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ECE661 Fall 2024: Homework 1 

Alexandre Olivé Pellicer 

aolivepe@purdue.edu 

 

1. What are all the points in the representational space 𝑹𝟑 that are the 

homogeneous coordinates of the origin in the physical space 𝑹𝟐? 

The origin in 𝑅2 is (
0
0
) . Its Homogeneous Coordinates (HC) are (

0
0
1
).  Since  k·

(
0
0
1
)   𝑤𝑖𝑡ℎ 𝑘 ∈  𝑅 𝑘 ≠  0 corresponds to the same point in the physical  space 

𝑅2, the homogeneous coordinates of the origin in the physical space 𝑅2 can be 

written as (
0
0
k
)   𝑤𝑖𝑡ℎ 𝑘 ∈  𝑅 𝑘 ≠  0. 

2. Are all points at infinity in the physical plane 𝑹𝟐 the same? Justify your answer. 

No, not all points at infinity in the physical plane 𝑅2 are the same. Points at 

infinity, also known as Ideal Points, are of the form (
𝑢
𝑣
0
). Two ideal points x1 =

(
𝑢1
𝑣1
0
) and x2 = (

𝑢2
𝑣2
0
) approach infinity in different directions controlled by the 

values of 𝑢 and v. In fact, if 
𝑢1

𝑣1
 ≠

𝑢2

𝑣2
, the directions towards infinity will be 

different and, therefore, even though they are points at infinity in the physical 

space 𝑅2,  x1 and x2 will not be the same. 

 

Alternatively, all ideal points form a straight line in 𝑅2. Therefore, they are not 

the same. Given any two ideal points (
𝑢1
𝑣1
0
) and (

𝑢2
𝑣2
0
). The line that passes 

through these two points is 

l = (
𝑢1
𝑣1
0
) X (

𝑢2
𝑣2
0
)  =  k · (

0
0
1
)  𝑤𝑖𝑡ℎ 𝑘 ∈  𝑅 𝑘 ≠  0 

by keeping in mind the notation of equivalence classes in the representation 

space 𝑅3. We can see that being independent of (𝑢1, 𝑣1) and (𝑢2, 𝑣2) parameters, 

this line remains the same for all pair of ideal points. 

3. Prove that the matrix rank of a degenerate conic can never exceed 2. 

A degenerate conic C can be expressed as 𝐶 =  𝑙 · 𝑚𝑇  +  𝑚 · 𝑙𝑇 where l and m 

are the HC representation of the two intersecting lines that we get by slicing the 
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double cones with a plane that passes through the axis of the double cones. See 

that 𝑙 · 𝑚𝑇 and 𝑚 · 𝑙𝑇 are outer products and that the rank of outer product 

matrixes is always 1 since every column of the resulting outer product matrix is a 

constant times the first column.  

By the subadditivity property of matrix ranks we know that rank(A + B)  ≤

 rank(A)  +  rank(B). Thus, rank(C)  ≤  rank( 𝑙 · 𝑚𝑇)  +  rank(𝑚 · 𝑙𝑇)  =  1 +

1 =  2 

4. A line in 𝑹𝟐 is defined by two points. That raises the question how many points 

define a conic and a degenerate conic in 𝑹𝟐 ? Justify your answer. 

A conic is defined by 5 points in 𝑅2. The implicit form for a conic is: 

𝑎 · 𝑥2  +  𝑏 · 𝑥 · 𝑦 +  𝑐 · 𝑦2  +  𝑑 · 𝑥 +  𝑒 · 𝑦 + 𝑓 =  0 

Following the argument presented in Hartley & Zisserman’s “Multiple View 

Geometry in Computer Vision” (2nd edition, page 5), we can see that a conic is 

defined by 5 points because if we count the number of coefficients of x and y 

terms in the implicit form for a conic we get 5. 

We could do the same for the implicit form of a line: 

𝑎 · 𝑥 +  𝑏 · 𝑦 +  𝑐 =  0 

where we can count 2 coefficients of x and y terms. Therefore, a line in 𝑅2 is 

defined by two points. 

