So it is set such that

Dt+1(xi) =
Dt(xi)e

−αtyiht(xi)

Zt
(5)

• Iterate back to the 3rd step by getting another weak classifer.

4.1 AdaBoost Classification performance

The data for the AdaBoost classification tasks consis of images of cars and other images that do not
contain cars as seen in Fig. 18. The dataset images are pretty small (40×20, which could have impacted
the accuracy of our feature extraction routine. We expand on that in the following subsections.

8

Figure 18: Left: Positive sample (car present). Right: Negative sample (car not present)

Figure 19: AdaBoost performance. Left: training dataset. Right: Testing dataset

4.2 Observation on AdaBoost

The plots above in Fig. 19 shows clearly that the classification performance improves substantially as
the cascade levels increases. However, it is noticable that the performance plateaus around level four in
my implementation. This could be due to a number of reason among which is the dataset which consist
of very small low quality images which might have been hard to extract the features from. Another
possibility is my feature extraction method which consisted of a HAAR-like windowing technique. The
choose of windows sizes might influence the classification performance.

Non-theless, the lowest false positive and false negatives rates achieved are still remarkable as seen
in Table.2.

Training Testing
FP 0.0005688 0.0068182
FN 0.000000 0.000000

Table 2: Lowest false positive (FP) and false negative (FN) rates achieved on both training and testing
datasets.

.

References

[1] Gregory Gundersen. The Reparameterization Trick — gregorygundersen.com. https://

gregorygundersen.com/blog/2018/04/29/reparameterization/, 2018. [Accessed 30-11-2024].

[2] Avinash Kak. Ece 661: Computer vision. https://engineering.purdue.edu/kak/

computervision/, 2024.

[3] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent. OpenAI Blog, 2019.

[4] Jaideep Ray. What are Over-parameterized models? - medium.com. https://medium.com/

better-ml/what-are-over-parameterized-models-40c53c304367, 2022. Accessed: 30-11-2024.

9

https://gregorygundersen.com/blog/2018/04/29/reparameterization/
https://gregorygundersen.com/blog/2018/04/29/reparameterization/
https://engineering.purdue.edu/kak/computervision/
https://engineering.purdue.edu/kak/computervision/
https://medium.com/better-ml/what-are-over-parameterized-models-40c53c304367
https://medium.com/better-ml/what-are-over-parameterized-models-40c53c304367

5 Code

Listing 1: Assignment 10 Code

1

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import cv2

5 import umap

6 import os

7 import pickle

8

9

10 def reading_images(images_directory , num_image_per_class , num_classes ,

resize = True , resize_to = 32):

11 """ Read images from a directory

12 Images are of this format: xx_yy.png , where xx is the class number ,

and yy is the index of the image per class

13 Input:

14 - images_directory: the folder where images reside

15 - num_image_per_class: number of images per class

16 - num_classes: the number of classes

17

18 returns:

19 - labels: numpy array of labels

20 - images: numpy array of the flatten images. Each image is a column

vector

21 """

22 labels = []#np.linspace(1, num_classes , num_classes , dtype= int ,

endpoint= True)

23

24 #Classes starts at 1

25 for class_num in range(1, num_classes +1):

26

27 #Images start at 1

28 for image_num in range(1, num_image_per_class +1):

29 current_class_num = str(class_num) if class_num >=10 else

"0"+ str(class_num)

30 current_image_num = str(image_num) if image_num >=10 else

"0"+ str(image_num)

31 current_path = images_directory +"/"+ current_class_num +"_"+

current_image_num +". png"

32

33 #Opening image

34 current_image = cv2.imread(current_path)

35

36 # Resize the image

37 if (resize):

38 current_image = cv2.resize(current_image , (resize_to ,

resize_to),

39 interpolation = cv2.

INTER_AREA)

40

41 #Convert to grayscale

42 current_image = cv2.cvtColor(current_image , cv2.

COLOR_BGR2GRAY)

43

44 current_image = np.array(current_image).flatten ()

10

45 current_image = np.expand_dims(current_image , 1)

46

47 #If it’s the first class and image , create the numpy array

48 if (class_num ==1 and image_num ==1):

49 all_images = current_image

50 else:

51 all_images = np.concatenate ((all_images , current_image)

, axis = 1)

52 labels.append(class_num)

53 return all_images , np.array(labels)

54

55

56

57 # Define the kNN function

58 def knn_classify(trainX , trainY , testX , k):

59 predictions = []

60 for test_point in testX:

61 distances = np.linalg.norm(trainX - test_point , axis =1) #

Compute distances

62 neighbors = np.argsort(distances)[:k] # Find k nearest

neighbors

63 neighbor_labels = trainY[neighbors] # Get their labels

64 prediction = np.bincount(neighbor_labels).argmax () # Majority

vote

65 predictions.append(prediction)

66 return np.array(predictions)

67

68

69 #Compute PCA

70 def manual_pca(X, num_components):

71 mean_vector = np.mean(X, axis =0) # Compute mean

72 X_centered = X - mean_vector # Center the data

73 covariance_matrix = np.dot(X_centered.T, X_centered) / (X_centered.

shape [0] - 1) # Covariance matrix

74 eigenvalues , eigenvectors = np.linalg.eig(covariance_matrix) #

Eigen decomposition

75 idx = np.argsort(-eigenvalues) # Sort eigenvalues in descending

order

76 eigenvectors = eigenvectors [:, idx[: num_components]] # Select top

eigenvectors

77 X_reduced = np.dot(X_centered , eigenvectors) # Project data to the

new basis

78 return X_reduced , mean_vector , eigenvectors

79

80 # Compute accuracy

81 def compute_accuracy(true_labels , predicted_labels):

82 return np.mean(true_labels == predicted_labels) * 100

83

84 #LDA

85 # Define the LDA function

86 def manual_lda(trainX , trainY , num_components):

87 classes = np.unique(trainY)

88 overall_mean = np.mean(trainX , axis =0)

