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1 Theory Questions

1.1 Overfitting

Overfitting occurs when a model (often a machine learning model) learns the training data very well
but fail to generalize to the testing data. This can be due to the scarcity of the training data, or to
the capacity of the model. In other words, overfitting can be seen as memorizing the training data but
failing to generalize to unseen data. If a model is too complex or too simple for the underlying data, it
may fail to generalize. |2

In machine learning, however, there is some recent research that argue that overparametrization may
lead to overcome the outfitting phenomnon in what is known as ”"Double Descent” 3| which is explained
below.

1.1.1 Do models overfit in the "modern” overparametrized models?

There is recent research that suggests that as the model complexity gets bigger, the model will ini-
tially overfit to the training data (the under-parametrized region in Fig. , but as model gets ”over-
parametrized”, it will reach a point where it will actually gets better in generalization and avoids overfit-
ting. This hypothesis is known in the literature as ”over-parametrization”, which as the name suggests,
make large models (larger than usually necessary for a given problem) and performs well on the training
and testing data. This challenges the usual conventional thinking that very large models will always
yield to overfitting. [4]
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Figure 1: Overparametrization. To the left of the interpolation threshold is the classical thinking of
model complexity and overfitting, to the right, the modern hypothesis that suggests that sufficiently
large models do not suffer from overfitting. Figure from: [4]

1.2 Reparameterization Trick

The reparameterization trick is a technique used in VAEs and variational inference in general to overcome
a backpropagation problem through a random sampling step. The issue arises in VAEs when the latent
vector z samples from a distribution, i.e.: z ~ N(u, o), that steps is non-differentable, and therefore the
loss cannot be calculated and backpropagated.

The trick therefore solves this issue by defining a latent vector z according to the following equation:

z=p+oxe (1)

Where € ~ N(0,1). Note however, that drawing a sample from, z ~ N (u, ) or € ~ N(0,1) is nont-
differntiable. However, imploying the trick in the equation above makes z differentiable despite having
a non-learnable parameter e.



The role of the new parameter € is said to give a differentiable degree of freedom to the decoder
(generator) when it generates a new image from the latent vector z. Others describe the new parameter
e as adding noise to the sampled z. [2], [1]

2 Face Recognition using PCA and LDA

The dataset provided has 30 persons faces. Each person has 21 images of their face from slightly different
directions. The first four faces can be seen in Fig. [2] Note: we resized the images to 32 x 32 for faster

computations.

Figure 2: First four persons faces

2.1 Principal Component Analysis: PCA

PCA is a statistical method commonly used for dimentionality reduction tasks. PCA aims to find a lower-

dimensional representation of an underlying high-dimensional data. It tries to find directions (prinicipal

components) that maximizes the variation in the data so that it can be easily dismantled or identified.
PCA achieves that using the following steps:

e Given N vectorized images Z; i = 1,2,..., N where each image is represented as a column in the
matrix.

o Compute the mean image vector m = % Zf\;l Z;

e Subtract the mean from the images: X = [fl -m To—m - IN— Tﬁ]

e To avoid variations due to differences in illumination, normalize the each image in T;
e Calculate the covariance C' = % Zfil {(@ —m)(& —m)T}

e The above calculation is expensive since it’s X X7 so if X is of size 4096 x 1000, the resulting C
is of size 4096 x 4096 = +16million which is huge. So, we employ a computational trick described
in . For the interest of conciseness, we refer the reader to the reference for the details.

e We calculate the eigenvectors Wy = [1171 Wy -+ W K] of our covariance matrix.

Eigen face 1

Figure 3: The first 4 eigen faces

e Each vector w; acts as a feature for classification.

e The data can be then projected onto the new space: § = WZ (& — )



PCA KNN accuracy as a function of dimensionality

100 -
80
g
g 60
5
2
2
40
20 —8— Training Accuracy
Testing Accuracy
2 4 10 12 14 16

8
PCA Dimensionality

Figure 4: PCA accuracy as a function of dimensionality p.

2.2 UMAP for PCA

The UMAP for PCA shows a good overall seaparation between classes that increases with the dimen-
sionality (value of P). However, there are still many classes that are very close to each other or cannot
be disentagled, at least visually by inspecting the plot. We will see that this is slightly different with
LDA.
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Figure 6: UMAP for PCA with P=8. Left: training. Right: Testing



PCA (P=16): Training Data PCA (P=16): Test Data
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Figure 7: UMAP for PCA with P=16. Left: training. Right: Testing

2.3 Linear Discriminant Analysis: LDA

Just like PCA, LDA is another dimensionality reduction method, but unlike PCA, LDA tries to find the
direction of a vector space that maximizes the separability between classes, i.e.: it tries to maximizes
the descrimination between classes. Instead of maximizing the overall variance, LDA aims to maximizes
the between-class s scatter and minimize the within-class scatter.

The steps are generally as follow:

e Let m be the global mean over all images.

e Define the between-classes scatter as: Sp = ﬁ Z‘li'l (m; —m)(m; —m)T

I c Cil (i o \(mi
e Define the within-class scatter as: Sy = \%’I Z‘Zzll \cl*‘| Lz‘l(‘f}c — ;) (T, — my) T

e If o is the underlying vector space, then wrS pW is the projection of the between-classes scatter
on w and wT S, it the projection of the within-class scatter on .

e Use the Fisher Discriminant Function to maximizes the between-class and minimize the within-class
C 7 — wlSpw
scatter as follows: J() = £7g2%
e The Fisher function must satisfy Spw = ASw for some constant A.
o If the within-class scatter is assumed non-singular, the problem can be trasnformed into an eigen-
decomposition problem as follows: S‘;,lS BW = A\

e Additional steps might be needed if it is singular. For the sake of conciseness, we refer the reader
for [2] for more details.
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Figure 8: LDA result as a function of dimensionality.



2.4 Overall observation of PCA and LDA

In general, both methods performed similarity with LDA performing a notch better. It could be that
PCA needs more dimenstionality. It could also be the nature of PCA objective, as it does not work on
the variance between and within classes, but rather the overall variance, which makes LDA better in
some situations. However, the obtained results still achieved pretty good accuracy with both methods.
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Figure 9: A comparison between LDA and PCA

2.5 UMAP for LDA

The LDA UMAP plots are much more discriminatory than PCA. The seaparation is ”cleaner”, i.e.: there
is only slight or no overlap between classes. Looking at P=3 graphs, we can see only few classes that
overlap, and as the dimensionality gets larger P > 3, those overlaps disappear. This is supported by the
accuracy plots provided earlier, which shows a very high accuracy on the testing dataset as P increases.
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Figure 11: UMAP for LDA with P=8. Left: training. Right: Testing
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Figure 12: UMAP for LDA with P=16. Left: training. Right: Testing

3 Face Recognition using an Autoencoder

We utilized the provided code and obtain the testing accuracies on different network that were pre-
trained on different dimensionalities, namely: P = 3,8,16. As expected, the accuracy increased as the
dimensionality insreases, reaching 100% with P = 16 as seen in Fig. We will compare the autoencoder
results against PCA and LDA in a later subsection, and detail the accuracies in Table.

