
ECE 661: Homework 3
Wei Xu

Email: xu1639@purdue.edu
Due date: 1:30 pm, Sept. 20, 2022

(Fall 2022)

SOLVING LOGIC AND STEPS

Point-to-point correspondences

The homogeneous coordinates (HC) representation of a physical point x = (x, y)⊤ ∈ R2 can be
written as (u, v, w)⊤ ∈ R3, where x = u

w and y = v
w . The homography on homogeneous 3-vectors

can be represented by a non-singular 3× 3 matrix H, as in

x′ = Hx (1)

where

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 (2)

Specifically, let x be the measurement and x′ be the corresponding point in the undistorted image,
which is different from the description in my last homework. Because H is homogeneous, we can
set that h33 = 1, so that

H =

h11 h12 h13
h21 h22 h23
h31 h32 1

 (3)

Then u′

v′

w′

 =

h11 h12 h13
h21 h22 h23
h31 h32 1

u
v
w

 (4)

which is 
uh11 + vh12 + wh13 = u′

uh21 + vh22 + wh23 = v′

uh31 + vh32 + w = w′
(5)

Then {
x′ = u′

w′ =
uh11+vh12+wh13
uh31+vh32+w

y′ = v′

w′ =
uh21+vh22+wh23
uh31+vh32+w

(6)

which is {
uh11 + vh12 + wh13 − x′uh31 − x′vh32 = x′w
uh21 + vh22 + wh23 − y′uh31 + y′vh32 = y′w

(7)

1

mailto:xu1639@purdue.edu

Divided by w, then {
xh11 + yh12 + h13 − x′xh31 − x′yh32 = x′

xh21 + yh22 + h23 − y′xh31 + y′yh32 = y′
(8)

Since we are required to use four points,

x1 y1 1 0 0 0 −x′1x1 −x′1y1
0 0 0 x1 y1 1 −y′1x1 −y′1y1
x2 y2 1 0 0 0 −x′2x2 −x′2y2
0 0 0 x2 y2 1 −y′2x2 −y′2y2
x3 y3 1 0 0 0 −x′3x3 −x′3y3
0 0 0 x3 y3 1 −y′3x3 −y′3y3
x4 y4 1 0 0 0 −x′4x4 −x′4y4
0 0 0 x4 y4 1 −y′4x4 −y′4y4





h11
h12
h13
h21
h22
h23
h31
h32


=



x′1
y′1
x′2
y′2
x′3
y′3
x′4
y′4


(9)

There are 8 unknown variables in total, so if the left-most matrix is full rank, there will be a
solution. If it is written as Ah = b, the solution will be h = A−1b. Then H can be obtained
through h.

After obtaining H, we can apply it to each pixel from the original image to get the corre-
sponding pixel on the undistorted image. To get better performance, x = H−1x′ can be used to
map the pixels back to the original image, so that all pixels will be evaluated.

The algorithm is shown in Algorithm 1. The inputs are recorded image I, detected points
Pdt, and desired points Pds. The output is the desired image Id.

Algorithm 1: Point-to-point correspondences(I, Pdt, Pds)

1 calculate H based on the method mentioned above (h = A−1b);
2 calculate the image dimension of the desired image, and create an empty image, Id;
3 For each pixel p′ ∈ Id
4 p = H−1p′;
5 If p ∈ I :
6 Id[p

′] = I[p];

7 Return Id;

Two-step approach

(a) Eliminate projective distortion with the vanishing line method
The distortion in an image that results in the formation of one or more vanishing points and

vanishing lines in the plane of the image is specifically projective, meaning that it is over and above
the distortion introduced by affine part of the overall transformation. If a homography is applied
to an image that sends the vanishing line back to l∞, the remaining distortion in the image will be
purely affine.