89

90 # Initialize within -class scatter matrix and between -class scatter

matrix

91 Sw = np.zeros((trainX.shape[1], trainX.shape [1]))

92 Sb = np.zeros((trainX.shape[1], trainX.shape [1]))

11

93

94 for c in classes:

95 class_samples = trainX[trainY == c]

96 class_mean = np.mean(class_samples , axis =0)

97 Sw += np.dot((class_samples - class_mean).T, (class_samples -

class_mean))

98 n_class_samples = class_samples.shape [0]

99 mean_diff = (class_mean - overall_mean).reshape(-1, 1)

100 Sb += n_class_samples * np.dot(mean_diff , mean_diff.T)

101

102 eigvals , eigvecs = np.linalg.eig(np.linalg.pinv(Sw).dot(Sb))

103 idx = np.argsort(-eigvals.real) # Sort eigenvalues in descending

order

104 eigvecs = eigvecs[:, idx[: num_components]]. real # Select top

eigenvectors

105

106 # Project data onto the LDA components

107 trainX_lda = np.dot(trainX , eigvecs)

108 return trainX_lda , eigvecs

109

110

111 #Plot UMAP

112 def plot_umap_embeddings(trainX_proj , trainY , testX_proj , testY_pred ,

title_train , title_test):

113 """

114 Function to plot UMAP embeddings for training and test data.

115 """

116 umap_reducer = umap.UMAP(n_components =2, random_state =42)

117

118 # Fit UMAP on training data

119 trainX_umap = umap_reducer.fit_transform(trainX_proj.real)

120 # Transform test data using the same UMAP

121 testX_umap = umap_reducer.transform(testX_proj.real)

122

123 # Plot training data

124 plt.figure(figsize =(10, 6))

125 scatter = plt.scatter(trainX_umap [:, 0], trainX_umap [:, 1], c=

trainY , cmap=’jet ’, s=15)

126 plt.title(title_train)

127 plt.xlabel ("UMAP Dimension 1")

128 plt.ylabel ("UMAP Dimension 2")

129 plt.colorbar(scatter , label=" Class Labels (Ground Truth)")

130 plt.grid()

131 plt.show()

132

133 # Plot test data

134 plt.figure(figsize =(10, 6))

135 scatter = plt.scatter(testX_umap [:, 0], testX_umap [:, 1], c=

testY_pred , cmap=’jet ’, s=15)

136 plt.title(title_test)

137 plt.xlabel ("UMAP Dimension 1")

138 plt.ylabel ("UMAP Dimension 2")

139 plt.colorbar(scatter , label=" Class Labels (Predicted)")

140 plt.grid()

141 plt.show()

142

143

144 #Reading data

12

145 trainX , trainY = reading_images(’FaceRecognition/train ’, 21, 30, True ,

32)

146 testX , testY = reading_images(’FaceRecognition/test ’, 21, 30, True , 32)

147

148 trainX = trainX.T

149 trainY = trainY.T

150 testX = testX.T

151 testY = testY.T

152

153

154 #plot the first four faces

155 fig , axes = plt.subplots(1, 4, figsize =(12, 4)) # Create a 1x4 grid of

subplots

156

157 for i in range (4):

158 # Reshape and take the real part of the eigenvector

159 image = trainX[i*21 ,:]. reshape (32, 32).real

160

161 # Plot the image

162 axes[i]. imshow(image)

163 axes[i].axis(’off ’) # Turn off axis for a cleaner look

164 axes[i]. set_title(f"Face {i+1}")

165

166 plt.tight_layout () # Adjust layout to avoid overlap

167 plt.show()

168

169

170 #PCA calculation

171

172 # Parameters

173 P = 16 # Number of principal components

174 K = 3 # Number of neighbors for KNN

175

176 # Step 1: Perform manual PCA on the training data

177 trainX_pca , train_mean , eigenvectors = manual_pca(trainX , P)

178

179 # Step 2: Project the test data using the same eigenvectors

180 testX_centered = testX - train_mean

181 testX_pca = np.dot(testX_centered , eigenvectors)

182

183 # Step 3: Classify using kNN and compute accuracies

184 train_predictions = knn_classify(trainX_pca , trainY , trainX_pca , K)

185 test_predictions = knn_classify(trainX_pca , trainY , testX_pca , K)

186

187 train_accuracy = compute_accuracy(trainY , train_predictions)

188 test_accuracy = compute_accuracy(testY , test_predictions)

189

190 # Print results

191 print(f"Training Accuracy: {train_accuracy :.2f}%")

192 print(f"Testing Accuracy: {test_accuracy :.2f}%")

193

194 # Step 4: Analyze accuracy for different values of P

195 p_values = range(1, P + 1)

196 train_accuracies = []

197 test_accuracies = []

198

199 for p in p_values:

200 trainX_pca , train_mean , eigenvectors = manual_pca(trainX , p)

13

201 testX_pca = np.dot(testX - train_mean , eigenvectors)

202 train_predictions = knn_classify(trainX_pca , trainY , trainX_pca , K)

203 test_predictions = knn_classify(trainX_pca , trainY , testX_pca , K)

204 train_accuracies.append(compute_accuracy(trainY , train_predictions)

)

205 test_accuracies.append(compute_accuracy(testY , test_predictions))

206

207 # Plot PCA results

208 plt.figure(figsize =(10, 6))

209 plt.plot(p_values , train_accuracies , label=" Training Accuracy", marker

=’o’)

210 plt.plot(p_values , test_accuracies , label=" Testing Accuracy", marker=’s

’)

211 plt.xlabel (" Number of Principal Components (P)")

212 plt.ylabel (" Accuracy (%)")

213 plt.title("PCA and kNN Classification Accuracy ")

214 plt.legend ()

215 plt.grid()

216 plt.show()

217

218

219 #plot the first four eigen faces

220 fig , axes = plt.subplots(1, 4, figsize =(12, 4)) # Create a 1x4 grid of

subplots

221

222 for i in range (4):