Autoencoder accuracy as a function of dimensionality
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Figure 13: The pre-trained autoencoder result as a function of dimensionality

3.1 UMAP for Autoencoder
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Figure 14: UMAP for Autoencoder with P=3. Left: training. Right: Testing



UMAP Embedding of Training Data (P = 8) UMAP Embedding of Test Data (P = 8)
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Figure 15: UMAP for Autoencoder with P=8. Left: training. Right: Testing

UMAP Embedding of Training Data (P = 16) UMAP Embedding of Test Data (P = 16)
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Figure 16: UMAP for Autoencoder with P=16. Left: training. Right: Testing

3.2 Overall comparison: LDA v.s. Autoencoder v.s. PCA

We compare the results of the provided pre-trained autoencoder against our implemented LDA and
PCA on the testing data for P values of 3, 8, and 16. As we can see from Fig. [I7} the LDA performed
the best, especially when the dimensionality was low (P=3), but it has almost the same accuracy as the
autoencoder when the dimensionality is sufficiently large (P=16). The PCA in our experiment performed
well but slighly lower than the other two methods, which suggests that it could be an issue with the
PCA not having the same discrimination power as the LDA and autoencoder, as it does not seek to
”descriminate” in its objective function like the LDA does.

LDA v.s. Autoencoder v.s. PCA
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Figure 17: The testing accuracy result for P= 3, 8, 16 for LDA, Autoencoder, and PCA.



P=3 P=38 P=16
Autoencoder  90.159%  99.048%  100%
PCA 87.937%  96.984% 97.937%
LDA 96.667% 100% 100%

Table 1: Accuracy results with different dimensionality P. Highest values are in bold

4 Object Detection using Cascaded AdaBoost Classifiers

AdaBoost, short for Adaptive Boosting, is a learning algorithm that combines multiple ”weak” classifiers
into a single ”strong” classifier. A weak classifier here is one that performs slighly better than random
chance, while a strong classifier achieves high accuracy rates and low false positive and false negative
rates.

The idea behind the cascaded classifers relies on the exponential rule, where if we have a true positive
rate of xpp = 0.99 and a false positive rate of zpp = 0.3 as a start, having 10 classifiers would yield:
239 = 0.991° ~ 0.90 and x5, = 0.30'° ~ 0.000006.

The general outline for how AdaBoost works is as follows. For detailed steps and intuition, we refer
the reader to the comprehensive guide by Prof. Kak [2]:

e Compute image features. There are multiple ways to do that. I choose to implement HAAR like
features with windw of sizes: 2, 4, 8, 16.

e We initilize a weight matrix uniformly w. They are then updated for each sample to determine
wether it should be considered in the next iterations.

o Get a weak classifier that specifically targets the training samples that were misclassified by the
previous weak classifier (if any). We'll denote it as h;

e Apply h; to all training data. The classifier can bee seen as a mapping hs : X — {—1,1}

e If D, is the probability distribution, we use the following equation to measure the weighted mis-
clssification rate Prob{h.(x;) # y; where y; is the label

€@=3 > Di(ws) - |he(w:) = il (2)

i=1

o We calculate the trust factor for the current classifier

_1 I—Et
at—21n( o ) (3)

e Update the probability distribution for the next iteration

Dt (mi)efatyiht (wi)

Dyy1(xi) = Z

Where Z; is a normalization factor. So it is set such that

Dy ()~ eyl (@)
D) = P )

e [terate back to the 3rd step by getting another weak classifer.

4.1 AdaBoost Classification performance

The data for the AdaBoost classification tasks consis of images of cars and other images that do not
contain cars as seen in Fig. The dataset images are pretty small (40 x 20, which could have impacted
the accuracy of our feature extraction routine. We expand on that in the following subsections.



Figure 18: Left: Positive sample (car present). Right: Negative sample (car not present)
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Figure 19: AdaBoost performance. Left: training dataset. Right: Testing dataset

4.2 Observation on AdaBoost

The plots above in Fig. shows clearly that the classification performance improves substantially as
the cascade levels increases. However, it is noticable that the performance plateaus around level four in
my implementation. This could be due to a number of reason among which is the dataset which consist
of very small low quality images which might have been hard to extract the features from. Another
possibility is my feature extraction method which consisted of a HAAR-like windowing technique. The
choose of windows sizes might influence the classification performance.

Non-theless, the lowest false positive and false negatives rates achieved are still remarkable as seen
in Table2l

Training Testing
FP 0.0005688 0.0068182
FN  0.000000  0.000000

Table 2: Lowest false positive (FP) and false negative (FN) rates achieved on both training and testing
datasets.
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5 Code

Listing 1: Assignment 10 Code

o

30

import
import
import

;| import

import
import

numpy as np
matplotlib.pyplot as plt
cv2

umap

0s

pickle

def reading_images (images_directory, num_image_per_class, num_classes,
resize = True, resize_to = 32):

Read images from a directory

Images are of this format: xx_yy.png, where xx is the class number,

and yy is the index of the image per class

Input:

- images_directory: the folder where images reside
- num_image_per_class: number of images per class
- num_classes: the number of classes

returns:
- labels: numpy array of labels
- images: numpy array of the flatten images. Each image is a column

vector

labels = [J#np.linspace(l, num_classes, num_classes, dtype= int,

endpoint= True)

#Classes starts at 1
for class_num in range(l, num_classes+1):

#Images start at 1
for image_num in range(l, num_image_per_class+1):

current_class_num = str(class_num) if class_num>=10 else
"O"+str(class_num)

current_image_num = str(image_num) if image_num>=10 else
"O"+str(image_num)

current_path = images_directory +"/"+current_class_num+"_"+

current_image_num+".png"

#0pening image
current_image = cv2.imread(current_path)

# Resize the image
if (resize):
current_image = cv2.resize(current_image, (resize_to,
resize_to),
interpolation = cv2.
INTER_AREA)

