Kumansh Furia ECE 661: Homework 6 October 19 2022

Theory Question

Lecture 15 presented two very famous algorithms for image segmentation: The Otsu Algo-
rithm and the Watershed Algorithm. These algorithms are as different as night and day.
Present in your own words the strengths and the weaknesses of each. (Note that the Water-
shed algorithm uses the morphological operators that we discussed in Lecture 14.)

Otsu’s Algorithm is a simple and fast algorithm and performs well when the histogram of
an image has a bimodal distribution with a deep and sharp valley between the two peaks.
It performs badly when there is lot of noise, when object sizes are small, when lighting is
inhomogeneous and when intra-class is larger than inter-class variance.

Watershed Algorithm, on the other hand, generates a topological surface of the intensity
of pixels where high intensity denotes peaks and hills while low intensity denotes valleys. It
deals with noise better than Otsu’s algorithm since it has a large variation in the gradient
levels of the image. However, it is possible to oversegment an image and to avoid that
Watershed algorithm requires a lot of markers.

Task 1

For Task 1, two variants of the Otsu algorithm were implemented on images shown below.

(a) Image 1 (b) Image 2

Figure 1: Input Images

1 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

Otsu’s Algorithm: Otsu’s algorithm calculates a threshold that divides pixels of an image
into two classes: foreground and background. This threshold is determined by maximizing
inter-class variance or by minimizing the intra-class variance. The inter-class variance is
given by:

o = wo(t)wr (t)[po(t) — pu (t))?

where wy(t) and w;(t) are probabilities of the two classes separated by threshold ¢ and are
calculated from L bins of histogram. N is the total number of pixels in the image, and n; is
the number of pixels at i grayscale level:

and () and pq(t) are class mean, calculated as:

olt) = wo(t)
_ > (i)
po(t) = o)

Task 1.1: Image segmentation using RGB values
Background
Brief Summary of the process:

1. The image was separated into three color channels: Blue, Green and Red

2. Each channel was then passed through Otsu’s algorithm to find the threshold to divide
the channel into foreground and background.

3. The threshold was used to create the mask of the foreground for each channel.

4. The masks for all three channels were then combined with logical ”AND” operation.

2 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

Outputs

(b) Blue Mask (c) Green Mask (d) Red Mask

(e) Combined Mask

Figure 2: BGR Segmentation masks

3 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(e) Combined Mask

Figure 3: BGR Segmentation masks

Parameters:

Image: Cat

Channels: Blue, Green, Red
Iterations: 1,1,1

Flip: 0,0,1

Image: Car

Channels: Blue, Green, Red
Iterations: 1,1,1

Flip: 0,1,0

4 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

Task 1.2: Texture-based segmentation

Background
Brief Summary of the process:
1. The image is converted to gray scale.
2. For the sliding window approach, three window sizes are selected (eg. 5, 7, 9)

3. The window of size N x N is then placed at each pixel and the intensity variance within
the window is calculated as the texture feature of that center pixel.

4. This creates a texture feature mask which is then passed through the Otsu’s algorithm
to divide it into foreground and background.

5. The masks for all three window sizes are then combined with logical ” AND” operation.

5 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

Outputs

(e) Combined Mask

Figure 4: Texture Segmentation masks

6 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(e) Combined Mask

Figure 5: Texture Segmentation masks

Parameters:
Image: Cat
Window Size: 3,5,7
Iterations: 1,1,1

Image: Car

Window Size: 3,5,7
Iterations: 1,1,1

7 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

Task 1.3: Contour Extraction

Background

Brief Summary of the process:

1. Once the masks from BGR Segmentation and Texture Segmentations are computed,
Dilation and Erosion is performed on them to check if the quality of the foreground vs
background increases or not.

2. For each mask, ”Opening” and ”Closing” Morphological operations are performed
followed by contour extraction.

3. For contour extraction, each pixel with value 1 is checked if it has at least one of its
eight neighbours has a value 0, it is copied onto the contour mask.