223 # Reshape and take the real part of the eigenvector

224 image = eigenvectors [:, i]. reshape (32, 32).real

225

226 # Plot the image

227 axes[i]. imshow(image)

228 axes[i].axis(’off ’) # Turn off axis for a cleaner look

229 axes[i]. set_title(f"Eigen face {i+1}")

230

231 plt.tight_layout () # Adjust layout to avoid overlap

232 plt.show()

233

234

235

236 #2. LDA calculation

237

238 # Parameters for LDA

239 L = 2 # Number of LDA components

240

241 # Perform LDA on training data

242 trainX_lda , lda_eigvecs = manual_lda(trainX , trainY , L)

243

244 # Project test data using LDA

245 testX_lda = np.dot(testX , lda_eigvecs)

246

247 # Classify using kNN

248 train_predictions_lda = knn_classify(trainX_lda , trainY , trainX_lda , K)

249 test_predictions_lda = knn_classify(trainX_lda , trainY , testX_lda , K)

250

251 train_accuracy_lda = compute_accuracy(trainY , train_predictions_lda)

252 test_accuracy_lda = compute_accuracy(testY , test_predictions_lda)

253

254 print(f"LDA Training Accuracy: {train_accuracy_lda :.2f}%")

14

255 print(f"LDA Testing Accuracy: {test_accuracy_lda :.2f}%")

256

257 # Analyze accuracy for different LDA dimensions

258 lda_dimensions = range(1, 16 + 1)

259 train_accuracies_lda = []

260 test_accuracies_lda = []

261

262 for dim in lda_dimensions:

263 trainX_lda , lda_eigvecs = manual_lda(trainX , trainY , dim)

264 testX_lda = np.dot(testX , lda_eigvecs)

265 train_predictions_lda = knn_classify(trainX_lda , trainY , trainX_lda

, K)

266 test_predictions_lda = knn_classify(trainX_lda , trainY , testX_lda ,

K)

267 train_accuracies_lda.append(compute_accuracy(trainY ,

train_predictions_lda))

268 test_accuracies_lda.append(compute_accuracy(testY ,

test_predictions_lda))

269

270 # Plot LDA results

271 plt.figure(figsize =(10, 6))

272 plt.plot(lda_dimensions , train_accuracies_lda , label=" Training Accuracy

(LDA)", marker=’o’)

273 plt.plot(lda_dimensions , test_accuracies_lda , label=" Testing Accuracy (

LDA)", marker=’s’)

274 plt.xlabel (" Number of LDA Components ")

275 plt.ylabel (" Accuracy (%)")

276 plt.title("LDA and kNN Classification Accuracy ")

277 plt.legend ()

278 plt.grid()

279 plt.show()

280

281

282 # Plot PCA vs LDA testing results

283 plt.figure(figsize =(10, 6))

284 plt.plot(lda_dimensions , test_accuracies , label="PCA Testing Accuracy",

marker=’o’)

285 plt.plot(lda_dimensions , test_accuracies_lda , label="LDA Testing

Accuracy", marker=’s’)

286 plt.xlabel (" Dimensionality ")

287 plt.ylabel (" Accuracy (%)")

288 plt.title("PCA v.s. LDA")

289 plt.legend ()

290 plt.grid()

291 plt.show()

292

293

294 #Already obtained the autoencoder numbers by running the code provided

for P=3, 8, 16

295 autoencoder_accuracies = [90.1587 , 99.0476 , 100.00]

296 PCA_3_8_16_accuracy = [test_accuracies [2], test_accuracies [7],

test_accuracies [-1]]

297 LDA_3_8_16_accuracy = [test_accuracies_lda [2], test_accuracies_lda [7],

test_accuracies_lda [-1]]

298

299

300 # Plot LDA v.s. PCA v.s. Autoencoder results

301 plt.figure(figsize =(10, 6))

15

302 plt.plot([3, 8, 16], PCA_3_8_16_accuracy , label="PCA Testing Accuracy",

marker=’o’)

303 plt.plot([3, 8, 16], LDA_3_8_16_accuracy , label="LDA Testing Accuracy",

marker=’s’)

304 plt.plot([3, 8, 16], autoencoder_accuracies , label=" Autoencoder Testing

Accuracy", marker=’s’)

305 plt.xlabel (" Dimensionality ")

306 plt.ylabel (" Accuracy (%)")

307 plt.title("LDA v.s. Autoencoder v.s. PCA")

308 plt.legend ()

309 plt.grid()

310 plt.show()

311

312

313 # Plot Autoencoder results alone

314 plt.figure(figsize =(10, 6))

315 plt.plot([3, 8, 16], autoencoder_accuracies , label=" Autoencoder Testing

Accuracy", marker=’s’)

316 plt.xlabel (" Dimensionality ")

317 plt.ylabel (" Accuracy (%)")

318 plt.title(" Autoencoder accuracy as a function of dimensionality ")

319 plt.legend ()

320 plt.grid()

321 plt.show()

322

323

324

325 #Plot the UMAP

326

327 # Experiment parameters

328 P_values = [3, 8, 16] # Example values for PCA

329 L_values = [3, 8, 16] # Example values for LDA

330

331 # Generate plots for PCA and LDA

332 for P in P_values:

333 # PCA Projection

334 trainX_pca , _, eigenvectors_pca = manual_pca(trainX , P)

335 testX_pca = np.dot(testX - train_mean , eigenvectors_pca)

336

337 # kNN Predictions

338 testY_pred_pca = knn_classify(trainX_pca , trainY , testX_pca , K)

339

340 # Plot UMAP for PCA embeddings

341 plot_umap_embeddings(

342 trainX_proj=trainX_pca ,

343 trainY=trainY ,

344 testX_proj=testX_pca ,

345 testY_pred=testY_pred_pca ,

346 title_train=f"PCA (P={P}): Training Data",

347 title_test=f"PCA (P={P}): Test Data"

348)

349

350 for L in L_values:

351 # LDA Projection

352 trainX_lda , lda_eigvecs = manual_lda(trainX , trainY , L)

353 testX_lda = np.dot(testX , lda_eigvecs)