#Convert to grayscale
current_image = cv2.cvtColor (current_image, cv2.
COLOR_BGR2GRAY)

current_image = np.array(current_image).flatten ()
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current_image = np.expand_dims (current_image, 1)

#If it’s the first class and image, create the numpy array
if (class_num==1 and image_num==1):

all_images = current_image
else:
all_images = np.concatenate((all_images, current_image)
, axis = 1)

labels.append(class_num)
return all_images, np.array(labels)

# Define the kNN function
def knn_classify(trainX, trainY, testX, k):

predictions = []
for test_point in testX:
distances = np.linalg.norm(trainX - test_point, axis=1) #
Compute distances
neighbors = np.argsort(distances)[:k] # Find k nearest

neighbors
neighbor_labels = trainY[neighbors] # Get their labels
prediction = np.bincount(neighbor_labels).argmax() # Majority
vote
predictions.append (prediction)
return np.array(predictions)

#Compute PCA
def manual_pca(X, num_components):

mean_vector = np.mean(X, axis=0) # Compute mean

X_centered = X - mean_vector # Center the data

covariance_matrix = np.dot(X_centered.T, X_centered) / (X_centered.
shape[0] - 1) # Covariance matrix

eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix) #
Eigen decomposition

idx = np.argsort(-eigenvalues) # Sort eigenvalues in descending
order

eigenvectors = eigenvectors[:, idx[:num_components]] # Select top
eigenvectors

X_reduced = np.dot(X_centered, eigenvectors) # Project data to the

new basis
return X_reduced, mean_vector, eigenvectors

# Compute accuracy
def compute_accuracy(true_labels, predicted_labels):

return np.mean(true_labels == predicted_labels) * 100

#LDA

s|# Define the LDA function
;| def manual_lda(trainX, trainY, num_components):

classes = np.unique(trainY)
overall_mean = np.mean(trainX, axis=0)

# Initialize within-class scatter matrix and between-class scatter
matrix

Sw = np.zeros ((trainX.shape[1], trainX.shape[1]))

Sb = np.zeros((trainX.shape[1l], trainX.shape[1]))
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100

101

102

for ¢ in classes:

class_samples = trainX[trainY == c]

class_mean = np.mean(class_samples, axis=0)

Sw += np.dot((class_samples - class_mean).T, (class_samples -
class_mean))

n_class_samples = class_samples.shape[0]

mean_diff = (class_mean - overall_mean).reshape(-1, 1)

Sb += n_class_samples * np.dot(mean_diff, mean_diff.T)

eigvals, eigvecs = np.linalg.eig(np.linalg.pinv(Sw).dot(Sb))

idx = np.argsort(-eigvals.real) # Sort eigenvalues in descending
order
eigvecs = eigvecs[:, idx[:num_components]].real # Select top

eigenvectors
# Project data onto the LDA components

trainX_lda = np.dot(trainX, eigvecs)
return trainX_lda, eigvecs

#Plot UMAP

| def plot_umap_embeddings (trainX_proj, trainY, testX_proj, testY_pred,

title_train, title_test):

Function to plot UMAP embeddings for training and test data.

umap_reducer = umap.UMAP(n_components=2, random_state=42)

# Fit UMAP on training data

trainX_umap = umap_reducer.fit_transform(trainX_proj.real)
# Transform test data using the same UMAP
testX_umap = umap_reducer.transform(testX_proj.real)

# Plot training data

plt.figure(figsize=(10, 6))

scatter = plt.scatter(trainX_umapl[:, 0], trainX_umapl[:, 1], c=
trainY, cmap=’jet’, s=15)

plt.title(title_train)

plt.xlabel ("UMAP Dimension 1")

plt.ylabel ("UMAP Dimension 2")

plt.colorbar(scatter, label="Class Labels (Ground Truth)")

plt.grid O)

plt.show ()

# Plot test data

plt.figure(figsize=(10, 6))

scatter = plt.scatter(testX_umap[:, 0], testX_umapl[:, 1], c=
testY_pred, cmap=’jet’, s=15)

plt.title(title_test)

plt.xlabel ("UMAP Dimension 1")

plt.ylabel ("UMAP Dimension 2")

plt.colorbar(scatter, label="Class Labels (Predicted)")

plt.grid O)

plt.show ()

#Reading data
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s trainX, trainY = reading_images(’FaceRecognition/train’, 21, 30, True,
32)
6| testX, testY = reading_images(’FaceRecognition/test’, 21, 30, True, 32)

1z trainX = trainX.T
19| trainY = trainY.T
50l testX = testX.T
51| testY = testY.T

52| #plot the first four faces
55| fig, axes = plt.subplots(l, 4, figsize=(12, 4)) # Create a 1x4 grid of
subplots

571 for i in range (4):
158 # Reshape and take the real part of the eigenvector
159 image = trainX[i*21,:].reshape(32, 32).real

161 # Plot the image

162 axes [i] . imshow (image)

163 axes[i].axis(’off’) # Turn off axis for a cleaner look
164 axes[i] .set_title(f"Face {i+1}")

6| plt . tight_layout () # Adjust layout to avoid overlap
67| plt . show ()

170/ #PCA calculation

12| # Parameters

73| P 16 # Number of principal components
17| K 3 # Number of neighbors for KNN

76| # Step 1: Perform manual PCA on the training data
77| trainX_pca, train_mean, eigenvectors = manual_pca(trainX, P)

7ol # Step 2: Project the test data using the same eigenvectors
iso| testX_centered = testX - train_mean

is1|testX_pca = np.dot(testX_centered, eigenvectors)

55| # Step 3: Classify using kNN and compute accuracies

is1| train_predictions = knn_classify(trainX_pca, trainY, trainX_pca, K)
55| test_predictions = knn_classify(trainX_pca, trainY, testX_pca, K)
186

is7| train_accuracy = compute_accuracy(trainY, train_predictions)

ss| test_accuracy = compute_accuracy(testY, test_predictions)

00| # Print results
91| print (f"Training Accuracy: {train_accuracy:.2f}%")
2| print (£"Testing Accuracy: {test_accuracy:.2f}%")

wi|# Step 4: Analyze accuracy for different values of P

5| p_values = range(l, P + 1)
06| train_accuracies = []
07| test_accuracies = []

198
10| for p in p_values:
200 trainX_pca, train_mean, eigenvectors = manual_pca(trainX, p)
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201 testX_pca = np.dot(testX - train_mean, eigenvectors)

202 train_predictions = knn_classify(trainX_pca, trainY, trainX_pca, K)

203 test_predictions = knn_classify(trainX_pca, trainY, testX_pca, K)

204 train_accuracies.append (compute_accuracy (trainY, train_predictions)
)

205 test_accuracies.append (compute_accuracy (testY, test_predictions))

207|# Plot PCA results

20s| plt . figure(figsize=(10, 6))

200 plt.plot(p_values, train_accuracies, label="Training Accuracy", marker
=7O’)

210 plt . plot(p_values, test_accuracies, label="Testing Accuracy", marker=’s
?)

