ECE661 Computer Vision HW6

Akshita Kamsali, akamsali@purdue.edu

November 2, 2022

Note: bold lower case letters indicate vectors and bold upper case letters indicate matrices

1

1.1

1.2

Theory

Gray scale Co-occurrence Matrix - GLCM

The basic idea of GLCM is to estimate the joint probability distribution between the grayscale values
at any two selected pixels in the image separated specific vector distance d.

This is a statistical method of detecting texture.

Joint probability is created by a raster scan and updating a N x N matrix at (i, j)*" position. Where
N is the number of grayscale levels in the image and i, j are the grayscale values at two d-separated
pixels.

The N x N matrix generated in the previous step is divided by total number of pixels to obtain the
joint probability.

we use the statistical measures such as entropy, contrast, homogeneity etc from this joint probability
to draw inferences about the texture.

Entropy in general measures the randomness. Maximum when uniform distribution and minimum (0)
when deterministic.

Irrespective of the size of the image, the size GLCM depends only on the levels of grayscale.

Local Binary Points - LBP

LBP is another statistical method for looking for texture in an image.
Here, we look for pattern around every pixel and threshold it with respect to centre.
The points around a pixel are chosen as follows:

2
Rcos(%), Rsin(

2wp)
P

, where p € {0,1,2,..., P — 1}

R and P can be modified to obtained for different values.

WE pick R=1 and P=8. Points to left, right, top and bottom can be picked directly. However, points
diagonal need to be interpolated.

We interpolate points as:
p1 = (1-Ak)(1-Al)img[z, y|+(1—Ak)Alimg[z+1, y]| + Ak(1-Al)img[z, y+ 1]+ AkAlimg[z+1, y+1]
similarly for ps3, ps, pr then we threshold all points with respect to center to get the binary encoding.

Akshita Kamsali ECE661 Computer Vision November 2, 2022

e Once we have an encoding, we obtain a minimum bitvector representation and update out lIbp histogram
as mentioned. Figure 1 shows these histograms.

e The LBP histogram is used as an input feature vector to out SVM classifier.

1.3 Gabor Filter Family

e On contrast to above two methods, this a structural method. Although, professor mentions that it is
a bit of a misnomer.

e They apply a Gaussian decay function which results in a highly localised Fourier transform of the
image.

e The localisation is through the weights of the decay funstion and the characteristics of a texture are
through periodicity of the kernel. Each kernel corresponding to a specific direction.

e It being part of ISO standard for videos, i.e., MPEG-7, conveys the significance it has.

e The convolutional operator for Gabor filter is given by
1 a2 +y?

e 22 ¢
2

—j27(uz+vy)

h(z, y;u,v) =
e

we see sinusoids of u and v cycles per second on x and y-axis respectively.

e this kernel is flipped and multiplied with corresponding pixels and summed for a transformation.

1.4 True or False

1.4.1 RGB and HSI are just linear variants of each other.

False.

Reason RGB and HSI are not linear variants of each other. This is because to derive HSI from RGB, we
need a complex non-linear relationship, that too is an approximation.

1.4.2 The color space L*a*b* is a nonlinear model of color perception.

True

Reason L stands for luminescence, and a* and b* stand for the two color opponent dimensions. If it were
linear, it would have a non-complex linear relationship with a linear color model such as RGB

1.4.3 Measuring the true color of the surface of an object is made difficult by the spectral
composition of the illumination.

True.

Reason It is because of the diffused light that is reflected off a surface (light we try to capture with camera

for the color characterization). This diffused light has a cosine dependence on the angle of illumination to
the perpendicular to the surface owing to fundamental laws of reflection and diffraction.

2 Tasks
2.1 LBP

My implementation of LBP uses R = 1 and P = 8, therefore has 8 points around and interpolation equations
are as follows:
LBP histograms for different classes are in the figurel

Akshita Kamsali ECE661 Computer Vision November 2, 2022

LBP histogram for class: cloudy

1200 -
1000 -
800
600
400
200
04
(a) Cloudy image
LBP histogram for class: rain
800
700
600
500
400
300
200
100 4
o0
(b) Rain Image
LBP histogram for class: shine LBP histogram for class: sunrise
1600
1750
1400 4
1500 -
1200
1250
1000
1000 -
800
750
600
500
400
200 250
0 0-
0 2 4 6 8 0 2 4 6 8
(c) Shine Image (d) Sunrise image

Figure 1: A random LBP histogram from each class

Akshita Kamsali ECE661 Computer Vision November 2, 2022

N, channels in Ith layer

Channel Index: 0 2 N, -1

PSPPI RO g

/
/

Figure 2: Features in lth layer (ReLU for us) and N; = 512, each slab is of 16 x 16

2.2 Gram Matrix from VGG
Implementation details:

e I use the given VGG model architecture along with the pretrained weights to extract features for every
image.

e Size of feature vector (F) is C x H x W, where C = 512. H = 16, W = 16, as seen in figure 2, compress
this to C' x HW, making shape 512x256.

e I compute gram matrix as, G = FFT. shape 512x512. We can see them in figure 3
e [randomly sample 1024 samples from 512x512. Making sure I pick same indices from all images.

e After pruning the gifs and other images from training set, I get 920 images. I have 920x1024 size of
train data for my SVM along with labels.

e similarly, for test I get 200x1024 size data.