354

355 # kNN Predictions

16

356 testY_pred_lda = knn_classify(trainX_lda , trainY , testX_lda , K)

357

358 # Plot UMAP for LDA embeddings

359 plot_umap_embeddings(

360 trainX_proj=trainX_lda ,

361 trainY=trainY ,

362 testX_proj=testX_lda ,

363 testY_pred=testY_pred_lda ,

364 title_train=f"LDA (P={L}): Training Data",

365 title_test=f"LDA (P={L}): Test Data"

366)

367

368 #3. AdaBoost

369

370 def calculate_features(img):

371 # to grayscale

372 if len(img.shape) > 2:

373 img = cv2.cvtColor(img , cv2.COLOR_BGR2GRAY)

374

375 # Compute the integral image

376 integral_img = cv2.integral(img)

377

378 window_sizes = [2, 4, 8, 16]

379 features = []

380

381 # Loop over windows

382 for win_size in window_sizes:

383 for y in range(0, img.shape [0] - win_size + 1, win_size):

384 for x in range(0, img.shape [1] - win_size + 1, win_size):

385 # horizontal feature

386 mid_x = x + win_size // 2

387 sum_left = integral_img[y + win_size , mid_x] -

integral_img[y, mid_x] \

388 - (integral_img[y + win_size , x] -

integral_img[y, x])

389 sum_right = integral_img[y + win_size , x + win_size] -

integral_img[y, x + win_size] \

390 - (integral_img[y + win_size , mid_x] -

integral_img[y, mid_x])

391 two_rect_horizontal = sum_right - sum_left

392 features.append(two_rect_horizontal)

393

394 # vertical feature

395 mid_y = y + win_size // 2

396 sum_top = integral_img[mid_y , x + win_size] -

integral_img[mid_y , x] \

397 - (integral_img[y, x + win_size] -

integral_img[y, x])

398 sum_bottom = integral_img[y + win_size , x + win_size] -

integral_img[y + win_size , x] \

399 - (integral_img[mid_y , x + win_size] -

integral_img[mid_y , x])

400 two_rect_vertical = sum_bottom - sum_top

401 features.append(two_rect_vertical)

402

403 return np.array(features)

404

405

17

406 def concatenate_feats(pos_feats , neg_feats):

407 return np.concatenate ((pos_feats , neg_feats), axis =0)

408

409

410 def get_labels_from_feats(pos_feats , neg_feats):

411 """

412 Return positvie and negative labels , un -concatenated given positive

and negative features

413 """

414 positive_labels = np.ones((pos_feats.shape [0]))

415 negative_labels = np.zeros ((neg_feats.shape [0]))

416

417 return positive_labels , negative_labels

418

419

420 def concatenate_labels(pos_labels , neg_labels):

421 combined_labels = np.concatenate ((pos_labels , neg_labels), axis =

0)

422 combined_labels = combined_labels.astype(np.uint8)

423

424 return combined_labels

425

426 #

427 def get_features(data_path , training = True):

428 """

429 Input:

430 - data_path = "CarDetection"

431 - training = True if the features needed are the training features.

False for testing data features

432 Returns:

433 - positive_feat: positive data features

434 - negative_feat: negative data features

435 - positive_labels

436 - negative_labels

437 """

438 positive_feat = []

439 negative_feat = []

440

441 for category in [" positive", "negative "]:

442 print (" Getting the features of " + category + " training data"

if training

443 else "Getting the features of " + category + " testing

data")

444 current_path = data_path

445 current_path += "/ train/" + category if training else "/test/"

+category

446 print (" Current path: ", current_path)

447

448 for file_name in os.listdir(current_path):

449 #Read the images

450 current_image = cv2.imread(current_path +"/"+ file_name)

451 if category == "positive ":

452 positive_feat.append(calculate_features(current_image))

453 else:

454 negative_feat.append(calculate_features(current_image))

455

456 #Create the labels

457 positive_feat = np.array(positive_feat)

18

458 negative_feat = np.array(negative_feat)

459

460 positive_labels , negative_labels = get_labels_from_feats(

positive_feat , negative_feat)

461

462 return positive_feat , negative_feat , positive_labels ,

negative_labels

463

464

465 #Weak classifer

466 def get_weak_classifier(combined_feats , combined_labels , weights):

467

468 #Init error to large value

469 classifier_err = 1e15

470

471 for feat in range(combined_feats.shape [1]):

472 current_feat = combined_feats [:, feat]

473

474 #Sort the features for Ranking

475 sorted_ind = np.argsort(current_feat)

476

477 #Sort the features , labels , and weights

478 current_feat_sorted = current_feat[sorted_ind]

479 current_labels_sorted = combined_labels[sorted_ind]

480 current_weights_sorted = weights[sorted_ind]

481

482 #Declare pos , neg weights

483 num_feat = combined_feats.shape [0]

484 pos_weights = np.zeros ((num_feat , 1))

485 neg_weights = np.zeros ((num_feat , 1))

486

487 #Assign pos , neg weights

488

489 pos_weights[current_labels_sorted == 1, 0] =

current_weights_sorted[current_labels_sorted == 1]

490 neg_weights[current_labels_sorted == 0, 0] =

current_weights_sorted[current_labels_sorted == 0]

491

492 #Error polarity

493 pos_weights_cumsum = np.cumsum(pos_weights)

494 neg_weights_cumsum = np.cumsum(neg_weights)

495

496 pos_weights_sum = np.sum(pos_weights)

497 neg_weights_sum = np.sum(neg_weights)

498

499 error_polarity1 = pos_weights_cumsum + neg_weights_sum -

neg_weights_cumsum

500 error_polarity2 = neg_weights_cumsum + pos_weights_sum -

pos_weights_cumsum

501

502 #Unsqueeze

503 error_polarity1 = np.reshape(error_polarity1 , [-1, 1])#np.

expand_dims(error_polarity1 , 1)

504 error_polarity2 = np.reshape(error_polarity2 , [-1, 1])#np.