211/ plt.xlabel ("Number of Principal Components (P)")

22| plt.ylabel ("Accuracy (%)")

213 plt.title ("PCA and kNN Classification Accuracy")

214 plt.legend ()

215 plt.grid()

216| plt . show ()

210 #plot the first four eigen faces
20| fig, axes = plt.subplots(l, 4, figsize=(12, 4)) # Create a 1x4 grid of
subplots

22| for 1 in range (4):
223 # Reshape and take the real part of the eigenvector
224 image = eigenvectors[:, i].reshape (32, 32).real

226 # Plot the image

227 axes [i].imshow (image)

228 axes[i].axis (’off’) # Turn off axis for a cleaner look
229 axes[i].set_title(f"Eigen face {i+11}")

21| plt.tight_layout () # Adjust layout to avoid overlap
232| plt . show ()

236 #2. LDA calculation

233 # Parameters for LDA
230 L = 2 # Number of LDA components

211/# Perform LDA on training data
22 trainX_lda, lda_eigvecs = manual_lda(trainX, trainY, L)

214/ # Project test data using LDA
25 testX_lda = np.dot(testX, lda_eigvecs)

227\ # Classify using kNN
25| train_predictions_lda = knn_classify(trainX_lda, trainY, trainX_lda, K)
210 test_predictions_lda = knn_classify(trainX_lda, trainY, testX_lda, K)

21| train_accuracy_lda = compute_accuracy(trainY, train_predictions_1lda)
22| test_accuracy_lda = compute_accuracy(testY, test_predictions_1lda)

251 print (£"LDA Training Accuracy: {train_accuracy_lda:.2f2}}")
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266

299

300

301

5| print (£"LDA Testing Accuracy: {test_accuracy_lda:.2f}%")

57| # Analyze accuracy for different LDA dimensions

lda_dimensions = range(l, 16 + 1)
train_accuracies_1lda = []
test_accuracies_1lda = []

for dim in lda_dimensions:

trainX_lda, lda_eigvecs = manual_lda(trainX, trainY, dim)

testX_lda = np.dot(testX, lda_eigvecs)

train_predictions_lda = knn_classify(trainX_lda, trainY, trainX_lda
, K)

test_predictions_lda = knn_classify(trainX_lda, trainY, testX_lda,
K)

train_accuracies_lda.append(compute_accuracy (trainV,
train_predictions_1lda))

test_accuracies_1lda.append(compute_accuracy (testY,
test_predictions_1lda))

# Plot LDA results

plt.figure(figsize=(10, 6))

plt.plot(lda_dimensions, train_accuracies_lda, label="Training Accuracy
(LDA)", marker=’0’)

273 plt . plot (lda_dimensions, test_accuracies_lda, label="Testing Accuracy (

LDA)", marker=’s’)
plt.xlabel ("Number of LDA Components")

5|plt.ylabel ("Accuracy (%)")
| plt.title ("LDA and kNN Classification Accuracy")
/|plt.legend ()

plt.grid )
plt.show ()

|# Plot PCA vs LDA testing results
;|plt.figure(figsize=(10, 6))

plt.plot(lda_dimensions, test_accuracies, label="PCA Testing Accuracy",
marker=’0’)

s/ plt.plot(lda_dimensions, test_accuracies_lda, label="LDA Testing

Accuracy", marker=’s’)

;|plt.xlabel ("Dimensionality")

plt.ylabel ("Accuracy (%)")
plt.title("PCA v.s. LDA")
plt.legend ()

plt.grid )

plt.show ()

#Already obtained the autoencoder numbers by running the code provided
for P=3, 8, 16
autoencoder_accuracies = [90.1587, 99.0476, 100.00]

PCA_3_8_16_accuracy = [test_accuracies[2], test_accuracies[7],
test_accuracies[-1]]
LDA_3_8_16_accuracy = [test_accuracies_1lda[2], test_accuracies_1dal([7],

test_accuracies_lda[-1]]

# Plot LDA v.s. PCA v.s. Autoencoder results
plt.figure(figsize=(10, 6))
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304

335

| plt.

5| plt.

plt.

s|plt.
| plt

plt.
plt.
plt.
plt.

plot ([3, 8, 16], PCA_3_8_16_accuracy, label="PCA Testing Accuracy",
marker=’0’)

plot ([3, 8, 16], LDA_3_8_16_accuracy, label="LDA Testing Accuracy",
marker=’s’)

plot ([3, 8, 16], autoencoder_accuracies, label="Autoencoder Testing
Accuracy", marker=’s’)

xlabel ("Dimensionality")

.ylabel ("Accuracy (%)")

title ("LDA v.s. Autoencoder v.s. PCA")
legend ()

grid ()

show ()

# Plot Autoencoder results alone

plt.

s|plt.

| plt.

plt.
plt.
plt.
plt.
plt.

figure(figsize=(10, 6))

plot ([3, 8, 16], autoencoder_accuracies, label="Autoencoder Testing
Accuracy", marker=’s’)

xlabel ("Dimensionality")

ylabel ("Accuracy (%)")

title ("Autoencoder accuracy as a function of dimensionality")
legend ()

grid ()

show ()

5| #Plot the UMAP

# Experiment parameters
P_values = [3, 8, 16] # Example values for PCA
L_values = [3, 8, 16] # Example values for LDA

# Generate plots for PCA and LDA

for

for

P in P_values:

# PCA Projection

trainX_pca, _, eigenvectors_pca = manual_pca(trainX, P)
testX_pca = np.dot(testX - train_mean, eigenvectors_pca)

# kNN Predictions
testY_pred_pca = knn_classify(trainX_pca, trainY, testX_pca, K)

# Plot UMAP for PCA embeddings
plot_umap_embeddings (
trainX_proj=trainX_pca,
trainY=trainV,
testX_proj=testX_pca,
testY_pred=testY_pred_pca,
title_train=f"PCA (P={P}): Training Data",
title_test=f"PCA (P={P}): Test Data"

L in L_values:

# LDA Projection

trainX_lda, lda_eigvecs = manual_lda(trainX, trainY, L)
testX_1lda = np.dot(testX, lda_eigvecs)