The homography for removing the projective distortion can be estimated from the parameters
of the vanishing line. If the vanishing line is l = (l1, l2, l3)

⊤, the homography that takes the vanishing
line back to l∞ is given by

H =

1 0 0
0 1 0
l1 l2 l3

 (10)

2

To prove this, recall that when points are transformed by H, lines are transformed by H−⊤, which
is

H−⊤ =

1 0 − l1
l3

0 1 − l2
l3

0 0 1
l3

 (11)

Notice that

H−⊤l =

1 0 − l1
l3

0 1 − l2
l3

0 0 1
l3


l1
l2
l3

 (12)

=

l1 − l1
l3
× l3

l2 − l2
l3
× l3

1
l3
× l3

 (13)

=

0
0
1

 (14)

= l∞ (15)

So it is proved. This approach can help get rid of distortion that is specifically projective. After an
image is rectified with respect to this distortion, the image will still contain affine distortion — the
primary manifestation of which is unequal scaling along two orthogonal directions in the image.
So by the vanishing line, H can be determined, which can help remove the projective distortion.
Taking the cross-product of the 3-vectors for two different lines that are parallel in the undistorted
scene can obtain the HC representation for the vanishing point (VP) for those two lines. Then
taking the cross-product of two such VPs for two different pairs of parallel lines can obtain the
vanishing line.

The algorithm is shown in Algorithm 3. The inputs are recorded image I, detected points
Pdt. The output is the desired image Idi without projective distortion.

Algorithm 2: Vanishing line method to eliminate projective distortion(I, Pdt)

1 calculate H based on the method mentioned above (H =

1 0 0
0 1 0
l1 l2 l3

);
2 calculate the image dimension of the desired image, and create an empty image, Idi;
3 For each pixel p′ ∈ Idi
4 p = H−1p′;
5 If p ∈ I :
6 Idi[p

′] = I[p];

7 Return Idi;

(b) Eliminate affine distortion with the dual degenerate conic method
The formula for cos θ can be written in the form of dual degenerate conic C∗

∞, which is

cos θ =
l⊤C∗

∞m√
(l⊤C∗

∞l) (m⊤C∗
∞m)

(16)

3

where

C∗
∞ =

1 0 0
0 1 0
0 0 0

 (17)

Now express l, m, and C∗
∞ in the original planar scene in terms of the observed l′, m′, and C∗′

∞ in
the recorded image. Subtituting l = H⊤l′, m = H⊤m′, and C∗

∞ = H−1C∗′
∞H−⊤ in the numerator

and setting it to zero, we can write the constraint for estimating H as

cos θ|numerator =
(
l′⊤H

)(
H−1C∗′

∞H−⊤
)(

H⊤m′
)

(18)

= l′⊤HC∗
∞H⊤m′ (19)

= 0 (20)

So

(
l′1 l′2 l′3

) [A t
0⊤ 1

] [
I 0
0⊤ 0

] [
A⊤ 0
t⊤ 1

]m′
1

m′
2

m′
3

 = 0 (21)

which collapses into

(
l′1 l′2 l′3

) [AA⊤ 0
0⊤ 0

]m′
1

m′
2

m′
3

 = 0 (22)

Let S = AA⊤, then (
l′1 l′2

) [s11 s12
s21 s22

](
m′

1

m′
2

)
= 0 (23)

AA⊤ is symmetric, so s12 = s21. Then

s11l
′
1m

′
1 + s12

(
l′1m

′
2 + l′2m

′
1

)
+ s22l

′
2m

′
2 = 0 (24)

Although there are three unknowns, only their ratio matters, which means one of them can be set
as 1. Let s22 = 1, then there are only two unknowns.

s11l
′
1m

′
1 + s12

(
l′1m

′
2 + l′2m

′
1

)
= −l′2m

′
2 (25)

So two equations should be sufficient to solve for S, meaning two pairs of angle-to-angle correspon-
dences that are orthogonal in the original scene are needed.

To calculate S, assume that A is positive-definite, then the eigen-decomposition is A =

VDV⊤, where D =

[
λ1 0
0 λ2

]
with λ1, λ2 > 0 and where the columns of V are the eigenvectors of

A. So

S = AA⊤ (26)

= VDV⊤VDV⊤ (27)

= VD2V⊤ (28)

= V

[
λ2
1 0
0 λ2

2

]
V⊤ (29)

4

where the fact that V⊤V = I is used. So by doing an eigen-decomposition of S, the eigenvectors
and eigenvalues of A can be obtained. Then A can be calculated, which can be used to estimate
H by

H =

[
A 0
0⊤ 1

]
(30)

Finally apply H to the image without the projective distortion, then the affine distortion can be
eliminated.