expand_dims(error_polarity2 , 1)

505

506 #Stack errors

19

507 total_error = np.concatenate ((error_polarity1 , error_polarity2)

, axis = 1)

508

509 #Get the index where error is minimum

510 total_min_error = np.argmin(total_error)

511 error_min_index = np.unravel_index(total_min_error , total_error

.shape)

512

513 current_min_error = total_error[error_min_index]

514

515 #Check if the new error is lower than the previous classifer

error

516 #If yes , assign it as the new classifer error

517 if current_min_error < classifier_err:

518 classifier_err = current_min_error

519

520 new_threshold = current_feat_sorted[error_min_index [0]]

521

522 polarity = 0

523 prediction = current_feat < new_threshold

524 if error_min_index [1]==0:

525 polarity = 1

526 prediction = current_feat >= new_threshold

527

528

529 best_classifier = [feat , new_threshold , polarity ,

classifier_err , prediction]

530

531 return best_classifier

532

533

534 def get_cascaded_AdaBoost(combined_feats , combined_labels , epochs ,

levels):

535 """

536 Input:

537 - combined_feats = an array of combined features for positive and

negative

538 - combined_labels = for positive and negative

539 - epochs = how many epochs or iterations per cascade

540 - levels = how many cascade levels to run

541 """

542

543 #Init trust factor to something very small

544 best_trust = -1e16

545

546 #Initi weights

547 pos_w_total = np.sum(combined_labels == 1)

548 neg_w_total = np.sum(combined_labels == 0)

549 pos_w = np.repeat (1 / pos_w_total , pos_w_total)

550 neg_w = np.repeat (1 / neg_w_total , neg_w_total)

551

552 weights = np.concatenate ((pos_w , neg_w), axis = 0)

553

554

555 for epoch in range(epochs):

556

557 weights_sum = np.sum(weights)

558 weights = weights / weights_sum #Normalizing the weights

20

559

560 #Get a weak classifier

561 current_weak_classifer = get_weak_classifier(combined_feats=

combined_feats , combined_labels= combined_labels , weights=

weights)

562

563 current_feat_index = current_weak_classifer [0]

564 current_threshold = current_weak_classifer [1]

565 current_polarity = current_weak_classifer [2]

566 current_classifer_err = current_weak_classifer [3]

567 current_prediction = current_weak_classifer [4]

568

569 #Set the negative labels to -1

570 current_prediction = np.where(current_prediction == 0, -1,

current_prediction)

571

572

573 weights_expanded = np.expand_dims(weights , 0)

574 #Calculate absolute prediction error

575 label_err = np.abs(current_prediction - combined_labels)

576

577

578 current_epsilon = np.matmul(weights_expanded , label_err.T)

579 current_epsilon = np.expand_dims(current_epsilon , 1).squeeze ()

580 current_epsilon *= 0.5

581

582 #Update trust factor and weights

583 trust_factor = np.log((1- current_epsilon)/current_epsilon)

584 trust_factor *= 0.5

585

586 #Updating the weights based on the trust factor

587 weights = weights * np.exp(- trust_factor * combined_labels *

current_prediction)

588

589 #Computing the Falsse Positives FP, and False Negatives FN

590 #Get the false positive and false negative rates

591 total_negatives = np.sum(combined_labels ==0)

592 total_positives = np.sum(combined_labels ==1)

593

594 misclassified_negatives = np.sum((combined_labels == 0) & (

current_prediction == 1))

595 misclassified_positives = np.sum((combined_labels == 1) & (

current_prediction == -1))

596

597 FP = misclassified_negatives / total_negatives

598 FN = misclassified_positives / total_positives

599

600 print (" Training cascase level: %d. Epoch: %d. Trust: %.3f.

Epsilon: %.3f. FP: %.7f. FN: %.7f." %

601 (levels+1, epoch , trust_factor , current_epsilon , FP, FN)

)

602

603 #Check the trust factor

604 if (trust_factor > best_trust):

605 best_trust = trust_factor

606 best_prediction = current_prediction

607 best_FP = FP

608 best_FN = FN

21

609

610 best_classifier = [current_feat_index , current_threshold ,

611 current_polarity , current_classifer_err ,

current_prediction , FP, FN,

current_epsilon , trust_factor]

612

613 positive_feats = combined_feats [: np.sum(combined_labels ==1) ,:]

614 negative_feats = combined_feats[np.sum(combined_labels ==1):, :]

615 negative_feats_mask = np.where(best_prediction[np.sum(

combined_labels ==1) :]==1)

616

617 negative_feats = negative_feats[negative_feats_mask , :][0]

618

619 combined_feats = concatenate_feats(positive_feats , negative_feats)

620

621 current_pos_labels , current_neg_labels = get_labels_from_feats(

positive_feats , negative_feats)

622

623 combined_labels = concatenate_labels(current_pos_labels ,

current_neg_labels)

624

625 return combined_feats , combined_labels , best_FP , best_FN ,

best_classifier

626

627

628

629 def predict_ada(cascade_classifiers , features , labels):

630 feats_number = features.shape [0]

631 final_labels = np.ones((feats_number , 1))

632 class_indices = np.arange(features.shape [0]).reshape(-1, 1)

633 FPRs , FNRs = [], []

634

635 for level , classifier in enumerate(cascade_classifiers.values ()):

636 feature_id , threshold , polarity , trust_factor = classifier [0],

classifier [1], classifier [2], classifier [-1]

637

638 feature_column = features[:, feature_id]. reshape(-1, 1)

639 predictions = (feature_column >= threshold) if polarity == 1

else (feature_column < threshold)

640 predictions = np.where(predictions , 1, -1)

641

642 weighted_preds = trust_factor * predictions

643 final_preds = weighted_preds >= trust_factor

644

645 total_negatives = np.sum(labels == 0)

646 total_positives = np.sum(labels == 1)

647

648 FPR = np.sum(final_preds[total_positives :] == 1) /

total_negatives if total_negatives else 0

649 FNR = 1 - np.sum(final_preds [: total_positives] == 1) /

total_positives if total_positives else 0

650

651 features = features[final_preds.flatten () == 1]