Dilation: It is a morphological operation which computes the maximum intensity over
the area of the image that overlaps with the kernel and then sets the intensity of the pixel
under the anchor point of the kernel with this maximum value. This results in bright regions
expanding in size.

Erosion: It is a morphological operation which computes the minimum intensity over the
area of the image that overlaps with the kernel and sets the pixel under the anchor point of

the kernel to the minimum intensity value. This results in bright regions shrinking in size.

Opening: This is when Erosion is performed first on the image, followed by Dilation. It
is used to remove internal noises.

Closing: This is when Dilation is performed first on the image, followed by Erosion. It is
used for smoothening of the image and fusing of narrow breaks.

8 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

Outputs

_'«-,‘ 14 N f..
itn' 5. Jl_r‘.

(d) CM -> Dilation (e) CM -> Dilation -> Erosion

Figure 6: Opening (b and ¢) and Closing (d and e) Morphological Operations

9 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(f) Contour after Closing

Figure 7: Final Contours for different Masks

10 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(b) CM -> Erosion

(d) CM -> Dilation (e) CM -> Dilation -> Erosion

Figure 8: Opening (b and ¢) and Closing (d and e) Morphological Operations

11 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(a)

(e) Closing Mask (f) Contour after Closing

Figure 9: Final Contours for different Masks

12 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(a) Combined Mask (CM) from BGR Segmentation

(d) CM -> Dilation (e) CM -> Dilation -> Erosion

Figure 10: Opening (b and ¢) and Closing (d and e) Morphological Operations

13 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(e) Closing Mask (f) Contour after Closing

Figure 11: Final Contours for different Masks

14 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(d) CM -> Dilation (e) CM -> Dilation -> Erosion

Figure 12: Opening (b and ¢) and Closing (d and e) Morphological Operations

15 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(e) Closing Mask (f) Contour after Closing

Figure 13: Final Contours for different Masks

Parameters:
Image: Cat

Erosion Size: 2
Erosion iterations: 1
Dilation Size: 3
Dilation Iterations: 2

Image: Car

Erosion Size: 2
Erosion Iterations: 1
Dilation Size: 3
Dilation Iterations: 2

16 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

Task 2

For Task 2, two variants of the Otsu algorithm were implemented on images shown below.

(b) Image 2

Figure 14: Input Images

17 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

Outputs

Task 2.1: Image segmentation using RGB values

(b) Blue Mask

(e) Combined Mask

Figure 15: BGR Segmentation masks

18 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(b) Blue Mask (c) Green Mask (d) Red Mask

(e) Combined Mask

Figure 16: BGR Segmentation masks

Parameters:

Image: Cat

Channels: Blue, Green, Red
Iterations: 1,1,2

Flip: 1,1,1

Image: Car

Channels: Blue, Green, Red
Iterations: 2,2,2

Flip: 0,0,0

19 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

Task 2.2: Texture-based segmentation

(e) Combined Mask

Figure 17: Texture Segmentation masks

20 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(e) Combined Mask

Figure 18: Texture Segmentation masks

Parameters:
Image: Cat
Window Size: 5,7,9
Iterations: 1,1,1

Image: Car

Window Size: 5,7,9
Iterations: 1,1,1

21 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

Task 2.3: Contour Extraction

(d) CM -> Dilation (e) CM -> Dilation -> Erosion

Figure 19: Opening (b and ¢) and Closing (d and e) Morphological Operations

22 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(d) Contour after Opening

(e) Closing Mask (f) Contour after Closing

Figure 20: Final Contours for different Masks

23 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(¢)

(d) CM -> Dilation (e) CM -> Dilation -> Erosion

Figure 21: Opening (b and c) and Closing (d and e) Morphological Operations

24 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(a) Combined Mask (CM) (b) Combined Mask Contour

(c) Opening Mask (d) Contour after Opening

(e) Closing Mask (f) Contour after Closing

Figure 22: Final Contours for different Masks

25 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(d) CM -> Dilation (e) CM -> Dilation -> Erosion

