
ECE 661: Homework 6
Wei Xu

Email: xu1639@purdue.edu
Due date: 11:59 pm, Oct. 19, 2022

(Fall 2022)

1 Theory Question

(1) Otsu Algorithm

Advantage. The algorithm is simple. It can effectively segment the image when the area
difference between the foreground object and the background is not large.

Disadvantage. When the areas of the foreground object and the background in the image are
very different, there will not be the obvious two peaks in the histogram, or the sizes of the two
peaks are very different. Then the segmentation will not be good, and the foreground object
and the background cannot be accurately separated, especially when they have a large overlap
of grayscale values. This is due to the fact that the method ignores the spatial information
of the image, while using the grayscale distribution of the image as the basis for the image
segmentation, and is also quite sensitive to noise.

(2) Watershed Algorithm

Advantage. The algorithm detects contours with closure and it is fast in detection.

Disadvantage. It does not learn from the region that is obviously foreground, for example to
build a mixed cloth Gaussian model. And there will be mis-segmentation or over-segmentation
in complex scenes.

2 Implementation Description

2.1 Otsu algorithm

The algorithm exhaustively searches for the threshold that maximizes the between-class variance.
It can be implemented through the following steps.

(1) Compute the histogram and probabilities of each intensity level (from 0 to L − 1, L bins in
total).

(2) For each possible threshold 1 ≤ k ≤ L− 2, compute class probabilities w and class means µ.
The class probabilities are

w0(k) = P0(C0) =

k−1∑
i=0

pi (1)

w1(k) = P1(C1) =
L−1∑
i=k

pi (2)

1

mailto:xu1639@purdue.edu


The class means are

µ0(k) =

k−1∑
i=0

iPr(i|C0) =

k−1∑
i=0

ipi
w0(k)

(3)

µ1(k) =

L−1∑
i=k

iPr(i|C1) =

L−1∑
i=k

ipi
w1(k)

(4)

Then compute the between-class scatter

σ2
b (k) = w0(k)[µT − µ0(k)]

2 + w1(k)[µT − µ1(k)]
2 = w0(k)w1(k)[µ1(k)− µ0(k)]

2 (5)

where µT =
∑L−1

i=0 ipi. Record σ2
b (k).

(3) The desired threshold k∗ corresponds to the maximum σ2
b (k). The mask is generated according

to k∗.

(4) Repeat steps (2) and (3) until the mask is satisfying.

2.2 Otsu algorithm using RGB channels

The RGB channels are split. And each channel yields a mask through the Otsu algorithm. Then
combine the masks. It can be implemented through the following steps.

(1) Split the RGB channels into three layers. Treat each layer as a single image.

(2) Run Otsu algorithm with each layer to get three masks.

(3) Combine the three masks with ’AND’ operator to get better segmentation.

2.3 Otsu algorithm using texture features

In this method, the texture features are considered. Then run Otsu algorithm with the features.
It can be implemented through the following steps.

(1) Convert the RGB image into grayscale.

(2) Use a N ×N window sliding on the image. And compute the variance within the window for
each pixel. Then get a variance layer having the same size as the original image.

(3) Repeat the last step with different kernel sizes N to get different layers.

(4) Treat these layers as channels. Run the algorithm with the similar logic as Otsu algorithm
using RGB channels. Then get the final segmentation.

2.4 Contour extraction

To get better contour extraction, firstly do erosion and dilation to eliminate noise. Then place a
window sliding on the mask to recognize the contour. It can be implemented through the following
steps.

(1) Do erosion with the kernel size of 3.

(2) Do dilation withe the kernel size of 3.

(3) Use a 3 × 3 window sliding on the mask. If a pixel is in the foreground and at least one of
the surrounding 8 pixels is in the background, consider this pixel being on contour.

2



3 Task 1

3.1 Optimal set of parameters

The optimal set of parameters for Task 1 is shown in Tab. 1.

Table 1: Optimal set of parameters in task 1.

image method parameter value

Cat
RGB channels number of iteration [1, 1, 1]

texture features
window size, N [7, 9, 11]

number of iteration [5, 5, 5]

Car
RGB channels number of iteration [1, 1, 1]

texture features
window size, N [3, 5, 7]

number of iteration [1, 1, 1]

3.2 Image segmentation and contour extraction

3.2.1 RGB channels method

The results for Cat image are shown in Fig. 1-3. And the results for Car image are shown in
Fig. 4-6.