# kNN Predictions
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388

399

100

101

102

104

105

#3.

def

testY_pred_lda = knn_classify(trainX_lda, trainY, testX_lda,

# Plot UMAP for LDA embeddings
plot_umap_embeddings (
trainX_proj=trainX_lda,
trainY=trainV,
testX_proj=testX_lda,
testY_pred=testY_pred_1lda,
title_train=f"LDA (P={L}): Training Data",
title_test=f"LDA (P={L}): Test Data"

AdaBoost
calculate_features (img):
# to grayscale

if len(img.shape) > 2:

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# Compute the integral image

integral_img = cv2.integral (img)
window_sizes = [2, 4, 8, 16]
features = []

# Loop over windows
for win_size in window_sizes:

for y in range (0, img.shape[0] - win_size + 1, win_size):
for x in range (0, img.shape[1l] - win_size + 1, win_size):
# horizontal feature
mid_x = x + win_size // 2
sum_left = integral_img[y + win_size, mid_x]

integral_imgl[y, mid_x] \
- (integral_imgl[y + win_size, x] -
integral_imgly, x1)

sum_right = integral_imgl[y + win_size, x + win_size]

integral_imgl[y, x + win_size] \

- (integral_imgly + win_size, mid_x]

integral_imgly, mid_x])
two_rect_horizontal = sum_right - sum_left
features.append(two_rect_horizontal)

# vertical feature
mid_y = y + win_size // 2
sum_top = integral_img[mid_y, x + win_size] -
integral_img[mid_y, x] \
- (integral_imgly, x + win_size] -
integral_imgly, x])

sum_bottom = integral_imgly + win_size, x + win_size]

integral_imgl[y + win_size, x] \

- (integral_img[mid_y, x + win_size]

integral_imgl[mid_y, x1)
two_rect_vertical = sum_bottom - sum_top
features.append (two_rect_vertical)

return np.array(features)
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def

def

def

def

concatenate_feats (pos_feats, neg_feats):
return np.concatenate ((pos_feats, neg_feats), axis=0)

get_labels_from_feats (pos_feats, neg_feats):

Return positvie and negative labels, un-concatenated given positive

and negative features

positive_labels = np.ones((pos_feats.shape[0]))

negative_labels

np.zeros ((neg_feats.shape [0]))

return positive_labels, negative_labels

concatenate_labels (pos_labels, neg_labels):
combined_labels = np.concatenate((pos_labels, neg_labels), axis =

0)

combined_labels = combined_labels.astype(np.uint8)

return combined_labels

get_features(data_path, training = True):

nmnn

Input:

- data_path = "CarDetection"

- training = True if the features needed are the training features.

False for testing data features

Returns:

- positive_feat: positive data features
- negative_feat: negative data features
- positive_labels

- negative_labels

positive_feat
negative_feat

(]
(]

for category in ["positive", "negative"]:

print ("Getting the features of " + category + " training data"
if training

else "Getting the features of " + category + " testing
data")
current_path = data_path
current_path += "/train/" + category if training else "/test/"
+category
print ("Current path: ", current_path)
for file_name in os.listdir (current_path):
#Read the images
current_image = cv2.imread(current_path+"/"+file_name)
if category == "positive":
positive_feat.append(calculate_features (current_image))
else:

negative_feat.append(calculate_features (current_image))

#Create the labels
positive_feat = np.array(positive_feat)
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158 negative_feat = np.array(negative_feat)

160 positive_labels, negative_labels = get_labels_from_feats/(
positive_feat, negative_feat)

162 return positive_feat, negative_feat, positive_labels,
negative_labels
65| #Weak classifer

wo| def get_weak_classifier (combined_feats, combined_labels, weights):

168 #Init error to large value
169 classifier_err = 1lelb

471 for feat in range(combined_feats.shapel[1l]):
172 current_feat = combined_feats[:, feat]

174 #Sort the features for Ranking
175 sorted_ind = np.argsort(current_feat)

477 #Sort the features, labels, and weights

178 current_feat_sorted = current_feat[sorted_ind]

179 current_labels_sorted = combined_labels[sorted_ind]

180 current_weights_sorted = weights[sorted_ind]

181

182 #Declare pos, neg weights

183 num_feat = combined_feats.shape[0]

184 pos_weights = np.zeros ((num_feat, 1))

i85 neg_weights = np.zeros ((num_feat, 1))

186

187 #Assign pos, neg weights

188

489 pos_weights [current_labels_sorted == 1, 0] =
current_weights_sorted [current_labels_sorted == 1]

190 neg_weights[current_labels_sorted == 0, 0] =
current_weights_sorted[current_labels_sorted == 0]

192 #Error polarity
193 pos_weights_cumsum
194 neg_weights_cumsum

np.cumsum (pos_weights)
np.cumsum(neg_weights)

196 pos_weights_sum = np.sum(pos_weights)
197 neg_weights_sum np.sum(neg_weights)

199 error_polarityl = pos_weights_cumsum + neg_weights_sum -
neg_weights_cumsum
500 error_polarity2 = neg_weights_cumsum + pos_weights_sum -

pos_weights_cumsum

502 #Unsqueeze
503 error_polarityl = np.reshape(error_polarityl, [-1, 1])#np.
expand_dims (error_polarityl, 1)
504 error_polarity2 = np.reshape(error_polarity2, [-1, 1])#np.
expand_dims (error_polarity2, 1)

506 #Stack errors
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507 total_error = np.concatenate((error_polarityl, error_polarity2)
, axis = 1)

509 #Get the index where error is minimum

510 total_min_error = np.argmin(total_error)

511 error_min_index = np.unravel_index(total_min_error, total_error
.shape)

512

513 current_min_error = total_error[error_min_index]

515 #Check if the new error is lower than the previous classifer

error

516 #If yes, assign it as the new classifer error

517 if current_min_error < classifier_err:

518 classifier_err = current_min_error

519

520 new_threshold = current_feat_sorted[error_min_index[0]]
521

522 polarity = 0

523 prediction = current_feat < new_threshold

524 if error_min_index[1]==
525 polarity = 1
526 prediction = current_feat >= new_threshold

520 best_classifier = [feat, new_threshold, polarity,
classifier_err, prediction]

531 return best_classifier

531 def get_cascaded_AdaBoost (combined_feats, combined_labels, epochs,

levels):
535 o
536 Input:
537 - combined_feats = an array of combined features for positive and
negative
538 - combined_labels = for positive and negative
539 - epochs = how many epochs or iterations per cascade
540 - levels = how many cascade levels to run