Figure 23: Opening (b and ¢) and Closing (d and e) Morphological Operations

26 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(a) Combined Mask (CM) (b) Combined Mask Contour

(c) Opening Mask (d) Contour after Opening

(e) Closing Mask (f) Contour after Closing

Figure 24: Final Contours for different Masks

27 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(a) Combined Mask (CM) from Texture Segmentation

(d) CM -> Dilation (e) CM -> Dilation -> Erosion

Figure 25: Opening (b and ¢) and Closing (d and e) Morphological Operations

28 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

(a) Combined Mask (CM) (b) Combined Mask Contour

(c) Opening Mask (d) Contour after Opening

(e) Closing Mask (f) Contour after Closing

Figure 26: Final Contours for different Masks

Parameters:
Image: Cat

Erosion Size: 1
Erosion iterations: 1
Dilation Size: 3
Dilation Iterations: 2

Image: Car

Erosion Size: 1
Erosion Iterations: 1
Dilation Size: 3
Dilation Iterations: 2

29 of 36

Kumansh Furia ECE 661: Homework 6

October 19 2022

Observation

1.

2.

For each image, parameters were tuned to get the best results

In cases when the combined mask was dense, performing erosion followed by dilation

helped clean the foreground mask and get a better contour.

In cases when the combined was not dense, performing erosion led to lose of details,
and hence dilation was performed first followed by erosion to get a better result.

mentation at separating the foreground from the background.

. As can be seen, sometimes BGR Segmentation performed better than Texture Seg-

If the image consisted of colors such as cyan, pink and magenta, the BGR segmentation

failed to separate the colors properly.

Source Code

import numpy as np
import cv2

import math

def

———————————————————————— Functions———-————-—-—-—-—-—=—=—=—=—————————

RGBImageSegmentation (image, iters, flip, imgName):
img = image.copy ()

Get RGB layers of the img
channels = cv2.split(img) # B - G - R

Create Masks array to store mask for each of the 3 layers

masks = []
mask_all = np.ones(channels[0].shape).astype(np.uint8)
for ¢, channel_data in enumerate(channels):
Update mask
mask = getMask(channel_data, iters[c], flipl[c])
masks . append (mask)
mask_all = np.logical_and(mask_all, mask)
Foreground with blue, gree, red mask
mask_blue = np.uint8(masks[0]*255)
mask_green = np.uint8(masks[1]+*255)
mask_red = np.uint8(masks[2]*255)
Foreground with merged masks
mask_comb_img = np.uint8(mask_all*255)

Save Images

cv2.imwrite (’HW6/’+imgName+’ _blue_img. jpeg’, channels[0])

cv2.imwrite (’HW6/’+imgName+’ _green_img.jpeg’, channels[1])

cv2.imwrite (’HW6/’+imgName+’ _red_img. jpeg’, channels[2])

cv2.imwrite (’HW6/’+imgName+’ _blue_mask.jpeg’, mask_blue)

cv2.imwrite (’HW6/’+imgName+’ _green_mask.jpeg’, mask_green)

cv2.imwrite (’HW6/’+imgName+’ _red_mask. jpeg’, mask_red)

30 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

cv2.imwrite (’HW6/’+imgName+’ _mask_all. jpeg’, mask_comb_img)

return mask_blue, mask_green, mask_red, mask_all

def getMask(img_data, iters, flip):
data = img_data.flatten ()

for i in range(iters):
Get the threshold using Otsu’s Algorithm
threshold = OtsuThresh(data)

Create a mask to update
mask = np.zeros(img_data.shape, dtype = np.uint8)