(a) R (b) G (c) B

Figure 1: Masks from different color channels of Cat image.

3



Figure 2: Combined mask from RGB-based masks of Cat image.

Figure 3: Contour from RGB-based mask of Cat image.

4



(a) R (b) G (c) B

Figure 4: Masks from different color channels of Car image.

Figure 5: Combined mask from RGB-based masks of Car image.

Figure 6: Contour from RGB-based mask of Car image.

5



3.2.2 Texture features method

The results for Cat image are shown in Fig. 7-9. And the results for Car image are shown in
Fig. 10-12.

(a) N = 7 (b) N = 9 (c) N = 11

Figure 7: Masks from different window size of Cat image.

Figure 8: Combined mask from texture-based masks of Cat image.

6



Figure 9: Contour from texture-based mask of Cat image.

(a) N = 3 (b) N = 5 (c) N = 7

Figure 10: Masks from different window size of Car image.

7



Figure 11: Combined mask from texture-based masks of Car image.

Figure 12: Contour from texture-based mask of Car image.

3.3 Discussion

Both methods do better on the Cat image, but they do not work well on the Car image.
For the RGB-based method, the performance is more stable. The cat and lawn can be

separated from the background well on the blue channel. Because it is easier to recognize the sky
with the blue channel. The car can be separated from the background well on the green channel
due to its green color.

For the texture-based method, the performance is highly related to the image. It does better
on the Cat image than the RGB-based method. Because the fur of the car has a complex texture.
So the texture-based method can recognize it better. But for the Car image, there is no obvious

8



texture on the car, so the recognition is not satisfying. And the texture from the background also
affects the results a lot.

4 Task 2

4.1 Inputs

The input images of Task 2 are shown in Fig. 13. The expected results should show the separation
of a foreground object (dog and laptop) from the background.

(a) Dog (b) Laptop

Figure 13: Input images of Task 2.

4.2 Optimal set of parameters

The optimal set of parameters for Task 2 is shown in Tab. 2.

Table 2: Optimal set of parameters in task 2.

image method parameter value

Dog
RGB channels number of iteration [1, 1, 2]

texture features
window size, N [5, 9, 13]

number of iteration [10, 10, 10]

Laptop
RGB channels number of iteration [2, 2, 1]

texture features
window size, N [5, 9, 13]

number of iteration [2, 2, 2]

4.3 Image segmentation and contour extraction

4.3.1 RGB channels method

The results for Dog image are shown in Fig. 14-16. And the results for Laptop image are shown in
Fig. 17-19.

9



(a) R (b) G (c) B

Figure 14: Masks from different color channels of Dog image.

Figure 15: Combined mask from RGB-based masks of Dog image.

10



Figure 16: Contour from RGB-based mask of Dog image.

(a) R (b) G (c) B

Figure 17: Masks from different color channels of Laptop image.

Figure 18: Combined mask from RGB-based masks of Laptop image.

11



Figure 19: Contour from RGB-based mask of Laptop image.

4.3.2 Texture features method

The results for Dog image are shown in Fig. 20-22. And the results for Laptop image are shown in
Fig. 23-25.

(a) N = 5 (b) N = 9 (c) N = 13

Figure 20: Masks from different window size of Dog image.

12



Figure 21: Combined mask from texture-based masks of Dog image.

Figure 22: Contour from texture-based mask of Dog image.

13



(a) N = 5 (b) N = 9 (c) N = 13

Figure 23: Masks from different window size of Laptop image.

Figure 24: Combined mask from texture-based masks of Laptop image.

Figure 25: Contour from texture-based mask of Laptop image.

14



4.4 Discussion

In this task, both methods do well as expected.
The RGB-based method does better than the texture-based method in general. The RGB-

based method provides more smooth results. The dog is recognized well. Notice that even in the
green channel, the head of the dog is separated. And the laptop is separated from the background
well, even though there is some noise.

For the texture-based method, it is easy to be affected by the noise. The dog is not recognized
well compared with the cat in Cat image. Although they both have fur, Dog image also contains
some detailed grass texture, so it is harder to separate the dag. And the result of the Laptop image
has more noise from the table.