543 #Init trust factor to something very small

544 best_trust = -1lel6

545

546 #Initi weights

547 pos_w_total = np.sum(combined_labels == 1)

548 neg_w_total = np.sum(combined_labels == 0)

549 pos_w = np.repeat(l / pos_w_total, pos_w_total)

550 neg_w = np.repeat(l / neg_w_total, neg_w_total)

551

552 weights = np.concatenate((pos_w, neg_w), axis = 0)

555 for epoch in range (epochs):

557 weights_sum = np.sum(weights)
558 weights = weights / weights_sum #Normalizing the weights
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560 #Get a weak classifier

561 current_weak_classifer = get_weak_classifier (combined_feats=
combined_feats, combined_labels= combined_labels, weights=
weights)

563 current_feat_index = current_weak_classifer [0]

564 current_threshold = current_weak_classifer[1]

565 current_polarity = current_weak_classifer [2]

566 current_classifer_err = current_weak_classifer [3]

567 current_prediction = current_weak_classifer [4]

569 #Set the negative labels to -1

570 current_prediction = np.where(current_prediction == 0, -1,

current_prediction)

573 weights_expanded = np.expand_dims (weights, 0)

574 #Calculate absolute prediction error

575 label_err = np.abs(current_prediction - combined_labels)

576

578 current_epsilon = np.matmul (weights_expanded, label_err.T)

579 current_epsilon = np.expand_dims (current_epsilon, 1).squeeze ()
580 current_epsilon *= 0.5

581

582 #Update trust factor and weights

583 trust_factor = np.log((l-current_epsilon)/current_epsilon)

584 trust_factor x= 0.5

586 #Updating the weights based on the trust factor

587 weights = weights * np.exp(- trust_factor * combined_labels *

current_prediction)

589 #Computing the Falsse Positives FP, and False Negatives FN
590 #Get the false positive and false negative rates

501 total_negatives = np.sum(combined_labels==0)

592 total_positives = np.sum(combined_labels==1)

594 misclassified_negatives = np.sum((combined_labels == 0) & (
current_prediction == 1))

595 misclassified_positives = np.sum((combined_labels == 1) & (
current_prediction == -1))

597 FP = misclassified_negatives / total_negatives
598 FN misclassified_positives / total_positives

600 print ("Training cascase level: Jd. Epoch: J%d. Trust: %.3f.
Epsilon: %.3f. FP: %.7f. FN: %.7f." %

601 (levels+1l, epoch, trust_factor, current_epsilon, FP, FN)
)

603 #Check the trust factor

604 if (trust_factor > best_trust):

605 best_trust = trust_factor

606 best_prediction = current_prediction
607 best_FP = FP

608 best_FN = FN
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609

610

617

618

619

620

649

def

best_classifier = [current_feat_index, current_threshold,
current_polarity, current_classifer_err,
current_prediction, FP, FN,
current_epsilon, trust_factor]

positive_feats = combined_feats[: np.sum(combined_labels==1) ,:]
negative_feats = combined_feats[np.sum(combined_labels==1):, :]
negative_feats_mask = np.where(best_prediction[np.sum(

combined_labels==1) :]==1)

negative_feats = negative_feats[negative_feats_mask, :][0]
combined_feats = concatenate_feats(positive_feats, negative_feats)
current_pos_labels, current_neg_labels = get_labels_from_feats(

positive_feats, negative_feats)

combined_labels = concatenate_labels(current_pos_labels,
current_neg_labels)

return combined_feats, combined_labels, best_FP, best_FN,
best_classifier

predict_ada(cascade_classifiers, features, labels):

feats_number = features.shape [0]
final_labels = np.ones ((feats_number, 1))
class_indices = np.arange(features.shape[0]).reshape(-1, 1)

FPRs, FNRs = [], []

for level, classifier in enumerate(cascade_classifiers.values()):
feature_id, threshold, polarity, trust_factor = classifier [0],
classifier[1], classifier[2], classifier[-1]

feature_column = features[:, feature_id].reshape(-1, 1)

predictions = (feature_column >= threshold) if polarity == 1
else (feature_column < threshold)

predictions = np.where(predictions, 1, -1)

weighted_preds = trust_factor * predictions
final_preds = weighted_preds >= trust_factor

total_negatives = np.sum(labels
total_positives = np.sum(labels

0)
1

FPR = np.sum(final_preds[total_positives:] == 1) /
total_negatives if total_negatives else O

FNR = 1 - np.sum(final_preds[:total_positives] == 1) /
total_positives if total_positives else O

features = features[final_preds.flatten() == 1]

labels = labels[final_preds.flatten() == 1]
negative_indices = class_indices[final_preds.flatten ()
final_labels[negative_indices] = -1

class_indices = class_indices[final_preds.flatten() == 1]

]
]
o
—
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664

688

689

690

697

698

700

FPRs.append (FPR if level == 0 else FPRs[-1] * FPR)
FNRs.append (FNR if level == 0 else FNRs[-1] * FNR)

return FPRs, FNRs, final_labels

»|def plot_adaboost(FPs, FNs, title=None):

plt.rcParams.update ({
>font.size’: 10,
’figure.titlesize’: 14,
’legend.fontsize’: 10,
’axes.titlesize’: 10,
’axes.labelsize’: 12,
’xtick.labelsize’: 12,
>ytick.labelsize’: 12

b

plt.figure ()
plt.plot (FPs, ’-*’, label=’False Positive FP’, linewidth=3)
plt.plot(FNs, ’-d’, label=’False Negative FN’, linewidth=3)
plt.legend ()

plt.xlabel (’Cascade Levels’)
plt.ylabel (’Percentage %’)

plt.xticks (np.arange(len(FPs)), [str(ix) for ix in range(l, len(FPs

) + 1))
plt.title(title)
plt.tight_layout ()

plt.show ()
s|def excute_adaboost (number_of_cascades = 10, iterations = [1, 5, 25],
data_path = "CarDetection", train = True):
nnn
Inputs:

- number_of_cascades: how many levels

- iterations: iterations per cascade

- data_path: parent data directory "CarDetection"

- train: if True, excute adaboost on training dataset, else do
inference on testing data

NOTE: the code has to be run on training mode first to save the
classifier that will be used for testing.