Using the threshold, update the mask
if flip:

mask [img_data > threshold] = 1

data = [i for i in data if i>threshold]
else:

mask[img_data <= threshold] = 1

data = [i for i in data if i<threshold]

data = np.asarray(data)
return mask

def OtsuThresh(img):
get histogram
hist, bins = np.histogram(img, bins = 256, range = (0,256))

sum_t = sum(hist*bins[:-1])
back = 0

sumback = 0

best_fn = -1

threshold = 0
for i in range(256):
back, fore = sum(hist[:i]), sum(hist[i+1:])
if back == 0 or fore == 0:
continue
sumback += i*hist[i]
sumfore = np.int32(sum_t - sumback)
fn = back*fore*(sumback/back - sumfore/fore) **2
if fn>=best_fn:
threshold = i
best_fn = fn

print (threshold)
return threshold

def textureSegmentation(image, window, iters, flip, imgName):
img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
layers = []
masks = []
mask_all = np.ones (img.shape).astype(np.uint8)
for i, N in enumerate(window):

31 of 36

Kumansh Furia ECE 661: Homework 6

October 19 2022

def

def

layer = getTexturelayer (img, N)
layers.append(layer)
mask = getMask(layer, iters[i], flip[il)
masks . append (mask)
mask_all = np.logical_and(mask_all, mask)
Foreground with blue, gree, red mask
mask_1 = np.uint8(masks[0]*255)
mask_2 = np.uint8(masks[1]*255)
mask_3 = np.uint8(masks[2]*255)
Foreground with merged masks
mask_comb_img = np.uint8(mask_all#*255)

Save Images

cv2.imwrite (’HW6/’+imgName+’ _textLayerl.jpeg’, layers[0])
cv2.imwrite (’HW6/’+imgName+’ _textLayer2.jpeg’, layers([1])
cv2.imwrite (’HW6/’+imgName+’ _textLayer3. jpeg’, layers([2])

cv2.imwrite (’HW6/’+imgName+’ _layeriMask. jpeg’, mask_1)
cv2.imwrite (’HW6/’+imgName+’ _layer2Mask.jpeg’, mask_2)
cv2.imwrite (’HW6/’+imgName+’ _layer3Mask.jpeg’, mask_3)

cv2.imwrite (’HW6/’+imgName+’ _textureMask_all. jpeg’, mask_comb_img)

return mask_1, mask_2, mask_3, mask_all

getTexturelayer (img, N):
varLayer = np.zeros(img.shape)
for y in range(img.shapel[0]):
for x in range (img.shape[1]):
mid = int ((N-1)/2)
u = max(0, y-mid)
d = min(img.shapel[0], y + mid + 1)
1 = max(0, x-mid)
r = min(img.shape[1], x + mid + 1)
window = imglu:d, 1l:r]
varLayer [y] [x] = np.var(window)

varlLayer = np.uint8(np.round (255 * varLayer / (np.max(varLayer)-np.min

(varLayer))))
return varLayer

opening(imgName, mask, erosion, dilation, eros_size, eros_iter,

dil_size, dil_iter):
Use dilation and Erosion to clean the mask
if erosion:

k = np.ones((eros_size,eros_size), np.uint8)
mask = cv2.erode(np.float32(mask), k, iterations=eros_iter)
cv2.imshow(’framel’, mask)

cv2.waitKey (0)
cv2.destroyAllWindows ()

cv2.imwrite (’HW6/’+imgName+’ _opening_eros_img.jpeg’, mask*255)

if dilation:
k = np.ones((dil_size, dil_size), np.uint8)

mask = cv2.dilate(np.float32(mask), k, iterations=dil_iter)

cv2.imshow(’frame2’, mask)
cv2.waitKey (0)
cv2.destroyAllWindows ()

32 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

def

def

cv2.imwrite (’HW6/’+imgName+’ _opening_dil_eros_img.jpeg’, mask*255)
return mask

closing (imgName , mask, erosion, dilation, eros_size, eros_iter,
dil_size, dil_iter):
Use dilation and Erosion to clean the mask
if dilation:
k = np.ones((dil_size, dil_size), np.uint8)
mask = cv2.dilate(np.float32(mask), k, iterations=dil_iter)
cv2.imshow(’frame2’, mask)
cv2.waitKey (0)
cv2.destroyAllWindows ()
cv2.imwrite (’HW6/’+imgName+’ _closing_dilation_img. jpeg’, mask*255)
if erosion:
k = np.ones((eros_size,eros_size), np.uint8)
mask = cv2.erode(np.float32(mask), k, iterations=eros_iter)
cv2.imshow (’framel’, mask)
cv2.waitKey (0)
cv2.destroyAllWindows ()
cv2.imwrite (’HW6/’+imgName+’ _closing_eros_dil_img. jpeg’, mask*255)
return mask