2.3 SVM Classifier

I use sklearn for my SVM. I use fit function to train my classifier and predict to get prediction labels on
test data. I use score to get my accuracy. We see the prediction results through confusion matrix in figures
4, 5 and 6.

The accuracy computed through score is in table 1

3 Extra credit

For Adaln, we use channel-wise normalisation parameters, i.e. mean and variance of 16 x 16 matrix for all
512 channels. This gives us a feature vector of 1024 for every image.

Observation I think this 1024 size feature vector captures the underlying statistics of all channels instead
of randomly sampling 1024 elements. This improved the performance from 94% for simple sampling to 97%
for normalised parameters.

Akshita Kamsali ECE661 Computer Vision November 2, 2022

Gram Matrix for class: rain Gram Matrix for class: rain

250

200

150

100

50

(a) Cloudy image (b) Rain Image

Gram Matrix for clas:

: shine Gram Matrix for class: sunrise

250 0

250
200
150 150
100

100

50

(c) Shine Image (d) Sunrise image

Figure 3: Gram Matrix from each class

Akshita Kamsali ECE661 Computer Vision

November 2, 2022

Confusion matrix for LBP

cloudy

True label
rain

shine

sunrise

cloudy rain

shine

Predicted label

|
sunrise

Figure 4: Confusion matrix for LBP

4 Results and observations

- 40

-35

30

25

20

15

10

I see that all cases, shine is the most confused category. Upon inspecting figures provided in HW pdf, the
shine has many similarities to cloud (since it has clouds) and sunrise (as it has sun). I think this could be
an explanation for the results we see. LBP performs the worst as it is a pixel level. I think Neural Networks
capture more information owing to information being pushed into channels (3 -; 512), increasing the capacity
of model to learn valuable features which help discriminate between a sun in a shiny day vs sun in sunrise
or scattered clouds in a cloudy day vs scattered clouds in a shiny day.

Accuracies are tabulated as follows:

Method | Accuracy
LBP 65.5 %
VGG 94 %

AdalN 97.5 %

Table 1: Accuracy for different methods

The figure 5 has confusion matrix for classifier results on test data for LBP histograms. The figure 5 has
confusion matrix for classifier results on test data for sampled elements from GRAM matrix. The figure 6
has confusion matrix for classifier results for channelwise normalisation parameters.

5 Code

from vgg import VGGI19

import os
from skimage import io, transform

Akshita Kamsali

ECE661 Computer Vision

November 2, 2022

True label

shine

True label

shine

Confusion matrix for VGG features

cloudy

rain

sunrise

I
cloudy rain shine sunrise

Predicted label

Figure 5: Confusion Matrix for VGG features

Confusion matrix for AdalN

cloudy

rain

sunrise

|
cloudy rain shine sunrise

Predicted label

Figure 6: Confusion matrix for normalising parameters

- 50

- 40

30

20

10

-50

- 40

30

20

10

Akshita Kamsali ECE661 Computer Vision November 2, 2022

from tqdm import tqdm
from BitVector import x
import cv2

import numpy as np

class GetFeatures:
def __init__(self, dir, model_dir):
self . model = VGGI19()
self .model.load_weights(model_dir)
self.dir = dir

def get_images(self, train=True):
images = |[]
labels = |[]
classes = [?cloudy”, ”rain”, ”shine”, "sunrise”]
data_dir = self.dir + 7 /training” if train else self.dir + ”/testing”
for img in sorted(os.listdir (data_dir)):
label = —1
if img = 7 .DS_Store”:
continue
if "cloudy” in img:
label = classes.index(”cloudy”)
elif ”"rain” in img:
label = classes.index(”rain”)
elif ”shine” in img:
label = classes.index(”shine”)
elif ”sunrise” in img:
label = classes.index(”sunrise”)

img = io.imread(os.path.join (data_dir, img))

if img.shape[—1] = 3:
labels .append(label)
images . append (img)

return labels , images

def get_features(self, images, labels, token="train”):
features = []
for img in tqdm(images):
img = transform.resize (img, (256, 256))
feature = self.model(img)
features .append(feature)
saving features to wuse later instead of recomputing as it takes a very long tim
np.savez (f”data/{token} _features.npz”, labels=labels, features=features)
return features

def lbp(self, images):
lbp_hists = []
for img in tqdm(images):
gray-img = cv2.cvtColor (img, cv2.COLORBGR2GRAY)
gray.img = cv2.resize (gray_img, (64, 64), interpolation=cv2.INTER.AREA)