Returns:
None. Plots will be shown and accuracies will be printed.
nmnn
for epoch in iterations:
current _FPR = 1
current _FNR = 1

FPs = []
FNs = []
tol = 1le-6

best_classifer={}
tolerance_counter = 0O

if train:
print ("Performing Adaboost on Training data")
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train_positive_feats, train_negative_feats,
train_positive_labels, train_negative_labels =
get_features (data_path, train)

combined_train_feats = concatenate_feats/(
train_positive_feats, train_negative_feats)
combined_train_labels = concatenate_labels(

train_positive_labels, train_negative_labels)

for level in range (number_of_cascades):
current_Ada = get_cascaded_AdaBoost(

combined_train_feats, combined_train_labels, epoch,

level)

combined_train_feats, combined_train_labels, best_FPR,

best_FNR, best_weak_classifier = current_Ada

best_classifer[str(level + 1)] = best_weak_classifier
current_FPR *= best_FPR
current_FNR *= best_FNR
FPs.append (current_FPR)
FNs.append (current_FNR)

print ("Current cumulative FP: %.7f, cumulative FN %.7F"

% (current_FPR, current_FNR))

#Increasing the tolerance
tolerance_counter = level + 1

if current_FPR <= tol:

print ("We reached FP tolerance level:", tol, ’after

cascade level =’, level + 1)

if np.sum(combined_train_labels == 0) == 0:
print ("No images with negative labels remained
after cascade level: ", level+1)
break

#Plot the FP and FN rates

current_title = "AdaBoost performance on Training data.
Cascade levels: " + str(number_of_cascades) + ". After
+ str(epoch) + " iterations per cascade level."

plot_adaboost (FPs= FPs, FNs= FNs, title = current_title)

#Save the best classifer

with open("Results/AdaboostMine" + °/
Adaboost_classifer_level_’ + str(epoch) + ’_7 + str(
number_of_cascades) + ’.pkl’, ’wb’) as f:
pickle.dump(best_classifer, f)

#Test data
else:
print ("Performing Adaboost on Testing data")
#loading the best classifer
with open("Results/AdaboostMine" + °’/
Adaboost_classifer_level_’ + str(epoch) + ’_° + str(
number_of_cascades) + ’.pkl’, ’rb’) as f:
best_classifer = pickle.load(f)
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#Get the test features and labels

test_positive_feats, test_negative_feats,
test_positive_labels, test_negative_labels =
get_features (data_path, False)

combined_test_feats = concatenate_feats(test_positive_feats
, test_negative_feats)
combined_test_labels = concatenate_labels(

test_positive_labels, test_negative_labels)

#Get the FP and FN

FPs, FNs, _ = predict_ada(best_classifer,
combined_test_feats, combined_test_labels)

print ("Current Testing cumulative FP: %.7f, cumulative FN

%.TF" % (np.array(FPs) .min(), np.array(FNs).min()))

#current_title = "Test Data - Iteration: " + str(epoch) +".
Reached minimum at cascade level: "+str(
number_of_cascades)
current_title = "AdaBoost performance on Testing data.
Cascade levels: " + str(number_of_cascades) + ". After "
+ str(epoch) + " iterations per cascade level."

plot_adaboost (FPs = FPs, FNs = FNs, title = current_title)

#Training data AdaBoost
excute_adaboost (number_of_cascades= 6, iterations=[1, 3, 10], data_path
= "CarDetection", train = True)

#Performing

Adaboost on testing data

)| excute_adaboost (number_of_cascades= 6, iterations=[1, 3, 10], data_path

= "CarDetection", train = False)

Listing 2: Assignment 10 Autoencoder Code

import os

;| import numpy as np

import torch

from torch

import nn, optim

from PIL import Image

from torch.

autograd import Variable

from torch.utils.data import Dataset, Dataloader
from torchvision import transforms

import umap

import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier

class DataBuilder (Dataset):
def init__(self, path):

self .path = path

self.image_list

self.label_list

[f for £ in os.listdir(path) if f.endswith(’.
png )]

[int (f.split (’_’) [0]) for f in self.
image_list]

self.len = len(self.image_list)
self.aug = transforms.Compose ([

transforms.Resize ((64, 64)),
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transforms.ToTensor (),

D

def __getitem__(self, index):
fn = os.path.join(self.path, self.image_list[index])
x = Image.open(fn).convert(’RGB’)
x = self.aug(x)
return {’x’: x, ’y’: self.label_list[index]}

def len__(self):

return self.len

5| class Autoencoder (nn.Module) :

def __init__(self, encoded_space_dim):

super () . __init__()

self .encoded_space_dim = encoded_space_dim

### Convolutional section

self .encoder_cnn = nn.Sequential(
nn.Conv2d (3, 8, 3, stride=2, padding=1),
nn.LeakyReLU(True),
nn.Conv2d (8, 16, 3, stride=2, padding=1),
nn.LeakyReLU(True),
nn.Conv2d (16, 32, 3, stride=2, padding=1),
nn.LeakyReLU(True),
nn.Conv2d (32, 64, 3, stride=2, padding=1),
nn.LeakyReLU(True)

)

### Flatten layer

self .flatten = nn.Flatten(start_dim=1)

### Linear section

self .encoder_lin = nn.Sequential(
nn.Linear(4 * 4 *x 64, 128),
nn.LeakyReLU(True),
nn.Linear (128, encoded_space_dim * 2)

)

self .decoder_lin = nn.Sequential(
nn.Linear (encoded_space_dim, 128),
nn.LeakyReLU(True),
nn.Linear (128, 4 *x 4 * 64),
nn.LeakyReLU(True)

)

self .unflatten = nn.Unflatten(dim=1,
unflattened_size=(64, 4, 4))
self.decoder_conv = nn.Sequential (
nn.ConvTranspose2d (64, 32, 3, stride=2,
padding=1, output_padding=1),
nn.BatchNorm2d (32),
nn.LeakyReLU(True),
nn.ConvTranspose2d (32, 16, 3, stride=2,
padding=1, output_padding=1),
nn.BatchNorm2d (16) ,
nn.LeakyReLU(True),
nn.ConvTranspose2d (16, 8, 3, stride=2,
padding=1, output_padding=1),
nn.BatchNorm2d (8) ,
nn.LeakyReLU(True),
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def

def

nn.ConvTranspose2d (8, 3, 3, stride=2,
padding=1, output_padding=1)

encode (self, x):

x = self.encoder_cnn(x)
x = self.flatten(x)

X self.encoder_lin(x)

mu, logvar = x[:, :self.encoded_space_dim], x[:, self.

encoded_space_dim:]
return mu, logvar

decode (self, z):

x = self.decoder_1lin(z)
x = self.unflatten(x)

X self.decoder_conv (x)
X = torch.sigmoid (x)
return x

@staticmethod

def

def

def

reparameterize (mu, logvar):

std = logvar.mul(0.5).exp_Q)
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std).add_(mu)