652 labels = labels[final_preds.flatten () == 1]

653 negative_indices = class_indices[final_preds.flatten () == 0]

654 final_labels[negative_indices] = -1

655 class_indices = class_indices[final_preds.flatten () == 1]

656

22

657 FPRs.append(FPR if level == 0 else FPRs[-1] * FPR)

658 FNRs.append(FNR if level == 0 else FNRs[-1] * FNR)

659

660 return FPRs , FNRs , final_labels

661

662 def plot_adaboost(FPs , FNs , title=None):

663

664 plt.rcParams.update ({

665 ’font.size ’: 10,

666 ’figure.titlesize ’: 14,

667 ’legend.fontsize ’: 10,

668 ’axes.titlesize ’: 10,

669 ’axes.labelsize ’: 12,

670 ’xtick.labelsize ’: 12,

671 ’ytick.labelsize ’: 12

672 })

673

674 plt.figure ()

675 plt.plot(FPs , ’-*’, label=’False Positive FP ’, linewidth =3)

676 plt.plot(FNs , ’-d’, label=’False Negative FN ’, linewidth =3)

677 plt.legend ()

678

679 plt.xlabel(’Cascade Levels ’)

680 plt.ylabel(’Percentage %’)

681 plt.xticks(np.arange(len(FPs)), [str(ix) for ix in range(1, len(FPs

) + 1)])

682 plt.title(title)

683 plt.tight_layout ()

684 plt.show()

685

686

687 def excute_adaboost(number_of_cascades = 10, iterations = [1, 5, 25],

data_path = "CarDetection", train = True):

688

689 """

690 Inputs:

691 - number_of_cascades: how many levels

692 - iterations: iterations per cascade

693 - data_path: parent data directory "CarDetection"

694 - train: if True , excute adaboost on training dataset , else do

inference on testing data

695 NOTE: the code has to be run on training mode first to save the

classifier that will be used for testing.

696

697 Returns:

698 None. Plots will be shown and accuracies will be printed.

699 """

700 for epoch in iterations:

701 current_FPR = 1

702 current_FNR = 1

703 FPs = []

704 FNs = []

705 tol = 1e-6

706 best_classifer ={}

707

708 tolerance_counter = 0

709 if train:

710 print (" Performing Adaboost on Training data")

23

711 train_positive_feats , train_negative_feats ,

train_positive_labels , train_negative_labels =

get_features(data_path , train)

712 combined_train_feats = concatenate_feats(

train_positive_feats , train_negative_feats)

713 combined_train_labels = concatenate_labels(

train_positive_labels , train_negative_labels)

714

715

716 for level in range(number_of_cascades):

717 current_Ada = get_cascaded_AdaBoost(

combined_train_feats , combined_train_labels , epoch ,

level)

718

719 combined_train_feats , combined_train_labels , best_FPR ,

best_FNR , best_weak_classifier = current_Ada

720

721 best_classifer[str(level + 1)] = best_weak_classifier

722 current_FPR *= best_FPR

723 current_FNR *= best_FNR

724 FPs.append(current_FPR)

725 FNs.append(current_FNR)

726

727 print (" Current cumulative FP: %.7f, cumulative FN %.7F"

% (current_FPR , current_FNR))

728

729 #Increasing the tolerance

730 tolerance_counter = level + 1

731

732 if current_FPR <= tol:

733 print("We reached FP tolerance level:", tol , ’after

cascade level =’, level + 1)

734

735 if np.sum(combined_train_labels == 0) == 0:

736 print("No images with negative labels remained

after cascade level: ", level +1)

737 break

738

739 #Plot the FP and FN rates

740 current_title = "AdaBoost performance on Training data.

Cascade levels: " + str(number_of_cascades) + ". After "

+ str(epoch) + " iterations per cascade level ."

741 plot_adaboost(FPs= FPs , FNs= FNs , title = current_title)

742

743 #Save the best classifer

744 with open(" Results/AdaboostMine" + ’/

Adaboost_classifer_level_ ’ + str(epoch) + ’_’ + str(

number_of_cascades) + ’.pkl ’, ’wb ’) as f:

745 pickle.dump(best_classifer , f)

746

747 #Test data

748 else:

749 print (" Performing Adaboost on Testing data")

750 #loading the best classifer

751 with open(" Results/AdaboostMine" + ’/

Adaboost_classifer_level_ ’ + str(epoch) + ’_’ + str(

number_of_cascades) + ’.pkl ’, ’rb ’) as f:

752 best_classifer = pickle.load(f)

24

753

754 #Get the test features and labels

755 test_positive_feats , test_negative_feats ,

test_positive_labels , test_negative_labels =

get_features(data_path , False)

756 combined_test_feats = concatenate_feats(test_positive_feats

, test_negative_feats)

757 combined_test_labels = concatenate_labels(

test_positive_labels , test_negative_labels)

758

759 #Get the FP and FN

760 FPs , FNs , _ = predict_ada(best_classifer ,

combined_test_feats , combined_test_labels)

761 print (" Current Testing cumulative FP: %.7f, cumulative FN

%.7F" % (np.array(FPs).min(), np.array(FNs).min()))

762

763 #current_title = "Test Data - Iteration: " + str(epoch) +".

Reached minimum at cascade level: "+str(

number_of_cascades)

764 current_title = "AdaBoost performance on Testing data.

Cascade levels: " + str(number_of_cascades) + ". After "

+ str(epoch) + " iterations per cascade level ."

