
ECE661: Homework 8

Fall 2022
Due Date: 11:59pm, Nov 14, 2022

Turn in typed solutions via BrightSpace. Additional instructions can be
found at BrightSpace. This can be a challenging homework, start early!

1 Theory Question

In Lecture 20, we showed that the image of the Absolute Conic Ω∞ is given
by ω = K−TK−1. As you know, the Absolute Conic resides in the plane
π∞ at infinity. Does the derivation we went through in Lecture 20 mean
that you can actually see ω in a camera image? Give reasons for both ‘yes’
and ‘no’ answers. Also, explain in your own words the role played by this
result in camera calibration.

2 Introduction

The goal in this homework is to implement the popular Zhang’s algorithm
for camera calibration. A formal description of the algorithm can be found
in the Zhang’s technical report [1].

For this assignment, you can assume the camera to be a pin-hole camera.
This implies that a complete calibration procedure will involve estimating
all the 5 intrinsic parameters and the 6 extrinsic parameters that determine
the position and orientation of the camera with respect to a reference world
coordinate system. For this you need to to establish correspondences be-
tween image points and their world coordinates. To this end, you will use
the provided checkerboard pattern consisting of alternating black and white
squares, as shown in Fig. 1a. We will be using the corners of these squares
in our calibration procedure.

3 Programming Tasks

You will use two datasets for this homework. The provided dataset contains
40 images of the calibration pattern taken from varying viewpoints and
orientations. Additionally, you will create the second dataset on your own.
Your assignment consists of the following steps:

1



(a) (b)

Figure 1: The checkerboard calibration pattern and an example view in the
provided dataset.

3.1 Creating Your Own Dataset

• Print out the calibration pattern and mount it on a wall or a large piece
of cardboard. Now choose one of the corners on the pattern as your
world origin and measure the world coordinates of all the other corner
points on the pattern with a ruler. Number the corners appropriately.
A particular corner should get the same number label in all the images.
(This does not mean that you need to write any numbers on the actual
calibration pattern).

• For the very first image of the calibration pattern on the wall, position
the camera such that its Principal Axis is approximately perpendic-
ular to the plane of the wall on which you mounted the calibration
pattern. Also make sure that the x-axis of the image is very roughly
along the horizontal axis of the calibration pattern and the y-axis of
the image very roughly along the vertical axis of the pattern. These
conditions are meant to be satisfied only approximately. Despite the
approximations involved, the distance between the camera and cali-
bration pattern that you can measure manually will serve as a check
on your calculations of the calibration parameters. In the following
discussion, this image will be referred to as ‘Fixed Image’.

• Now move your camera in different directions and capture images of
the calibration pattern. Obviously you will need to rotate/tilt the
camera in order to capture the calibration pattern from different po-

2



sitions. A minimum of 20 different poses of the camera is required for
good camera calibration.

3.2 Zhang’s Algorithm

Implement the following steps for each of the datasets.

3.2.1 Corner Detection

• Extract edges using the Canny edge detector. You can use any open-
source implementation of Canny edge detector like the cv2.Canny

function from OpenCV, or skimage.feature.canny from scikit-image.

• Fit straight lines to the edges using the Hough transform. You can
again use any open-source implementation of the Hough line trans-
form like the cv2.HoughLines or the more efficient cv2.HoughLinesP
functions from OpenCV. Note that the skimage.transform module
also has the equivalent function calls.

• The corners will be the intersection points of these lines.

• Depending on the accuracy of your corner detection, you might wish to
improve your results. You can refer to the previous year solutions for
improving this accuracy. However do note that it is not necessary to
detect 100% of the true corners in every image. Since you will be using
the Levenberg-Marquardt (LM) non-linear optimization to refine your
calibration, you should have robust calibration as long as you detect
sufficiently high number of corners with good accuracy in each image.

• Assign labels to the corners using the same numbering scheme that
you used in the previous section. These labels should be indicated on
every output image in your report.

Proceed further only when you are sure that your corner detection algorithm
is working correctly.