Akshita Kamsali

ECE661 Computer Vision

November 2, 2022

gray_img_pad = np.pad(gray_img, 1, "constant”, constant_values=0)
assert gray_img_pad.shape =— (66, 66)
Ibp_hist = [0] % 10
gray_img = gray_img.T
k = 0.707
1 = 0.707
for i in range(l, gray_img_pad.shape[0] — 1):
for j in range(l, gray.img_pad.shape[l] — 1):
center = gray_img_pad[i][]
p=[0] =38
if gray_img_pad[i][j + 1] > center:
p[0] =1
if gray_img_pad[i + 1][j] > center:
p[2] =1
if gray_img pad[i][j — 1] > center:
pl4] =1
if gray_img pad[i — 1][j] > center:
p[6] =1
pl1] = (|
(I —k) = (1 — 1) = gray_img- pad[11i]
+ (1 — k) x 1 % gray_img_pad][i][j]
+k * (1 — 1) x gray_-img_pad[i][J 1]
+ k x 1 % gray_img_pad[i + 1][] + 1]
)
p[3] = (
(I — k) = (1 — 1) % gray-img-pad [1][]]
+ (1 — k) * 1 % gray_img_pad[i][J — 1]
+k * (1 — 1) x gray_-img_pad[i 11175
+ k % 1 % gray_img_pad[i + 1][j — 1]
)
p[5] = (
(I — k) = (1 — 1) % gray-img-pad [i1][]]
+ (1 — k) = 1 % gray_img_pad[i — 1][]]
+k x (1 — 1) x gray_img_ pad[117 — 1]
+ k x 1 % gray_img_pad][i 1171 — 1]
)
p[7] = (
(1 — k) = (1 — 1) * gray_img_pad[i][j]
+ (1 — k) = 1 % gray_img_pad[i][] + 1]
+ k x (1 — 1) % gray_img_ pad[l — 1][j]
+ k x 1 % gray_img_pad][i 1) + 1]
)
if p[1] > center
p[l] =1
else:
p[l] =0
if p[3] > center
p[3] =1
else
p[3] =0
if p[5] > center
p[5] =1

Akshita Kamsali ECE661 Computer Vision November 2, 2022

else:
p[5] =0
if p[7] > center:
p[7] =1
else:
p[7] =0

Taken from Dr. Kak’s tutorial
bv = BitVector(bitlist=p)

min_val = min([int (bv << 1) for _ in p])
min_bv = BitVector(intVal=min_val, size=len(p))
bv_runs = min_bv.runs ()

if len(bv_runs) =1
lbp_hist [0] +=1

elif len(bv_runs) = 1 and bv_runs[0][0] = 1:
Ibp_hist [8] +=1

elif len(bv_runs) > 2:
Ibp_hist [9] +=1

else:
Ibp_hist [len(bv_runs [0])] += 1

Ibp_hists.append(lbp_hist)
return np.array(lbp_hists)

and bv_runs [0][0] = O0:

def get_normalised_parameters(self, features):

ft .r = features.reshape(features.shape[0], features.shape[l], —1)
train.mean = np.mean(ft_r , axis=2)

train_std = np.std(ft_r, axis=2)

train_new_ft = list (zip(train_mean, train_std))

train_new_ft = np.transpose(np.array (train_new_ft), (0, 2, 1))
return train_new_ft.reshape(features.shape[0], —1)

from sklearn import svm

class SVMClassifier:
def __init__(self):
self.clf = svm.SVC(decision_function_shape="ovo”)

def fit(self, features, labels):
self.clf.fit (features, labels)

def predict (self, features):
return self.clf.predict(features)

def score(self, features, labels):
return self.clf.score(features, labels)
from feature_extractor import GetFeatures
from SVM _classifier import SVMClassifier

from sklearn.metrics import confusion_matrix
import seaborn as sns

import matplotlib.pyplot as plt

import random

10

Akshita Kamsali ECE661 Computer Vision November 2, 2022

import numpy as np
classes = [7cloudy”, ”rain”, ”shine”, ”"sunrise”]

gf = GetFeatures(dir="data” , model_dir="vgg_-normalized.pth”)
train_labels , train_images = gf.get_images(train=True)
test_labels , test_images = gf.get_images(train=False)

extract features through LBP hists

Ilbp_train = gf.lbp(train_images)