765 plot_adaboost(FPs = FPs , FNs = FNs , title = current_title)

766

767

768 #Training data AdaBoost

769 excute_adaboost(number_of_cascades= 6, iterations =[1, 3, 10], data_path

= "CarDetection", train = True)

770

771

772 #Performing Adaboost on testing data

773 excute_adaboost(number_of_cascades= 6, iterations =[1, 3, 10], data_path

= "CarDetection", train = False)

Listing 2: Assignment 10 Autoencoder Code

1 import os

2

3 import numpy as np

4 import torch

5 from torch import nn , optim

6 from PIL import Image

7 from torch.autograd import Variable

8 from torch.utils.data import Dataset , DataLoader

9 from torchvision import transforms

10 import umap

11 import matplotlib.pyplot as plt

12 from sklearn.neighbors import KNeighborsClassifier

13

14 class DataBuilder(Dataset):

15 def __init__(self , path):

16 self.path = path

17 self.image_list = [f for f in os.listdir(path) if f.endswith(’.

png ’)]

18 self.label_list = [int(f.split(’_’)[0]) for f in self.

image_list]

19 self.len = len(self.image_list)

20 self.aug = transforms.Compose ([

21 transforms.Resize ((64, 64)),

25

22 transforms.ToTensor (),

23])

24

25 def __getitem__(self , index):

26 fn = os.path.join(self.path , self.image_list[index])

27 x = Image.open(fn).convert(’RGB ’)

28 x = self.aug(x)

29 return {’x’: x, ’y’: self.label_list[index]}

30

31 def __len__(self):

32 return self.len

33

34

35 class Autoencoder(nn.Module):

36

37 def __init__(self , encoded_space_dim):

38 super ().__init__ ()

39 self.encoded_space_dim = encoded_space_dim

40 ### Convolutional section

41 self.encoder_cnn = nn.Sequential(

42 nn.Conv2d(3, 8, 3, stride=2, padding =1),

43 nn.LeakyReLU(True),

44 nn.Conv2d(8, 16, 3, stride=2, padding =1),

45 nn.LeakyReLU(True),

46 nn.Conv2d (16, 32, 3, stride=2, padding =1),

47 nn.LeakyReLU(True),

48 nn.Conv2d (32, 64, 3, stride=2, padding =1),

49 nn.LeakyReLU(True)

50)

51 ### Flatten layer

52 self.flatten = nn.Flatten(start_dim =1)

53 ### Linear section

54 self.encoder_lin = nn.Sequential(

55 nn.Linear (4 * 4 * 64, 128),

56 nn.LeakyReLU(True),

57 nn.Linear (128, encoded_space_dim * 2)

58)

59 self.decoder_lin = nn.Sequential(

60 nn.Linear(encoded_space_dim , 128),

61 nn.LeakyReLU(True),

62 nn.Linear (128, 4 * 4 * 64),

63 nn.LeakyReLU(True)

64)

65 self.unflatten = nn.Unflatten(dim=1,

66 unflattened_size =(64, 4, 4))

67 self.decoder_conv = nn.Sequential(

68 nn.ConvTranspose2d (64, 32, 3, stride=2,

69 padding=1, output_padding =1),

70 nn.BatchNorm2d (32),

71 nn.LeakyReLU(True),

72 nn.ConvTranspose2d (32, 16, 3, stride=2,

73 padding=1, output_padding =1),

74 nn.BatchNorm2d (16),

75 nn.LeakyReLU(True),

76 nn.ConvTranspose2d (16, 8, 3, stride=2,

77 padding=1, output_padding =1),

78 nn.BatchNorm2d (8),

79 nn.LeakyReLU(True),

26

80 nn.ConvTranspose2d (8, 3, 3, stride=2,

81 padding=1, output_padding =1)

82)

83

84 def encode(self , x):

85 x = self.encoder_cnn(x)

86 x = self.flatten(x)

87 x = self.encoder_lin(x)

88 mu , logvar = x[:, :self.encoded_space_dim], x[:, self.

encoded_space_dim :]

89 return mu , logvar

90

91 def decode(self , z):

92 x = self.decoder_lin(z)

93 x = self.unflatten(x)

94 x = self.decoder_conv(x)

95 x = torch.sigmoid(x)

96 return x

97

98 @staticmethod

99 def reparameterize(mu , logvar):

100 std = logvar.mul (0.5).exp_()

101 eps = Variable(std.data.new(std.size()).normal_ ())

102 return eps.mul(std).add_(mu)

103

104

105 class VaeLoss(nn.Module):

106 def __init__(self):

107 super(VaeLoss , self).__init__ ()

108 self.mse_loss = nn.MSELoss(reduction ="sum")

109

110 def forward(self , xhat , x, mu , logvar):

111 loss_MSE = self.mse_loss(xhat , x)

112 loss_KLD = -0.5 * torch.sum(1 + logvar - mu.pow (2) - logvar.exp

())

113 return loss_MSE + loss_KLD

114

115

116 def train(epoch):

117 model.train()

118 train_loss = 0

119

120 for batch_idx , data in enumerate(trainloader):

121 optimizer.zero_grad ()

122 mu , logvar = model.encode(data[’x’])

123 z = model.reparameterize(mu , logvar)

124 xhat = model.decode(z)

125 loss = vae_loss(xhat , data[’x’], mu , logvar)

126 loss.backward ()

127 train_loss += loss.item()

128 optimizer.step()

129

130 print (’====> Epoch: {} Average loss: {:.4f}’.format(

131 epoch , train_loss / len(trainloader.dataset)))

132

133 def calculate_accuracy(true_labels , distances , num_classes , k_neighbors

=1):

134 temp_predictions = []

27

135

136 # Loop through each data point

137 for sample_idx in range(distances.shape [0]):

138 sample_distances = distances[sample_idx , :]. copy()

139 class_votes = np.zeros(num_classes)

140 class_total_distances = np.zeros(num_classes)

141

142 # Find the k nearest neighbors

143 for _ in range(k_neighbors):

144 nearest_idx = np.argmin(sample_distances)

145 nearest_class = true_labels[nearest_idx] - 1

146 class_votes[nearest_class] += 1

147 class_total_distances[nearest_class] += sample_distances[

nearest_idx]

148 sample_distances[nearest_idx] = np.inf # Exclude this

index from future searches

149

150

151 # Determine the predicted class

152

153 avg_class_distances = class_total_distances / np.max(

class_votes)