3.2.2 Camera Calibration

• Establish correspondences between the extracted corners in each image
and their world coordinates.

• Implement Zhang’s calibration algorithm.

3



• Use the Levenberg-Marquadt algorithm for non-linear optimization.
You can either use the scipy.optimize.least squares function or
your own implementation from your previous homeworks.

• To measure the accuracy of your camera-calibration, reproject the
corner points from two or more views back into the ‘Fixed Image’.
You can do a visual comparison of the locations of the original corners
vis-a-vis the reprojected corner points. In each of the images, measure
the reprojection error for each point using the Euclidean Distance
measure. Calculate an estimate of the mean and variance of this error.

• Show at least two image pairs where one can see the improvement of
your calibration estimate by using the LM optimization.

• Compare your estimated camera pose for the ‘Fixed Image’ with the
measured ground-truth.

3.3 Extra Credits (10 points)

• Estimate the radial distortion parameters k = [k1, k2]
T . You can refer

to page 6 of Lecture 21 or Section 3.3 of Zhang’s report [1].

• Quantitatively demonstrate good reduction in the reprojection error
by using the LM optimization simultaneously on all the intrinsic, ex-
trinsic and radial distortion parameters. Show two image pairs with
and without considering the radial distortion parameters. Tabulate
the improvement of your calibration estimate by including the radial
distortion parameters in terms of the reprojection error.

4 Submission Instructions

Include a typed report explaining how did you solve the given programming
tasks.

1. Turn in a zipped file, it should include (a) a typed self-contained pdf
report with source code and results and (b) source code files (only .py
files are accepted). Rename your .zip file as hw8 <First Name><Last
Name>.zip and follow the same file naming convention for your pdf
report too.

2. Submit only once on BrightSpace. Otherwise, we cannot guaran-
tee that your latest submission will be pulled for grading and will not
accept related regrade requests.

4



3. Your pdf must include a description of

• Your answer to the theoretical question in Sec. 1.

• A clear description of how you implemented each of the given
programming tasks, with relevant equations.

• For each dataset, you should:

– Show at least two output images for the edge-detection, Hough
line fitting and corner detection steps. Clearly label the de-
tected corners as in it should be possible to visually verify
the correct correspondences.

– In separate plots, show the Fixed Image with reprojected cor-
ners from at least two views, along with the original corners.
This is to give a visual measure of the accuracy of your cal-
ibration procedure. Label the corners. Use different colours
to differentiate the reprojected corners from the original cor-
ners.

– Show at least two image pairs before and after using the LM
optimization. The reprojected corners should appear visibly
more accurate after LM.

– Include your estimates for the intrinsic camera matrix K and
for the external camera calibration matrix [R|t] for at least
two images.

– For extra credits, show at least two image pairs where the
improvement by considering k is visible (even slightly). Also
tabulate the corresponding reductions in reprojection errors.

• Your source code. Make sure that your source code files are
adequately commented and cleaned up.

4. To help better provide feedbacks to you, make sure to number your
figures.

5. The sample solutions from previous years are for reference only. Your
code and final report must be your own work.

References

[1] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22:1330–
1334, December 2000. URL https://www.microsoft.com/en-

5

https://www.microsoft.com/en-us/research/publication/a-flexible-new-technique-for-camera-calibration/
https://www.microsoft.com/en-us/research/publication/a-flexible-new-technique-for-camera-calibration/


us/research/publication/a-flexible-new-technique-for-

camera-calibration/. MSR-TR-98-71, Updated March 25, 1999.

6

https://www.microsoft.com/en-us/research/publication/a-flexible-new-technique-for-camera-calibration/
https://www.microsoft.com/en-us/research/publication/a-flexible-new-technique-for-camera-calibration/
https://www.microsoft.com/en-us/research/publication/a-flexible-new-technique-for-camera-calibration/

	Theory Question
	Introduction
	Programming Tasks
	Creating Your Own Dataset
	Zhang's Algorithm
	Corner Detection
	Camera Calibration

	Extra Credits (10 points)

	Submission Instructions