np.savez (f”data/lbp_train_net.npz”, labels=train_labels, features=lbp_train)
lbp_test = gf.lbp(test_images)

np.savez ({”data/lbp_test_net .npz”, labels=test_labels , features=lbp_test)

extract feautures through VGG
gf.get_features(train_images, train_labels, token="train”)
gf.get_features (test_images, test_labels, token="test”)
train_data = np.load (”data/train_feature.npz”)

test_data = np.load (”data/test_feature.npz”)
train_features = train_data[” features”]

train_labels = train_data[”labels” |

test_features = test_data[” features”]

test_labels = test_data[”labels”]

extract features — mormalisation parameters
normalised_train_ft = gf.get_normalised_parameters(train_features)
normalised_test_ft = gf.get_normalised_parameters(test_features)

def get_gm(features):

gm_train = []

for ft in features:
random . seed (0)
ft = ft.reshape(512, —1)
gm = ft @ ft.T
gm = random.sample(list (gm. flatten ()), 1024)
gm_train.append (gm)

return gm_train

gm_train = get_gm (features=train_features)
gm_test = get_gm(features=test_features)

clf = SVMClassifier ()

clf . fit (gm_train, train_labels)

pred_labels = clf.predict(gm_test)

print ("train_sore:.”, clf.score(gm_train, train_labels))
print (" test_score:.”, clf.score(gm._test, test_labels))

sns . heatmap (confusion_matrix (test_labels , pred_labels), annot=True)
plt.ylabel (" True_label”)
plt.xlabel (” Predicted._label”)

11

Akshita Kamsali ECE661 Computer Vision November 2, 2022

plt.xticks (np.arange (0.5, 4, 1), classes)
plt.yticks (np.arange (0.5, 4, 1), classes)
plt.title (" Confusion.matrix.for .VGG_features”)
plt.savefig(”solutions/lbp_cm.png”)

clf = SVMClassifier ()

clf . fit (normalised_train_ft , train_labels)

pred_labels = clf.predict(normalised_test_ft)

print ({” Train.score:.{clf.score(normalised_train_ft ,.train_labels)}”)
print (f” Test_score:_.{clf.score(normalised_test_ft ,_test_labels)}”)

sns.heatmap (confusion_matrix (test_labels , pred_labels), annot=True)
plt.ylabel (? True.label”)

plt.xlabel (” Predicted._label”)

plt.xticks (np.arange (0.5, 4, 1), classes)

plt.yticks (np.arange (0.5, 4, 1), classes)

plt.title (" Confusion.matrix.for_.AdaIN”)
plt.savefig(”solutions/vgg_cm.png”)

clf = SVMClassifier ()

clf . fit (normalised_train_ft , train_labels)

pred_labels = clf.predict(normalised_test_ft)

print (f” Train.score:.{clf.score(normalised_train_ft ,_.train_labels)}”)
print ({” Test_score:_{clf.score(normalised_test_ft ,.test_labels)}”)

sns.heatmap (confusion_matrix (test_labels , pred_labels), annot=True)
plt.ylabel (" True.label”)

plt.xlabel (” Predicted._.label”)

plt.xticks (np.arange (0.5, 4, 1), classes)

plt.yticks (np.arange(0.5, 4, 1), classes)

plt.title (” Confusion.matrix.for._.AdaIN")

plt .savefig(”solutions/AdaIN_cm.png”)

clf = SVMClassifier ()

clf . fit (lbp_train, train_labels)

pred_labels = clf.predict(lbp_test)

print (”train_sore:.”, clf.score(lbp_train, train_labels))
print (" test_score:.”, clf.score(lbp_test, test_labels))

sns . heatmap (confusion_matrix (test_labels , pred_labels), annot=True)

plt.ylabel (" True.label”)
plt.xlabel (” Predicted._.label”)

plt.xticks (np.arange (0.5, 4, 1), classes)
plt.yticks (np.arange(0.5, 4, 1), classes)
plt.title (” Confusion_matrix.for .LBP”)

plt .show ()

for i in range(4):
a = np.array(lbp_train)[(np.array(train_labels) = i)][0]
plt.figure ()

12

Akshita Kamsali ECE661 Computer Vision November 2, 2022

plt.bar(np.arange (0, 10), a)
plt.title (f”LBP_histogram._for._class:_{classes[i]}”)
plt.savefig (f”solutions/{classes[i]}.png”)

plot gram matrices
for i in range(4):
ft = train_features[train_labels = i][0].reshape (512, —1)
g =ft @ ft.T
plt.figure ()
plt .imshow (g.astype (" uint8”), cmap="gray”)
plt.colorbar ()
plt.title (f”Gram.Matrix_for.class:_.{classes[i]}”)
plt.savefig (f”solutions/gm_{classes[i]}.png”)

13