154 zero_indices = np.where(avg_class_distances ==0)

155 avg_class_distances[zero_indices] = np.inf

156 predicted_class = np.argmin(avg_class_distances) + 1

157 temp_predictions.append(predicted_class)

158

159 # Convert predictions to a numpy array

160 temp_predictions = np.array(temp_predictions , dtype=int).squeeze ()

161

162 # Calculate accuracy

163 matches = (true_labels == temp_predictions).astype(int)

164 correct_predictions = np.sum(matches)

165 accuracy_percentage = (correct_predictions / true_labels.shape [0])

* 100

166

167 return accuracy_percentage

168 ##################################

169 # Change these

170 p = 3 # [3, 8, 16]

171 training = False

172 TRAIN_DATA_PATH = ’FaceRecognition/train ’

173 EVAL_DATA_PATH = ’FaceRecognition/test ’

174 LOAD_PATH = f’weights/model_{p}.pt’

175 OUT_PATH = ’autoencoderOutput ’

176 ##################################

177

178 model = Autoencoder(p)

179

180 if training:

181 epochs = 100

182 log_interval = 1

183 trainloader = DataLoader(

184 dataset=DataBuilder(TRAIN_DATA_PATH),

185 batch_size =12,

186 shuffle=True ,

187)

188 optimizer = optim.Adam(model.parameters (), lr=1e-3)

28

189 vae_loss = VaeLoss ()

190 for epoch in range(1, epochs + 1):

191 train(epoch)

192 torch.save(model.state_dict (), os.path.join(OUT_PATH , f’model_{p}.

pt ’))

193 else:

194 trainloader = DataLoader(

195 dataset=DataBuilder(TRAIN_DATA_PATH),

196 batch_size =1,

197)

198 model.load_state_dict(torch.load(LOAD_PATH))

199 model.eval()

200

201 X_train , y_train = [], []

202 for batch_idx , data in enumerate(trainloader):

203 mu , logvar = model.encode(data[’x’])

204 z = mu.detach ().cpu().numpy ().flatten ()

205 X_train.append(z)

206 y_train.append(data[’y’]. item())

207 X_train = np.stack(X_train)

208 y_train = np.array(y_train)

209

210 testloader = DataLoader(

211 dataset=DataBuilder(EVAL_DATA_PATH),

212 batch_size =1,

213)

214 X_test , y_test = [], []

215 for batch_idx , data in enumerate(testloader):

216 mu , logvar = model.encode(data[’x’])

217 z = mu.detach ().cpu().numpy ().flatten ()

218 X_test.append(z)

219 y_test.append(data[’y’]. item())

220 X_test = np.stack(X_test)

221 y_test = np.array(y_test)

222

223 ##################################

224 # Your code starts here

225 samples = X_test.shape [0]

226 current_distance = np.zeros((samples , samples))

227 for i in range(samples):

228 squared_diff = np.square(X_train - X_test[i, :])

229 ith_distance = np.sqrt(np.sum(squared_diff , axis =1)).T

230 current_distance[i,:] = ith_distance

231

232 #Calculate the accuracy

233 #How many images per class

234 imagesPerClass = 21

235 total_accuracy = calculate_accuracy(y_test , current_distance , 30,

1)

236

237 print ("With P = %d. Accuracy = %.4f" % (p, total_accuracy))

238 ##################################

239

240

241

242 def plot_umap_embeddings(X_train , y_train , X_test , y_test , y_test_pred ,

p):

243 """

29

244 Function to plot UMAP embeddings for training and test data.

245 """

246 # Initialize UMAP reducer

247 reducer = umap.UMAP(n_components =2, random_state =42)

248

249 # Fit UMAP on training data

250 X_train_umap = reducer.fit_transform(X_train)

251

252 # Transform test data

253 X_test_umap = reducer.transform(X_test)

254

255 # Plot training data

256 plt.figure(figsize =(8, 6))

257 scatter = plt.scatter(

258 X_train_umap [:, 0],

259 X_train_umap [:, 1],

260 c=y_train ,

261 cmap="jet",

262 s=15,

263 alpha =0.8,

264)

265 plt.title(f"UMAP Embedding of Training Data (P = {p})")

266 plt.colorbar(scatter , label=" Ground Truth Labels ")

267 plt.xlabel ("UMAP Dimension 1")

268 plt.ylabel ("UMAP Dimension 2")

269 plt.grid()

270 plt.show()

271

272 # Plot test data

273 plt.figure(figsize =(8, 6))

274 scatter = plt.scatter(

275 X_test_umap [:, 0],

276 X_test_umap [:, 1],

277 c=y_test_pred ,

278 cmap="jet",#" tab10",

279 s=15,

280 alpha =0.8,

281)

282 plt.title(f"UMAP Embedding of Test Data (P = {p})")

283 plt.colorbar(scatter , label=" Predicted Labels ")

284 plt.xlabel ("UMAP Dimension 1")

285 plt.ylabel ("UMAP Dimension 2")

286 plt.grid()

287 plt.show()

288

289

290 if not training:

291 # UMAP and Visualization

292 knn_classifier = KNeighborsClassifier(n_neighbors =1)

293 knn_classifier.fit(X_train , y_train)

294 y_test_pred = knn_classifier.predict(X_test)

295

296 # Generate UMAP plots

297 plot_umap_embeddings(X_train , y_train , X_test , y_test , y_test_pred ,

p)

30

	Theory Questions
	Overfitting
	Do models overfit in the "modern" overparametrized models?

	Reparameterization Trick

	Face Recognition using PCA and LDA
	Principal Component Analysis: PCA
	UMAP for PCA
	Linear Discriminant Analysis: LDA
	Overall observation of PCA and LDA
	UMAP for LDA

	Face Recognition using an Autoencoder
	UMAP for Autoencoder
	Overall comparison: LDA v.s. Autoencoder v.s. PCA

	Object Detection using Cascaded AdaBoost Classifiers
	AdaBoost Classification performance
	Observation on AdaBoost

	Code