getContour (imgName , mask):
contour = np.zeros(mask.shape, dtype = np.uint8)
for y in range(l,mask.shape[0]-1):
for x in range(l,mask.shape[1]-1):
if mask([y] [x] == 0:
continue
window = mask[y-1:y+2, x-1:x+2]
if sum(window.flatten())<9:
contour [y] [x] = 1
contour_img = np.uint8(contour*255)

Save Image
cv2.imwrite (’HW6/’+imgName+’ _contour_img. jpeg’, contour_img)

return contour_img

Input Images

catl
carl
cat?2
car?

= cv2.imread (’HW6/cat. jpg’)
= cv2.imread (’HW6/car. jpg’)
cv2.imread (’HW6/cat2. jpg’)
= cv2.imread (’HW6/car2. jpg’)

BGR Segmentation and Contouring

33 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

blue_mask, green_mask, red_mask, mask_all_bgrSeg = RGBImageSegmentation(
catl, iters = [1,1,1], flip = [0,0,1]
, imgName="catl")
mask_all_opening = closing("catl_bgrSeg", mask_all_bgrSeg, erosion=1,
dilation=1, eros_size=2, eros_iter=1,
dil_size=3, dil_iter=2)
mask_all_closing = opening("catl_bgrSeg", mask_all_bgrSeg, erosion=1,
dilation=1, eros_size=2, eros_iter=1,
dil_size=3, dil_iter=2)
getContour ("catl_bgrSeg", mask_all_bgrSeg)
getContour ("catl_bgrSeg_opening", mask_all_opening)
getContour ("catl_bgrSeg_closing", mask_all_closing)

mask_all
mask_all
mask_all

Texture Segmentation and Contouring

layer3Mask, layerb5Mask, layer7Mask, textureMask_all = textureSegmentation(
catl, window = [3,5,7], iters = [1,1,
1], flip = [0,1,1], imgName="catl")

mask_all_closing = closing("catl_texture", textureMask_all, erosion=1,
dilation=1, eros_size=2, eros_iter=1,
dil_size=3, dil_iter=2)

mask_all_opening = opening("catl_texture", textureMask_all, erosion=1,
dilation=1, eros_size=2, eros_iter=1,
dil_size=3, dil_iter=2)

mask_all = getContour("catl_texture", textureMask_all)

mask_all = getContour("catl_texture_opening", mask_all_opening)
mask_all = getContour("catl_texture_closing", mask_all_closing)
#-—m— - Carl Image----------- #

BGR Segmentation and Contouring

blue_mask, green_mask, red_mask, mask_all_seg = RGBImageSegmentation(carl,
iters = [1,1,1], flip=[0,1,0],
imgName="carl")

mask_all_closing = closing("carl_bgrSeg", mask_all_seg, erosion=1,
dilation=1, eros_size=1, eros_iter=1,
dil_size=3, dil_iter=2)

mask_all_opening = opening("carl_bgrSeg", mask_all_seg, erosion=1,
dilation=1, eros_size=1, eros_iter=1,
dil_size=3, dil_iter=2)

mask_all = getContour("carl_bgrSeg", mask_all_seg)

mask_all getContour ("carl_bgrSeg_opening", mask_all_opening)

mask_all getContour ("carl_bgrSeg_closing", mask_all_closing)

layeriMask, layer2Mask, layer3Mask, textureMask_all = textureSegmentation (

carl, window = [3,5,7], iters = [1,1,
1], flip = [0,0,1], imgName="caril")
mask_all_closing = closing("carl_texture", textureMask_all, erosion=1,

dilation=1, eros_size=1, eros_iter=1,
dil_size=3, dil_iter=2)
mask_all_opening = opening("carl_texture", textureMask_all, erosion=1,
dilation=1, eros_size=1, eros_iter=1,
dil_size=3, dil_iter=2)
mask_all = getContour("carl_texture", textureMask_all)