The algorithm is shown in Algorithm 3. The inputs are transformed image from the last step
Idi, tansformed points by the last step Pdt,di. The output is the desired image Id without projective
and affine distortions.

Algorithm 3: Dual degenerate conic to eliminate affine distortion(Idi, Pdt,di)

1 calculate H based on the method mentioned above (H =

[
A 0
0⊤ 1

]
);

2 calculate the image dimension of the desired image, and create an empty image, Id;
3 For each pixel p′ ∈ Id
4 p = H−1p′;
5 If p ∈ Idi :
6 Id[p

′] = Idi[p];

7 Return Id;

One-step approach

Let C∗′
∞ be a projection of the dual degenerate conic C∗

∞, then this method eliminates both pro-
jective and affine distortions using the homography that maps C∗′

∞ back to C∗
∞. The projection of

the dual degenerate conic can be written as C∗′
∞ = HC∗

∞H⊤. Substitute it into Equation 19, then

cos θ|numerator = l′⊤HC∗
∞H⊤m′ (31)

= l′⊤C∗′
∞m′ (32)

= 0 (33)

Notice that the corresponding lines l and m of lines l′ and m′ are orthogonal. Let

C∗′
∞ =

a b
2

d
2

b
2 c e

2
d
2

e
2 f

 (34)

Then

(
l′1 l′2 l′3

)a b
2

d
2

b
2 c e

2
d
2

e
2 f

m′
1

m′
2

m′
3

 = 0 (35)

then

l′1m
′
1a+

l′2m
′
1 + l′1m

′
2

2
b+ l′2m

′
2c+

l′3m
′
1 + l′1m

′
3

2
d+

l′3m
′
2 + l′2m

′
3

2
e+ l′3m

′
3f = 0 (36)

5

Although there are six unknowns, only their ratio matters, which means one of them can be set as
1. Let f = 1, then there are only five unknowns.

l′1m
′
1a+

l′2m
′
1 + l′1m

′
2

2
b+ l′2m

′
2c+

l′3m
′
1 + l′1m

′
3

2
d+

l′3m
′
2 + l′2m

′
3

2
e = −l′3m

′
3 (37)

So five equations should be sufficient to solve for C∗′
∞, meaning five pairs of angle-to-angle corre-

spondences that are orthogonal in the original scene are needed.
When C∗′

∞ is calculated, then observe

C∗′
∞ = HC∗

∞H⊤ (38)

=

[
A 0
v⊤ 1

]1 0 0
0 1 0
0 0 0

[
A⊤ v
0⊤ 1

]
(39)

=

[
AA⊤ Av
v⊤A⊤ v⊤v

]
(40)

Compare the matrices, the relationships are

AA⊤ =

[
a b

2
b
2 c

]
(41)

Av =

[
d
2
e
2

]
(42)

Then A can be solved by eigen-decomposition of

[
a b

2
b
2 c

]
and v can be solved by A−1

[
d
2
e
2

]
. Then

H is estimated. The matrix H−1 will be the desired homography to rectify both projective and
affine distortions.

The algorithm is shown in Algorithm 4. The inputs are recorded image I, detected points
Pdt. The output is the desired image Id.

Algorithm 4: Two-step approach(I, Pdt)

1 calculate H based on the method mentioned above (h =

[
A 0
v⊤ 1

]
);

2 calculate the image dimension of the desired image, and create an empty image, Id;
3 For each pixel p′ ∈ Id
4 p = Hp′;
5 If p ∈ I :
6 Id[p

′] = I[p];

7 Return Id;

TASK 1

The points used in task 1 are shown in Figure 1 and Table 2. Assume that each set of points can
form a square.

6

(a) Image 1 (b) Image 2

Figure 1: Points used in task 1.

Table 1: Points used in task 1.

Image P Q R S

Image 1 (156, 320) (377, 317) (388, 459) (203, 458)
Image 2 (195, 383) (640, 384) (623, 746) (216, 745)

Point-to-point correspondences

The points estimated in the undistorted images are shown in Table 2.

Table 2: Points used in task 1.

