

ECE661 Fall 2024: Homework 1

Dai Yen Andrea Goh (goh8@purdue.edu)

Question 1:

Given an arbitrary point in the representational space \mathbb{R}^3 , $(x_1, x_2, x_3)^T$, the homogeneous coordinate representation in the physical space \mathbb{R}^2 is $(\frac{x_1}{x_3}, \frac{x_2}{x_3})^T$. At the origin, the point in the physical space can be expressed as $(\frac{0}{x_3}, \frac{0}{x_3})^T$. Thus, the point in the representational space \mathbb{R}^3 that are homogeneous coordinates of the origin is $(0, 0, x_3)^T$, or $(0, 0, k)^T$ where $k \in \mathbb{R}$, $k \neq 0$

Question 2:

Points at infinity are also called ideal points, where the last coordinate is equal to 0. $(u_1, u_2, 0)^T$ and $(w_1, w_2, 0)^T$ are both points at infinity and they approach infinity along a specific direction controlled by the pair $(u_1, u_2)^T$ and $(w_1, w_2)^T$. Values in these pairs are arbitrary and do not have to be equal. Thus, not all points at infinity in the physical plane are the same.

Question 3:

The degenerate conic can be represented by the equation: $C = lm^T + ml^T$. lm^T and ml^T are both outer products and the rank of an outer product matrix is always equal to 1. When two rank 1 matrix are summed, the resulting rank cannot exceed 2. When the degenerate conic has a rank of 2, it is represented as two intersecting lines. In the case where the two intersecting lines are superimposed, the rank of C will be 1.

Question 4:

The algebraic form of a line is $ax + by + c = 0$. This equation has two coefficients corresponding to the x y terms. Thus, a line in \mathbb{R}^2 can be represented by two points. Now, if we look at the implicit equation for a conic, $ax^2 + bxy + cy^2 + dx + ey + f = 0$, it has five coefficients corresponding to the x y terms. Thus, a conic is defined by five points. A degenerate conic in \mathbb{R}^2 is two intersecting lines that share a common point at the intersection. Thus, the degenerate conic can be defined by three points.

Question 5:

Part 1

Step 1: Determine l_1

$$l_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \\ 0 \end{bmatrix}$$

Step 2: Determine l_2

$$l_2 = \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix} \times \begin{bmatrix} 3/2 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5/2 \\ -5 \end{bmatrix}$$

Step 3: Determine the intersection of l_1 and l_2

$$P_{1,2} \begin{bmatrix} -4 \\ 3 \\ 0 \end{bmatrix} \times \begin{bmatrix} 5 \\ 5/2 \\ -5 \end{bmatrix} = \begin{bmatrix} -15 \\ -20 \\ -25 \end{bmatrix}$$

Part 2:

Step 1: Determine the line passing through $(-1, 2)$ and $(1, -2)$

$$l'_1 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 0 \end{bmatrix}$$

Step 2: Determine the intersection of the line passing through $(-1, 2)$ and $(1, -2)$ and l_2 :

$$P_{1',2} = \begin{bmatrix} 4 \\ 2 \\ 0 \end{bmatrix} \times \begin{bmatrix} 5 \\ 5/2 \\ -5 \end{bmatrix} = \begin{bmatrix} -10 \\ 20 \\ 0 \end{bmatrix}$$

Question 6:

The algebraic representation of an ellipse is:

$$(x - 1)^2 + \frac{(y-4)^2}{4} = 1$$

Rewriting the equation in the implicit form for a conic:

$$x^2 + \frac{y^2}{4} - 2x - 2y + 4 = 0$$

Rewriting as a vector-matrix product:

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & \frac{1}{4} & -1 \\ -1 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

The polar line can be found using the coefficient matrix:

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & \frac{1}{4} & -1 \\ -1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 4 \end{bmatrix}$$

Intersection with the x-axis:

$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}$$

Intersection with the y-axis:

$$\begin{bmatrix} -1 \\ -1 \\ 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ 1 \end{bmatrix}$$

Question 7:

(a) Convert aiming angle to line:

$$\begin{bmatrix} \cos(\alpha) \\ \sin(\alpha) \\ 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \sin(\alpha) \\ -\cos(\alpha) \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \\ 0 \end{bmatrix} \equiv \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Line of segment 1:

$$\begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ 16 \end{bmatrix} \equiv \begin{bmatrix} -1 \\ -1 \\ 8 \end{bmatrix}$$

Line of segment 2:

$$\begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix} \times \begin{bmatrix} 7 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ 4 \end{bmatrix} \equiv \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$$

Line of segment 3:

$$\begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix} \times \begin{bmatrix} 7 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ -20 \end{bmatrix} \equiv \begin{bmatrix} 0 \\ 1 \\ -5 \end{bmatrix}$$

(b) Intersection of aiming line with line segments:

Line segment 1:

$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \times \begin{bmatrix} -1 \\ -1 \\ 8 \end{bmatrix} = \begin{bmatrix} -8 \\ -8 \\ -2 \end{bmatrix} \equiv \begin{bmatrix} 4 \\ 4 \\ 1 \end{bmatrix}$$

The aiming line intersects the line of segment 1 at point (4,4), which falls on the line segment connecting the points (5,3) and (3,5).

Line segment 2:

$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ 0 \end{bmatrix} \equiv \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

The zero in the last term means that the aiming line and segment two are parallel. Thus, the aiming line will intersect segment 2 only if all points on segment 2 have equal x and y coordinates, which is not the case.

Line segment 3:

$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ -5 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 1 \end{bmatrix}$$

The aiming line intersects the line of segment 3 at point (5,5), which falls on the line segment connecting the points (3,5) and (7,5).

Overall, if the user's aim is correct, the aiming line will intersect exactly two line segments, which is the case in this scenario.

Question Extra Credit:

```
import numpy as np
import random
import math
import matplotlib.pyplot as plt

p1 = ([3,5,1])
p2 = ([5,3,1])
p3 = ([7,5,1])

alph = math.radians(random.randint(-90,90))
aim_p1 = np.array([0,0,1])
aim_p2 = np.array([math.cos(alph),math.sin(alph),1])
aim_l = np.cross(aim_p1,aim_p2)

l1 = np.cross(p1,p2)
l2 = np.cross(p2,p3)
l3 = np.cross(p3,p1)

int1 = np.cross(l1,aim_l)
int2 = np.cross(l2,aim_l)
int3 = np.cross(l3,aim_l)

int_points = np.zeros((2,3))
count = 0
result = 'wrong'
if int1[2] != 0:
    int1 = int1/int1[2]
    if int1[0] <= max(p1[0],p2[0]) and int1[0] >= min(p1[0],p2[0]):
        result = 'correct'
        int_points[count][:] = int1
        count = count +1
else:
    if int1[0]/int1[1] == p1[0]/p1[1]:
        result = 'correct'
        int_points[count][:] = p1
        count = count +1

if int2[2] != 0:
```

```

int2 = int2/int2[2]
if int2[0] <= max(p2[0],p3[0]) and int2[0] >= min(p2[0],p3[0]):
    result = 'correct'
    int_points[count][:] = int2
    count = count +1
else:
    if int2[0]/int2[1] == p2[0]/p2[1]:
        result = 'correct'
        int_points[count][:] = p2
        count = count + 1

if result == 'correct' and count == 1:
    if int3[2] != 0:
        int3 = int3/int3[2]
        int_points[1][:] = int3
    else:
        int_points[1][:] = p3
print(f'The aim is {result}')

plt.plot(0,0,'r.', markersize = 10, )
plt.fill((p1[0],p2[0],p3[0],p1[0]),(p1[1],p2[1],p3[1],p1[1]),'b')
plt.plot((0,10*aim_p2[0]),(0,10*aim_p2[1]),'r--')
print(int_points)
if result == 'correct':
    plt.plot(int_points[0][0],int_points[0][1], marker = '*', markersize = 10,me
    plt.plot(int_points[1][0],int_points[1][1], marker = '*', markersize = 10,me
    plt.xlim((-2,8))
    plt.ylim((-4,6))
    plt.grid(color='k', linestyle='-', linewidth=0.2)
    plt.title(rf'$\alpha = \{math.degrees(alph)}$: The aim is {result}')
    plt.show()

```