A degenerate conic C can be expressed as 𝐶 =  𝑙 · 𝑚𝑇  +  𝑚 · 𝑙𝑇 where l and m 

are the HC representation of the two intersecting lines that we get by slicing the 

double cones with a plane that passes through the axis of the double cones. Since 

a degenerate conic can be expressed as two intersecting lines and lines are 

defined with 2 points, degenerate conics can be defined with 4 points in 𝑅2. Note 

that in this case the intersection point wouldn’t be one of the points provided to 

define the degenerate conic. In case the intersection point is given, we would 

only need two more points (one corresponding to each line) to define the 

degenerate conic resulting in a total of 3 points in 𝑅2. 

5. Derive in just 3 steps the intersection of two lines l1 and l2 with l1 passing 

through the points (0, 0) and (3, 4), and with l2 passing through the points (−1, 

4) and (3/2, −1). How many steps would take you if the first line passed through 

(−1, 2) and (1, −2)? 

𝑙1  =  (
0
0
1
)  𝑋 (

3
4
1
)  =  (

−4
3
0
) 

𝑙2  =  (
−1
4
1
)  𝑋 (

3/2
−1
1

)  =  (
5
5/2
−5

)  
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𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =  (
−4
3
0
)𝑋 (

5
5/2
−5

)  =  (
−15
−20
−25

)  →  

(

 
 
 

-15

-25
-20

-25
-25

-25)

 
 
 

 =  (
0.6
0.8
1
)  

Therefore, the intersection point is (
0.6
0.8
). 

If the first line passed through (−1, 2) and (1, −2): 

𝑙1  =  (
−1
2
1
)  𝑋 (

1
−2
1
)  =  (

4
2
0
) 

𝑙2  =  (
−1
4
1
)  𝑋 (

3/2
−1
1

)  =  (
5
5/2
−5

)  

 Knowing that the implicit representation of a line is of the form: 

𝑎 · 𝑥 +  𝑏 · 𝑦 +  𝑐 =  0 

 And its explicit representation is of the form: 

𝑦 =  -
a

b
 ·  x -

c

b
 =  𝑚 · 𝑥 +  n 

Where m indicates the slope of the lines. We see that the slope of 𝑙1 (m =  -
4

2
=

2) and 𝑙2 (m =  -
5

2.5
= 2) are the same. Therefore, 𝑙1 and 𝑙2 are parallel 

meaning that the intersection point between 𝑙1 and 𝑙2 will be at infinity. 

Nevertheless, not all points at infinity are the same so we still need to compute 

the intersection point between 𝑙1 and 𝑙2 using the cross product: 

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =  (
4
2
0
)   𝑋 (

5
5/2
−5

)  =  (
−10
20
0
) 

To sum up, if the first line passed through (−1, 2) and (1, −2) we still need 3 steps 

to compute the intersection between 𝑙1 and 𝑙2.  

6. As you know, when a point p is on a conic C, the tangent to the conic at that 

point is given by l = Cp. That raises the question as to what Cp would correspond 

to when p was outside the conic. As you’ll see later in class, when p is outside 

the conic, Cp is the line that joins the two points of contact if you draw tangents 

to C from the point p. This line is referred to as the polar line. Now let our conic 

C be an ellipse that is centered at the coordinates (1, 4), with a = 1 and b = 2, 

where a and b, respectively, are the lengths of semi-minor and semi-major 

axes. For simplicity, assume that the minor axis is parallel to x-axis and the 

major axis is parallel to y-axis. Let p be the origin of the 𝑹𝟐 physical plane. Find 

the intersections points of the polar line with x- and y-axes. 