Image P Q R S

Image 1 (0, 0) (120, 0) (120, 120) (0, 120)
Image 2 (0, 0) (170, 0) (170, 170) (0, 170)

The calculated homography matrices are shown below, which are mapping from the recorded
images to the undistorted scenes (Hp2p). And the results are shown in Figure 2. The performances
are promising. After the processing, the images are undistorted as desired.

HImg1,p2p =

0.405085 −0.137964 −19.044863
0.007143 0.526227 −169.506863
0.000088 −0.000895 1

 (43)

HImg2,p2p =

 0.350569 −0.020337 −60.571859
−0.000886 0.394050 −150.748394
0.000001 −0.000216 1

 (44)

7

(a) Image 1 (b) Image 2

Figure 2: Resulting images with point-to-point approach.

Two-step approach

(a) Eliminate projective distortion with the vanishing line method
In this step, the pairs of lines (PQ,RS) and (SP,QR) are used. The calculated homogra-

phy matrices are shown below, which are mapping from the recorded images to the images without
projective distortion (Hproj). And the results are shown in Figure 3. The performances are promis-
ing. After the processing, only the affine, similarity, and euclidean distortions exist, because the
expectantly parallel lines are parallel now.

HImg1,proj =

1.000000 0 0
0 1.000000 0

0.000088 −0.000895 1

 (45)

HImg2,proj =

1.000000 0 0
0 1.000000 0

0.000001 −0.000216 1

 (46)

(a) Image 1 (b) Image 2

Figure 3: Resulting images with vanishing line method (without projective distortion).

8

(b) Eliminate affine distortion with the dual degenerate conic method
In this step, the pairs of lines (SP, PQ) and (PR,QS) are used. The calculated homography

matrices are shown below, which are mapping from the images without projective distortion to
the images without projective and affine distortion (Haff), and mapping from the recorded images
to the images without projective and affine distortion (Hcomb = HaffHproj). And the results are
shown in Figure 4. The performances are promising. After the processing, only the similarity and
euclidean distortions exist, because the expectantly parallel lines are parallel, and the expectantly
orthogonal lines are orthogonal now.

HImg1,proj =

0.980739 0.167882 0
0.167882 0.985807 0

0 0 1

 (47)

HImg1,comb =

 1.050256 −0.178858 0
−0.178858 1.044857 0
0.000088 −0.000895 1

 (48)

HImg2,proj =

1.034074 0.047980 0
0.047980 0.998848 0

0 0 1

 (49)

HImg2,comb =

 0.969209 −0.046556 0
−0.046556 1.003389 0
0.000001 −0.000216 1

 (50)

(a) Image 1 (b) Image 2

Figure 4: Resulting images with dual degenerate conic method (without projective and affine
distortions).

One-step approach

In this approach, the pairs of lines (SP, PQ), (PQ,QR), (QR,RS), (RS, SP), and (PR,QS) are
used. The calculated homography matrices are shown below, which are mapping from the recorded

9

images to the images without projective and affine distortions (H1step). And the results are shown in
Figure 5. The performances are promising. After the processing, only the similarity and euclidean
distortions exist, because the expectantly parallel lines are parallel, and the expectantly orthogonal
lines are orthogonal now.

HImg1,1step =

 0.001041 −0.000196 0
−0.000196 0.000920 0
0.000088 −0.000895 1

 (51)

HImg2,1step =

 0.000211 −0.000010 0
−0.000010 0.000217 0
0.000001 −0.000216 1

 (52)

(a) Image 1 (b) Image 2

Figure 5: Resulting images with one-step approach.

TASK 2

The points used in task 1 are shown in Figure 6 and Table 4. Assume that each set of points can
form a square.

10

(a) Painting (b) Painting with annotation

(c) Square (d) Square with annotation

Figure 6: Images and points used in task 2.

Table 3: Points used in task 2.

Image P Q R S

Image 1 (370, 401) (795, 343) (756, 813) (261, 817)
Image 2 (339, 476) (688, 426) (769, 792) (446, 800)

11

Point-to-point correspondences

The points estimated in the undistorted images are shown in Table 4.

Table 4: Points used in task 1.

