
ECE661: Homework 3

Fall 2022
Due Date: 1:30pm, Sep 20, 2022

In this homework, you will explore and compare different approaches for
removing the perspective and affine distortions in images. Note that you
can NOT use any built-in functions to compute homography matrices or for
image warping.

Turn in typed solutions via BrightSpace. Additional instructions can be
found at BrightSpace.

1 Introduction

The goal of this homework is to remove projective and affine distortions
in the given images. This is referred as metric rectification in the text [1]
(Second Edition). For your programming tasks, you will implement the
approaches given the textbook for metric rectification. Make sure to read
the description for the given tasks carefully. This homework is based on the
concepts covered in Lectures 4 and 5.

You will show results after the distortions removal on the given input
images as well as using your own images for the three approaches detailed
in the rest of this section. Note that the set of points or lines you pick for
estimating any homography should reside on the same planar surface in the
scene.

1.1 Point-to-point correspondences

This approach is a trivial extension of what you implemented in your Home-
work 2. You will manually find point-to-point correspondences between the
original undistorted scene as your domain and its photograph as your range
which has projective and affine distortions. The inverse homography will
eliminate these distortions. Obviously, using point-to-point correspondences
is the most straightforward method compared to the other two. However,
it often requires a large number of correspondences to give a numerically
stable solution for estimating the homography.

1.2 The Two-Step Method

In the two-step method, you first remove the projective distortion using
the Vanishing Line (VL) method discussed in Lecture 4. Subsequently, you

1



remove the affine distortion by using the cos θ expression with θ equal to
90◦. Note that you must first remove the projective distortion before you
can remove the affine distortion with the cos θ based method. In the text
[1], the two-step approach is termed as stratified.

Removing the Projective Distortion: The projective distortion can
be eliminated by the homography that takes the VL back to l∞. To do so,
you first estimate a VL in the image plane by picking pixel coordinates of
at least two pairs of parallel lines in the original scene. Taking the cross-
product of two such pixels on any line in the image will give you the HC
representation of that line. Taking the cross-product of the 3-vectors for two
different lines (which are parallel in the original scene) will give you the HC
representation for the Vanishing Point (VP) for those two lines. Then taking
the cross-product of two such VPs for two different pairs of parallel lines will
give you the VL you need for getting rid of the projective distortion.

Removing the Affine Distortion: The affine distortion can be elim-
inated by the homography that restores the angle between two orthogonal
lines in the original scene back to 90◦. As you learned in Lecture 5, you can
obtain the expression for cos θ in the form of Dual Degenerate Conic C∗

∞ as
follows

cos θ =
lTC∗

∞m√
(lTC∗

∞l)(mTC∗
∞m)

where C∗
∞ =

1 0 0
0 1 0
0 0 0

. Substituting l = HT l′ and m = HTm′ in the

nominator and setting it to zero, we can write the following constraint for
estimating H:

cos θ = l′THC∗
∞HTm′ = 0, (1)

where H is an affine transformation matrix:

H =

[
A t = 0
0T 1

]
.

For affine distortion removal, you need to identify orthogonal line pairs,
i.e., angle-to-angle correspondence between orthogonal lines in the original
scenes and in the image planes. You will need at least two such orthogonal
line pairs in order to solve the unknowns in the affine transformation matrix.

2



1.3 The One-Step Method

The one-step method removes both the projective and affine distortions in
one step. Let C∗′ be a projection of the dual degenerate conic C∗

∞, then
the one-step method eliminates both distortions using the homography that
maps C∗′ back to C∗

∞.
Recall that the projection of the dual degenerate conic can be written

as follows:
C∗′ = HC∗

∞HT . (2)

Substituting the above representation into eq. (1), we arrive at:

cos θ = l′TC∗′m′ = 0. (3)

Now, let

C∗′ =

 a b/2 d/2
b/2 c e/2
d/2 e/2 f

 ,

then we can estimate the unknowns a, b, c, d, and e by solving eq. (3) with
multiple pairs of l′ and m′.

To do so, you need to identify lines l′ and m′ in an image such that their
corresponding lines l and m in world coordinates are orthogonal. You need
to identify at least five such pairs. Note that since we’re working with HC
where only ratios matter, you can fix f = 1.

After C∗′ has been fully estimated, our task now is to derive the homog-
raphy matrix H that satisfies eq. (4). Let’s start by expanding eq. (4):

C∗′ = HC∗
∞HT

=

[
A 0
vT 1

]1 0 0
0 1 0
0 0 0

[
AT v
0T 1

]

=

[
AAT Av

vTAT vTv

]
.

(4)

Subsequently, we can establish the following relationships for solving A and
v:

AAT =

[
a b/2
b/2 c

]
, (5)

Av =

[
d/2
e/2

]
. (6)

3



(a) Image 1 (b) Image 2

Figure 1: Input images for Task1

Once you have solvedA and v, the resulting matrixH−1 will be your desired
homography to rectify both projective and affine distortions in one step. For
further information on the one-step approach, see pages 42, 55 and 56 of the
text [1].

2 Programming Tasks

2.1 Task 1

Download the input images, shown in Fig. 1 and their world coordinates
(height and width measurements of some planar object in the scenes), sep-
arately.

1. Show results after distortion corrections using point-to-point cor-
respondences, this is a trivial extension of Homework 2. With the
given height and width, your points in the undistorted image should
be (0, 0), (0, width), (height, 0), and (height, width). After you have
found the correspondences you simply need to apply the homography
to the input image to remove distortion.

2. Show results after distortion correction using the two-step and one-
step approaches.

3. Outline your observations on the results obtained using the above three
methods.

4



2.2 Task 2

Repeat the steps, outlined in Task 1, on at least two of your own images.
Usually, images with repetitive patterns on planar surfaces such as facades,
walls with portraits, etc have many parallel or orthogonal line features and
are easier to work with. Make sure to use images with significant projec-
tive and affine distortions. You can use approximate estimations of world
coordinates, however state your assumptions clearly.

3 Submission Instructions

Include a typed report explaining how did you solve the given programming
tasks.

1. Turn in a zipped file, it should include (a) a typed pdf report with
source code files and results, (b) source code files (only .py files are
accepted — convert your .ipynb files to .py), (c) Rename your
.zip file as hw3 <First Name><Last Name>.zip and follow the same
file naming convention for your pdf report too.

2. Your pdf must include a description of

• The logic that you used to solve the given tasks.

• The steps that you used for each of the tasks with relevant equa-
tions.

• The input and output images for each task. Clearly show the
plotted parallel / orthogonal lines that you chose in the input
images.

• At least some use vectorized numpy operations, if not fully opti-
mized, is expected in your Python code.

• Your observations on the output quality and performance of each
approach.

• Your source code. Make sure that your source code files are
adequately commented and cleaned up.

3. In order to avoid large file size of your submission, include JPEG
images in your report for showing your results and your input images
for Task2.

4. The sample solutions from previous years are for reference only, it’s
important not to get too biased by those solutions. Your code and
final report must be your own work.

5



References

[1] Richard Hartley and Andrew Zisserman. Multiple view geometry in com-
puter vision. Cambridge university press, 2003.

6


	Introduction
	Point-to-point correspondences
	The Two-Step Method
	The One-Step Method

	Programming Tasks
	Task 1
	Task 2

	Submission Instructions