The equation of the ellipse can be written as: 
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(𝑥 − 1)2

(1)2
 +  

(𝑦 − 4)2

22
 =  1 

Which can be written as: 

𝑥2  + 
1

4
· 𝑦2  −  2𝑥 −  2𝑦 + 4 =  0 

Which can be written as: 

C = [

1 0 −1

0
1

4

−1 −1

−1
4
] 

Since p is the origin of the 𝑅2 physical plane, the HC representation is given by 

(
0
0
1
). Thus, we can compute the polar line by 

l = Cp = [

1 0 −1

0
1

4

−1 −1

−1
4
](
0
0
1
)  =  (

−1
−1
4
) 

The HC representation of the x axis is given by (
0
1
0
) and the HC representation of 

the y axis is given by (
1
0
0
). Therefore, we can compute: 

Intersection between l and x-axis: 

(
−1
−1
4
)  𝑋 (

0
1
0
) = (

−4
0
−1
)  → In 2D space: (

−4

−1
0

−1

)  = (
4
0
) 

Intersection between l and y-axis: 

(
−1
−1
4
)𝑋 (

1
0
0
) = (

0
4
1
) → In 2D space: (

0

1
4

1

)   =(
0
4
) 

To sum up, the intersection between the polar line with the x-axis is at (
4
0
) and 

the intersection between the polar line with the y-axis is at (
0
4
)    

 

7. Lets say you are designing an arcade game where the user has to aim at random 

triangles displayed on the screen as shown in Fig. 1 . The user is sitting at origin 

and has a laser gun to aim at the incoming triangles. Given the aiming angle 

chosen by the user α along with the coordinates of the vertices of the triangle 

v1, v2, v3, how would you quickly compute if the user’s aim is correct? Solve 

for the instance shown in the figure 

The explicit representation of a line is: 

𝑦 =  𝑚 · 𝑥 +  𝑐 

We will use this expression to represent the laser pointer. Since the user is sitting 

in the origin, we can set c = 0. Since the information we have is the angle (𝛼) of 
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the laser pointer with respect to the x axis, m can be computed as 𝑡𝑎𝑛(𝛼). Thus, 

the resulting explicit representation looks like: 

𝑦 =  𝑡𝑎𝑛(𝛼) · 𝑥 +  0 

And the implicit representation would be: 

𝑡𝑎𝑛(𝛼) · 𝑥  −  𝑦 +  0 =  0 

From this implicit representation we can write the parameter vector. Since in our 

case 𝛼 =  45: 

𝑙 =  (
𝑡𝑎𝑛(45)
−1
0

)  = (
1
−1
0
)  

Now we will want to compute the line-segments between the vertices of the 

triangle. We do it by computing the cross product of the HC of the vertices: 

𝑙𝑠1  =  (
3
5
1
)  𝑋 (

5
3
1
)  = (

2
2
−16

)  

𝑙𝑠2  =  (
5
3
1
)  𝑋 (

7
5
1
)  = (

−2
2
4
)  

𝑙𝑠3  =  (
7
5
1
)  𝑋 (

3
5
1
)  = (

0
−4
20
)  

 Now we will compute the intersection points between 𝑙𝑠1, 𝑙𝑠2, 𝑙𝑠3 𝑎𝑛𝑑 𝑙: 

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑠1𝑎𝑛𝑑 𝑙 =  (
2
2
−16

)  𝑋 (
1
−1
0
)  = (

−16
−16
−4

)  

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑠2𝑎𝑛𝑑 𝑙 =  (
−2
2
4
)  𝑋 (

1
−1
0
)  = (

4
4
0
)  

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑠3𝑎𝑛𝑑 𝑙 =  (
0
−4
20
)  𝑋 (

1
−1
0
)  = (

20
20
4
)  

 

 We convert the HC from the 3D space to the 2D space. We get: 

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑠1𝑎𝑛𝑑𝑙 = (

−16

−4
−16

−4

)  =  (
4
4
)  

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑠2𝑎𝑛𝑑𝑙 = (

4

0
4

0

)  → Intersection at infinite (parallel lines) 
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𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑠3𝑎𝑛𝑑𝑙 = (

20

4
20

4

)  =  (
5
5
) 

Now we have to check if the intersection points fall in between the two vertices. 