Image P Q R S

Image 1 (0, 0) (400, 0) (400, 400) (0, 400)
Image 2 (0, 0) (200, 0) (200, 170) (0, 200)

The calculated homography matrices are shown below, which are mapping from the recorded
images to the undistorted scenes (Hp2p). And the results are shown in Figure 7. The performances
are promising. After the processing, the images are undistorted as desired.

HPainting,p2p =

1.704014 0.446485 −809.525574
0.247198 1.811366 −817.820939
0.000588 0.000812 1

 (53)

HSquare,p2p =

0.566301 −0.187019 −102.954866
0.069967 0.488371 −256.183685
0.000280 −0.000370 1

 (54)

(a) Painting (b) Square

Figure 7: Resulting images with point-to-point approach.

12

Two-step approach

(a) Eliminate projective distortion with the vanishing line method
In this step, the pairs of lines (PQ,RS) and (SP,QR) are used. The calculated homogra-

phy matrices are shown below, which are mapping from the recorded images to the images without
projective distortion (Hproj). And the results are shown in Figure 8. The performances are promis-
ing. After the processing, only the affine, similarity, and euclidean distortions exist, because the
expectantly parallel lines are parallel now.

HPainting,proj =

1.000000 0 0
0 1.000000 0

0.000588 0.000812 1

 (55)

HSquare,proj =

1.000000 0 0
0 1.000000 0

0.000280 −0.000370 1

 (56)

(a) Painting (b) Square

Figure 8: Resulting images with vanishing line method (without projective distortion).

(b) Eliminate affine distortion with the dual degenerate conic method
In this step, the pairs of lines (SP, PQ) and (PR,QS) are used. The calculated homography

matrices are shown below, which are mapping from the images without projective distortion to
the images without projective and affine distortion (Haff), and mapping from the recorded images
to the images without projective and affine distortion (Hcomb = HaffHproj). And the results are
shown in Figure 9. The performances are promising. After the processing, only the similarity and

13

euclidean distortions exist, because the expectantly parallel lines are parallel, and the expectantly
orthogonal lines are orthogonal now.

HPainting,proj =

 1.111983 −0.391983 0
−0.391983 0.919972 0

0 0 1

 (57)

HPainting,comb =

1.058240 0.450896 0
0.450896 1.279108 0
0.000588 0.000812 1

 (58)

HSquare,proj =

0.731003 0.121263 0
0.121263 0.992620 0

0 0 1

 (59)

HSquare,comb =

 1.396279 −0.170575 0
−0.170575 1.028273 0
0.000280 −0.000370 1

 (60)

(a) Painting (b) Square

Figure 9: Resulting images with dual degenerate conic method (without projective and affine
distortions).

One-step approach

In this approach, the pairs of lines (SP, PQ), (PQ,QR), (QR,RS), (RS, SP), and (PR,QS) are
used. The calculated homography matrices are shown below, which are mapping from the recorded
images to the images without projective and affine distortions (H1step). And the results are shown

14

in Figure 10. The performances are promising. After the processing, only the similarity and
euclidean distortions exist, because the expectantly parallel lines are parallel, and the expectantly
orthogonal lines are orthogonal now.

HPainting,1step =

0.000643 0.000278 0
0.000278 0.000774 0
0.000639 0.000865 1

 (61)

HSquare,1step =

 0.000523 −0.000068 0
−0.000067 0.000377 0
0.000280 −0.000370 1

 (62)

(a) Painting (b) Square

Figure 10: Resulting images with one-step approach.

SOURCE CODE

1 import argparse

2 import os

3 import numpy as np

4 from skimage import io , draw

5

6 def get_homography(domain_point , range_point):

7 # calculate H

8 num_points = domain_point.shape [0]

9 A = np.zeros ((2* num_points , 8), dtype=float)

10 b = np.zeros ((2* num_points ,), dtype=float)

11 for i in range(num_points):

12 A[2*i, 0] = domain_point[i, 0]

13 A[2*i, 1] = domain_point[i, 1]

14 A[2*i, 2] = 1

15

15 A[2*i, 6] = - range_point[i, 0] * domain_point[i, 0]

16 A[2*i, 7] = - range_point[i, 0] * domain_point[i, 1]

17 A[2*i+1, 3] = domain_point[i, 0]

18 A[2*i+1, 4] = domain_point[i, 1]

19 A[2*i+1, 5] = 1

20 A[2*i+1, 6] = - range_point[i, 1] * domain_point[i, 0]

21 A[2*i+1, 7] = - range_point[i, 1] * domain_point[i, 1]

22 b[2*i] = range_point[i, 0]