34 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

mask_all = getContour("carl_texture_closing", mask_all_closing)
mask_all = getContour("carl_texture_opening", mask_all_opening)
#-——-———— - Task 2-—-—-=========-"===—=——--— #

- Cat2 Image---——-—------- #

BGR Segmentation and Contouring

blue_mask, green_mask, red_mask, mask_all_bgrSeg = RGBImageSegmentation (
cat2, iters = [1,1,2], flip = [1,1,1]
, imgName="cat2")

mask_all_opening = closing("cat2_bgrSeg", mask_all_bgrSeg, erosion=1,
dilation=1, eros_size=2, eros_iter=1,
dil_size=3, dil_iter=2)

mask_all_closing = opening("cat2_bgrSeg", mask_all_bgrSeg, erosion=1,
dilation=1, eros_size=2, eros_iter=1,
dil_size=3, dil_iter=2)

mask_all getContour ("cat2_bgrSeg", mask_all_bgrSeg)

mask_all getContour ("cat2_bgrSeg_opening", mask_all_opening)

mask_all = getContour("cat2_bgrSeg_closing", mask_all_closing)

Texture Segmentation and Contouring
layer3Mask, layer5Mask, layer7Mask, textureMask_all = textureSegmentation (

cat2, window = [5,7,9], iters = [1,1,
1], flip = [1,1,1], imgName="cat2")
mask_all_closing = closing("cat2_texture", textureMask_all, erosion=1,

dilation=1, eros_size=2, eros_iter=1,
dil_size=3, dil_iter=2)
mask_all_opening = opening("cat2_texture", textureMask_all, erosion=1,
dilation=1, eros_size=1, eros_iter=1,
dil_size=3, dil_iter=2)
getContour ("cat2_texture", textureMask_all)

mask_all

mask_all = getContour("cat2_texture_opening", mask_all_opening)

mask_all = getContour("cat2_texture_closing", mask_all_closing)

#-—mmm - Car2 Image----—------- #

BGR Segmentation and Contouring

blue_mask, green_mask, red_mask, mask_all_seg = RGBImageSegmentation(car2,

iters = [2,2,2], flip=[0,0,0],
imgName="car2")
mask_all_closing = closing("car2_bgrSeg", mask_all_seg, erosion=1,
dilation=1, eros_size=1, eros_iter=1,
dil_size=3, dil_iter=2)
mask_all_opening = opening("car2_bgrSeg", mask_all_seg, erosion=1,
dilation=1, eros_size=1, eros_iter=1,
dil_size=3, dil_iter=2)
mask_all = getContour("car2_bgrSeg", mask_all_seg)
mask_all getContour ("car2_bgrSeg_opening", mask_all_opening)
mask_all = getContour("car2_bgrSeg_closing", mask_all_closing)

Texture Segmentation and Contouring

35 of 36

Kumansh Furia ECE 661: Homework 6 October 19 2022

layeriMask, layer2Mask, layer3Mask, textureMask_all = textureSegmentation

car?2, window = [5,7,9], iters = [1,1,
1], flip = [1,1,1], imgName="car2")
mask_all_closing = closing("car2_texture", textureMask_all, erosion=1,

dilation=1, eros_size=1, eros_iter=1,
dil_size=3, dil_iter=2)

mask_all_opening = opening("car2_texture", textureMask_all, erosion=1,
dilation=1, eros_size=1, eros_iter=1,
dil_size=3, dil_iter=2)

mask_all = getContour("car2_texture", textureMask_all)
mask_all = getContour("car2_texture_closing", mask_all_closing)
mask_all = getContour("car2_texture_opening", mask_all_opening)

36 of 36