If one of the intersection points fall in between its corresponding vertices, the 

triangle will be touched. 

Given 3 points in the same line A(𝑥1, 𝑦1), B(𝑥2, 𝑦2)  and C(𝑥3, 𝑦3), C will be in 

between A and B if: 

min(𝑥1, 𝑥2)  ≤  𝑥3  ≤  max(𝑥1, 𝑥2) and min(𝑦1, 𝑦2)  ≤  𝑦3  ≤  max(𝑦1, 𝑦2)  

In our case, just by checking the intersection point between 𝑙𝑠1𝑎𝑛𝑑𝑙 we see that 

the triangle is touched since the above condition is true: 

min(3, 5)  ≤  4 ≤  max(3, 5) and min(5, 3)  ≤  4 ≤  max(5, 3)  

 

 

8. Extra credit: Write python code to solve problem 7 for any random triangle and 

random aiming angle. Show plots of a few instances with positive aim and 

negative aim. Feel free to constrain the triangle size and position as per your 

choice but the triangle is always pointing down. 

 

 

To
u
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Python code: 

import random 

import math 

import matplotlib.pyplot as plt 

import numpy as np 

 

#Set angle 

# angle  = math.radians(random.randint(0, 180)) 

angle = 50 

 

# Parameter vector of laser pointer 

l = [math.tan(math.radians(angle)), -1, 0] 

 

#Set vertices 

v_1 = (5, 8) 

v_2 = (9, 8) 

v_3 = (7, 6) 

 

triangle = [[v_1[0], v_1[1], 1], [v_2[0], v_2[1], 1], [v_3[0], v_3[1], 1]] 

status = "Missed!" 

 

for i in range(3): 

    j = (i + 1)%3 

    #Calculate line-segment between 2 vertices of the triangle 

    ls_1 = np.cross(triangle[i], triangle[j]) 

     

    #Calculate intersection point between laser pointer and line-segment 

    p_1 = np.cross(l, ls_1) 

     

    #Get the intersection point in the 2D physical plain 

    p_1_2D = [p_1[0]/p_1[2], p_1[1]/p_1[2]] 

     

    #Check if the intersection point is in between the two vertices of the 

triangle 

    if min(triangle[i][0], triangle[j][0])<= p_1_2D[0] <= 

max(triangle[i][0], triangle[j][0]) and min(triangle[i][1], 

triangle[j][1])<= p_1_2D[1] <= max(triangle[i][1], triangle[j][1]): 

        status = "Touched!" 

     

# Create a figure and axis 

fig, ax = plt.subplots() 

 

# Draw the X and Y axes 

ax.axhline(0, color='black', linewidth=1, linestyle='--')  # X axis 

ax.axvline(0, color='black', linewidth=1, linestyle='--')  # Y axis 

 

# Draw the laser pointer line (at 45 degrees) 

length = 10  # length of the laser pointer 
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x_end = length * np.cos(np.radians(angle)) 

y_end = length * np.sin(np.radians(angle)) 

ax.arrow(0, 0, x_end, y_end, head_width=0.5, head_length=0.5, fc='purple', 

ec='purple') 

 

# Draw the enemy triangle 

triangle = plt.Polygon([v_1, v_2, v_3], color='red') 

ax.text(v_1[0], v_1[1], f'{v_1}', fontsize=10, color='black', ha='center') 

ax.text(v_2[0], v_2[1], f'{v_2}', fontsize=10, color='black', ha='center') 

ax.text(v_3[0], v_3[1], f'{v_3}', fontsize=10, color='black', ha='center') 

ax.add_patch(triangle) 

 

# Label angle 

ax.text(0, 0.2, f'Angle = {angle}', fontsize=10, color='black', 

ha='center') 

 

# Set the limits and labels 

ax.set_xlim(-10, 10) 

ax.set_ylim(-2, 10) 

ax.set_xlabel('X axis') 

ax.set_ylabel('Y axis') 

ax.set_title(f'{status}') 

 

# Show the plot 

plt.show() 

 

 