;| class VaeLoss (nn.Module):

__init__(self):

super (VaeLoss, self).__init__()
self .mse_loss = nn.MSELoss(reduction="sum"

forward (self, xhat, x, mu,

logvar):

loss_MSE = self.mse_loss(xhat, x)
loss_KLD = -0.5 * torch.sum(1l + logvar - mu.pow(2)

O)
return loss_MSE + loss_KLD

j|def train(epoch):

model.train ()
train_loss = 0

for

batch_idx, data in enumerate(trainloader):

optimizer.zero_grad ()

mu, logvar = model.encode(datal[’x’])
z = model.reparameterize(mu, logvar)

xhat = model.decode(z)

loss = vae_loss (xhat, datal[’x’], mu, logvar)

loss.backward ()
train_loss += loss.item()
optimizer.step ()

print (’====> Epoch: {} Average
epoch, train_loss / len(trainloader.dataset)))

=1):

s/ def calculate_accuracy(true_labels,

temp_predictions = []

loss: {:.4f}’.format(

distances, num_classes,
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# Loop through each data point
for sample_idx in range(distances.shape[0]):

sample_distances = distances[sample_idx, :].copy()
class_votes = np.zeros(num_classes)
class_total_distances = np.zeros(num_classes)

# Find the k nearest neighbors

for _ in range(k_neighbors):
nearest_idx = np.argmin(sample_distances)
nearest_class = true_labels[nearest_idx] - 1

class_votes[nearest_class] += 1

class_total_distances [nearest_class] += sample_distances][
nearest_idx]

sample_distances [nearest_idx] = np.inf # Exclude this
index from future searches

# Determine the predicted class

avg_class_distances = class_total_distances / np.max(
class_votes)

zero_indices = np.where(avg_class_distances ==0)

avg_class_distances[zero_indices] = np.inf

predicted_class = np.argmin(avg_class_distances) + 1

temp_predictions.append(predicted_class)

# Convert predictions to a numpy array
temp_predictions = np.array(temp_predictions, dtype=int).squeeze()

# Calculate accuracy

matches = (true_labels == temp_predictions).astype(int)

correct_predictions = np.sum(matches)

accuracy_percentage = (correct_predictions / true_labels.shapel[0])
* 100

return accuracy_percentage

HAERAHAHARARBHHHAHAHHA AR R AR BB R HHHHS
# Change these

p =3 # [3, 8, 16]
training = False
TRAIN_DATA_PATH = ’FaceRecognition/train’
;| EVAL_DATA_PATH = °’FaceRecognition/test’
LOAD_PATH = f’weights/model_{pl}.pt’
5| OUT_PATH = ’autoencoderOutput’

o| HEHBAHAHAHBHHAHAHBHUAHAHBH B HAHAHH

model = Autoencoder (p)

if training:

epochs = 100

log_interval = 1

trainloader = DataLoader(
dataset=DataBuilder (TRAIN_DATA_PATH),
batch_size=12,
shuffle=True,

)

optimizer = optim.Adam(model.parameters (), lr=1e-3)
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vae_loss = VaeLoss ()
for epoch in range(l, epochs + 1):
train(epoch)

torch.save (model.state_dict (), os.path.join(OUT_PATH, f’model_{p}.

pt?’))
| else:
trainloader = DataLoader(
dataset=DataBuilder (TRAIN_DATA_PATH),
batch_size=1,
)

model.load_state_dict (torch.load (LOAD_PATH))
model.eval ()

X_train, y_train = [], []

for batch_idx, data in enumerate(trainloader):
mu, logvar = model.encode(datal’x’])
z = mu.detach().cpu() .numpy().flatten ()
X_train.append(z)
y_train.append(datal[’y’].item())

X_train = np.stack(X_train)
y_train = np.array(y_train)
testloader = DatalLoader(

dataset=DataBuilder (EVAL_DATA_PATH),
batch_size=1,

)
X_test, y_test = [1, []
for batch_idx, data in enumerate(testloader):

mu, logvar = model.encode(datal[’x’])
z = mu.detach().cpu().numpy () .flatten ()
X_test.append(z)
y_test.append(datal[’y’].item())

X_test = np.stack(X_test)

y_test = np.array(y_test)

HHAHH AR HHAHARBAHH A B BH AR R B AR RS

# Your code starts here

samples = X_test.shape[0]

current_distance = np.zeros((samples, samples))
for i in range(samples):

squared_diff = np.square(X_train - X_test[i, :])

ith_distance = np.sqrt(np.sum(squared_diff, axis=1)).T
current_distance[i,:] = ith_distance

#Calculate the accuracy

#How many images per class

imagesPerClass = 21

total_accuracy = calculate_accuracy(y_test, current_distance, 30,

1

print ("With P
HHAHH AR HHAHAR B HH A B BH AR R B AR RS

def plot_umap_embeddings(X_train, y_train, X_test,
p):
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Function to plot UMAP embeddings for training and test data.
nnn

# Initialize UMAP reducer

reducer = umap.UMAP(n_components=2, random_state=42)

# Fit UMAP on training data
X_train_umap = reducer.fit_transform(X_train)

# Transform test data
X_test_umap = reducer.transform(X_test)

# Plot training data
plt.figure(figsize=(8, 6))
scatter = plt.scatter(
X_train_umapl[:, 0],
X_train_umapl[:, 1],
c=y_train,
cmap="jet",
s=15,
alpha=0.8,
)
plt.title (f"UMAP Embedding of Training Data (P = {p})")
plt.colorbar(scatter, label="Ground Truth Labels")
plt.xlabel ("UMAP Dimension 1")
plt.ylabel ("UMAP Dimension 2")
plt.grid )
plt.show ()

# Plot test data
plt.figure(figsize=(8, 6))
scatter = plt.scatter(
X_test_umapl[:, 0],
X_test_umapl[:, 1],
c=y_test_pred,
cmap="jet" ,#"tabl0",
s=15,
alpha=0.8,
)
plt.title (f"UMAP Embedding of Test Data (P = {p})"™)
plt.colorbar(scatter, label="Predicted Labels")
plt.xlabel ("UMAP Dimension 1")
plt.ylabel ("UMAP Dimension 2")
plt.grid O)
plt.show ()

if not training:
# UMAP and Visualization
knn_classifier = KNeighborsClassifier (n_neighbors=1)
knn_classifier.fit (X_train, y_train)
y_test_pred = knn_classifier.predict(X_test)

# Generate UMAP plots

plot_umap_embeddings (X_train, y_train, X_test, y_test, y_test_pred,

p)
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