23 b[2*i+1] = range_point[i, 1]

24 #h = np.linalg.inv(A.T @ A) @ A.T @ b

25 h = np.linalg.inv(A) @ b

26 H = np.ones((3, 3), dtype=float)

27 for i in range(h.shape [0]):

28 q, r = np.divmod(i, 3)

29 H[q, r] = h[i]

30 return H

31

32 def get_point(H, p, rescale):

33 # get point after transformation

34 point_prime = np.array ([p[0], p[1], 1])

35 point = H @ point_prime

36 x = int(point [0]/ point [2] * rescale)

37 y = int(point [1]/ point [2] * rescale)

38 return np.array ([x, y], dtype=int)

39

40 def get_corner_points(H, img , rescale =1):

41 # get corner points

42 corner_points = np.zeros ((4, 2), dtype=int)

43 corner_points [0] = get_point(H, (0, 0), rescale)

44 corner_points [1] = get_point(H, (img.shape [0], 0), rescale)

45 corner_points [2] = get_point(H, (img.shape [0], img.shape [1]),\

46 rescale)

47 corner_points [3] = get_point(H, (0, img.shape [1]), rescale)

48 return corner_points

49

50 def get_img_dim(corner_points):

51 # get the dimension of image

52 bottom , right = np.max(corner_points , axis =0)

53 upper , left = np.min(corner_points , axis =0)

54 dim_x = bottom - upper + 1

55 dim_y = right - left + 1

56 return dim_x , dim_y , upper , left

57

58 def plot_transformation(img , H, title , rescale =1):

59 # calculate and plot the result

60 corner_points = get_corner_points(H, img , rescale)

61 dim_x , dim_y , offset_x , offset_y = get_img_dim(corner_points)

62 print(’Dimension of the image is %s by %s’%(dim_x , dim_y))

63 img_undist = np.zeros ((dim_x , dim_y , 3), dtype=float)

64 for i in range(dim_x):

65 for j in range(dim_y):

66 point = np.array ([(i+offset_x)/rescale ,\

67 (j+offset_y)/rescale , 1])

68 point_prime = np.linalg.inv(H) @ point

16

69 x_prime = int(point_prime [0]/ point_prime [2])

70 y_prime = int(point_prime [1]/ point_prime [2])

71 if x_prime >= 0 and x_prime <= img.shape [0]-1 and\

72 y_prime >= 0 and y_prime <= img.shape [1] -1:

73 img_undist[i, j] = img[x_prime , y_prime]

74 io.imsave (’./%s.jpg ’%title , img_undist)

75

76 def point2point(domain_point , range_point , img , title):

77 # Range (distorted) = H * Domain (undistorted)

78 H = get_homography(domain_point , range_point)

79

80 plot_transformation(img , np.linalg.inv(H), title)

81

82 np.set_printoptions(suppress=True)

83 print(’H for %s:\n’%title ,\

84 np.linalg.inv(H)/np.linalg.inv(H)[2 ,2])

85 np.set_printoptions(suppress=False)

86

87 def get_line_from_points(p1 , p2):

88 # calculate line according to two points

89 p1_rep = np.array ([p1[0], p1[1], 1])

90 p2_rep = np.array ([p2[0], p2[1], 1])

91 l = np.cross(p1_rep , p2_rep). astype(float)

92 l /= np.linalg.norm(l)

93 return l

94

95 def remove_proj_dist(points , img , title):

96 # eliminate projective distortion

97 l1 = get_line_from_points(points [0], points [3])

98 l2 = get_line_from_points(points [1], points [0])

99 l3 = get_line_from_points(points [2], points [1])

100 l4 = get_line_from_points(points [3], points [2])

101 l5 = get_line_from_points(points [1], points [3])

102 l6 = get_line_from_points(points [0], points [2])

103 vanishing_point1 = np.cross(l1 , l3)

104 vanishing_point2 = np.cross(l2 , l4)

105 vanishing_line = np.cross(vanishing_point1 , vanishing_point2)