5 Source Code

1 import argparse

2 import cv2

3 import copy

4 import numpy as np

5

6 def otsu_grayscale(img , num_iter , inverse ):

7 # Otsu algorithm for a single channel

8 mask = np.ones(img.shape , dtype=bool)

9 for i in range(num_iter ):

10 hist , bins = np.histogram(img[mask],\

11 np.arange (0,257), density=True)

12 x_value = -np.inf

13 threshold = -np.inf

14 for b in bins [1: -1]:

15 w_0 = np.sum(hist[:b])

16 w_1 = np.sum(hist[b:])

17 if w_0 == 0 or w_1 == 0:

18 continue

19 mu_0 = np.sum(np.multiply(bins[:b],hist[:b])) / w_0

20 mu_1 = np.sum(np.multiply(bins[b:-1],hist[b:])) / w_1

21 x = w_0 * w_1 * (mu_1 - mu_0 )**2

22 if x >= x_value:

23 x_value = x

24 threshold = b

25 if inverse:

26 mask[img > threshold] = 0

27 else:

28 mask[img < threshold] = 0

29 return mask

30

31 def otsu_rgb_channel(img , num_iter =[1,1,1],\

32 inverse =[0,0,0], negtive=False):

33 # Otsu algorithm using RGB channels

34 num_channel = img.shape [2]

35 mask = np.zeros ((img.shape), dtype=int)

36 for i in range(num_channel ):

37 print(’Processing %dth channel out of %d...’\

38 %(i+1, num_channel ))

15



39 img_channel = img[:,:,i]

40 mask[:,:,i] = otsu_grayscale(img_channel ,\

41 num_iter[i], inverse[i])

42 if negtive:

43 mask = 1-mask

44 mask_segmentation = np.zeros ((img.shape [0:2]) , dtype=int)

45 for i in range(img.shape [0]):

46 for j in range(img.shape [1]):

47 if np.sum(mask[i,j,:]) == num_channel:

48 mask_segmentation[i,j] = 1

49 return mask , mask_segmentation

50

51 def pad_with(vector , pad_width , iaxis , kwargs ):

52 # image padding

53 pad_value = kwargs.get(’padder ’, 10)

54 vector [: pad_width [0]] = pad_value

55 vector[-pad_width [1]:] = pad_value

56

57 def otsu_texture_feature(img , N_list , num_iter ,\

58 inverse , negtive=False):

59 # Otsu algorithm using texture features

60 channels = np.zeros ((img.shape [0],img.shape [1],len(N_list )),\

61 dtype=float)

62 for k in range(len(N_list )):

63 pad_size = N_list[k] // 2

64 img_pad = np.pad(img , pad_size , pad_with , padder=np.mean(img))

65 for i in range(img.shape [0]):

66 for j in range(img.shape [1]):

67 window = img_pad[i:i+N_list[k], j:j+N_list[k]]

68 channels[i,j,k] = np.var(window)

69 channels [:,:,k] = (channels [:,:,k]-np.amin(channels [:,:,k]))\

70 / (np.amax(channels [:,:,k])-np.amin(channels [:,:,k])) * 255

71 mask , mask_segmentation = otsu_rgb_channel (\

72 channels.astype(np.uint8), num_iter , inverse , negtive)

73 return mask , mask_segmentation

74

75 def get_contour(mask , ed=False):

76 # contour recognition

77 img_contour = np.zeros(mask.shape , dtype=bool)

78 mask_denoise = copy.deepcopy(mask)

79 if ed:

80 mask_padded_e = np.pad(mask_denoise , 1, pad_with , padder =0)

81 for i in range(mask.shape [0]):

82 for j in range(mask.shape [1]):

83 if np.sum(mask_padded_e[i:i+3, j:j+3]) == 9:

84 mask_denoise[i,j] = 1

85 else:

86 mask_denoise[i,j] = 0

87 mask_padded_d = np.pad(mask_denoise , 1, pad_with , padder =0)

88 for i in range(mask.shape [0]):

89 for j in range(mask.shape [1]):

90 if mask_padded_d[i+1, j+1] == 1:

91 mask_denoise[i:i+3, j:j+3] = 1

92 for i in range(1,mask.shape [0] -1):

16



93 for j in range(1,mask.shape [1] -1):

94 if mask_denoise[i,j] == 0:

95 continue

96 elif np.amin(mask_denoise[i-1:i+2, j-1:j+2]) == 0:

97 img_contour[i,j] = 1

98 return img_contour

99

100 def plot_mask(mask_seg , title , mask=None):

101 # masks plot

102 cv2.imwrite(’%s.jpg ’%title , mask_seg *255)

103 if mask is not None:

104 for i in range(mask.shape [2]):

105 cv2.imwrite(’%s_%d.jpg ’%(title ,i), mask[:,:,i]*255)

106

107 if __name__ == ’__main__ ’:

108 parser = argparse.ArgumentParser ()

109 # ’1.1’ -- Task 1, RGB -based method

110 # ’1.2’ -- Task 1, texture -based method

111 # ’2.1’ -- Task 2, RGB -based method

112 # ’2.2’ -- Task 2, texture -based method

113 parser.add_argument(’-t’, ’--task ’, type=str , default =’2.2’,\

114 help=’choose a task ’, choices =[’1.1’,’1.2’,’2.1’,’2.2’])

115 args = parser.parse_args ()

116

117 if args.task == ’1.1’:

118 car = cv2.imread (’./HW6 -Images/car.jpg ’)

119 cat = cv2.imread (’./HW6 -Images/cat.jpg ’)

120 mask , mask_seg = otsu_rgb_channel(car , [1,1,1], [1,0,1])

121 plot_mask(mask_seg , ’car_rgb ’, mask)

122 car_contour = get_contour(mask_seg)

123 plot_mask(car_contour , ’car_rgb_contour ’)

124 mask , mask_seg = otsu_rgb_channel(cat , [1,1,1], [1,1,1])

125 plot_mask(mask_seg , ’cat_rgb ’, mask)

126 cat_contour = get_contour(mask_seg , True)

127 plot_mask(cat_contour , ’cat_rgb_contour ’)

128 if args.task == ’1.2’:

129 car = cv2.imread (’./HW6 -Images/car.jpg ’, cv2.IMREAD_GRAYSCALE)

130 cat = cv2.imread (’./HW6 -Images/cat.jpg ’, cv2.IMREAD_GRAYSCALE)

131 mask , mask_seg = otsu_texture_feature(car , [3,5,7],\

132 [1,1,1], [0,0,0])

133 plot_mask(mask_seg , ’car_texture ’, mask)

134 car_contour = get_contour(mask_seg)

135 plot_mask(car_contour , ’car_texture_contour ’)

136 mask , mask_seg = otsu_texture_feature(cat , [7,9,11],\

137 [5,5,5], [1,1,1], True)

138 plot_mask(mask_seg , ’cat_texture ’, mask)

139 cat_contour = get_contour(mask_seg , True)

140 plot_mask(cat_contour , ’cat_texture_contour ’)

141 if args.task == ’2.1’:

142 dog = cv2.imread (’./HW6 -Images2/dog.jpg ’)

143 cup = cv2.imread (’./HW6 -Images2/cup.jpg ’)

144 mask , mask_seg = otsu_rgb_channel(dog , [1,1,2], [0,0,0])

145 plot_mask(mask_seg , ’dog_rgb ’, mask)

146 dog_contour = get_contour(mask_seg)

17



147 plot_mask(dog_contour , ’dog_rgb_contour ’)

148 mask , mask_seg = otsu_rgb_channel(cup , [2,2,1], [1,1,1])

149 plot_mask(mask_seg , ’cup_rgb ’, mask)

150 cup_contour = get_contour(mask_seg)

151 plot_mask(cup_contour , ’cup_rgb_contour ’)

152 if args.task == ’2.2’:

153 dog = cv2.imread (’./HW6 -Images2/dog.jpg ’, cv2.IMREAD_GRAYSCALE)

154 cup = cv2.imread (’./HW6 -Images2/cup.jpg ’, cv2.IMREAD_GRAYSCALE)

155 mask , mask_seg = otsu_texture_feature(dog , [5,9,13],\

156 [10,10,10], [1,1,1], True)

157 plot_mask(mask_seg , ’dog_texture ’, mask)

158 dog_contour = get_contour(mask_seg)

159 plot_mask(dog_contour , ’dog_texture_contour ’)

160 mask , mask_seg = otsu_texture_feature(cup , [5,9,13],\

161 [2,2,2], [1,1,1], True)

162 plot_mask(mask_seg , ’cup_texture ’, mask)

163 cup_contour = get_contour(mask_seg)

164 plot_mask(cup_contour , ’cup_texture_contour ’)

18


	Theory Question
	Implementation Description
	Otsu algorithm
	Otsu algorithm using RGB channels
	Otsu algorithm using texture features
	Contour extraction

	Task 1
	Optimal set of parameters
	Image segmentation and contour extraction
	RGB channels method
	Texture features method

	Discussion

	Task 2
	Inputs
	Optimal set of parameters
	Image segmentation and contour extraction
	RGB channels method
	Texture features method

	Discussion

	Source Code