106 vanishing_line /= np.linalg.norm(vanishing_line)

107 H = np.identity(3, dtype=float)

108 H[2] = vanishing_line

109 H = H / H[2, 2]

110 plot_transformation(img , H, title)

111

112 np.set_printoptions(suppress=True)

113 print(’H for %s:\n’%title , H)

114 np.set_printoptions(suppress=False)

115 return [l1 , l2 , l3 , l4 , l5 , l6], H

116

117 def lines_tranformation(lines , H):

118 # transform lines

119 lines_aff = []

120 for line in lines:

121 line_aff = np.transpose(np.linalg.inv(H)) @ line

122 line_aff /= np.linalg.norm(line_aff)

17

123 lines_aff.append(line_aff)

124 return lines_aff

125

126 def get_S(lines_aff):

127 # calculate S

128 A = np.zeros ((2, 2), dtype=float) # A is not that one in S = AA^T

129 b = np.zeros ((2,), dtype=float)

130

131 A[0, 0] = lines_aff [0][0] * lines_aff [1][0]

132 A[0, 1] = lines_aff [0][0] * lines_aff [1][1]\

133 + lines_aff [0][1] * lines_aff [1][0]

134 A[1, 0] = lines_aff [4][0] * lines_aff [5][0]

135 A[1, 1] = lines_aff [4][0] * lines_aff [5][1]\

136 + lines_aff [4][1] * lines_aff [5][0]

137 b[0] = - lines_aff [0][1] * lines_aff [1][1]

138 b[1] = - lines_aff [4][1] * lines_aff [5][1]

139 #s = np.linalg.inv(A.T @ A) @ A.T @ b

140 s = np.linalg.inv(A) @ b

141 S = np.ones((2, 2), dtype=float)

142 S[0, 0] = s[0]

143 S[0, 1] = s[1]

144 S[1, 0] = S[0, 1]

145 return S

146

147 def get_H_from_S(S):

148 # calculate H according to S

149 u, s, vh = np.linalg.svd(S)

150 eigenvalues = np.sqrt(np.diag(s))

151 A = vh @ eigenvalues @ np.transpose(vh)

152 H = np.zeros ((3, 3), dtype=float)

153 H[0:2, 0:2] = A

154 H[2, 2] = 1

155 return H

156

157 def remove_aff_dist(lines_proj , H_aff , img , title):

158 # eliminate affine distortion

159 lines_aff = lines_tranformation(lines_proj , H_aff)

160 S = get_S(lines_aff)

161 H_undist = get_H_from_S(S)

162 H_combine = np.linalg.inv(H_undist) @ H_aff

163 H_combine /= H_combine [2, 2]

164 plot_transformation(img , H_combine , title)

165

166 np.set_printoptions(suppress=True)

167 print(’H for affine distortion removal (%s):\n’%title , H_undist)

168 print(’H for %s:\n’%title , H_combine)

169 np.set_printoptions(suppress=False)

170

171 def get_conic(lines):

172 # calculate C

173 A = np.zeros ((5, 5), dtype=float)

174 b = np.zeros ((5,), dtype=float)

175 for i in range (3):

176 A[i] = np.array ([lines[i][0]* lines[i+1][0] ,\

18

177 lines[i][1]* lines[i+1][0]\

178 + lines[i][0]* lines[i+1][1] ,\

179 lines[i][1]* lines[i+1][1] ,\

180 lines[i][2]* lines[i+1][0]\

181 + lines[i][0]* lines[i+1][2] ,\

182 lines[i][2]* lines[i+1][1]\

183 + lines[i][1]* lines[i+1][2]])

184 b[i] = - lines[i][2]* lines[i+1][2]

185 A[3] = np.array ([lines [3][0]* lines [0][0] ,\

186 lines [3][1]* lines [0][0]\

187 + lines [3][0]* lines [0][1] ,\

188 lines [3][1]* lines [0][1] ,\

189 lines [3][2]* lines [0][0]\

190 + lines [3][0]* lines [0][2] ,\

191 lines [3][2]* lines [0][1]\

192 + lines [3][1]* lines [0][2]])

193 b[3] = - lines [3][2]* lines [0][2]

194 A[4] = np.array ([lines [4][0]* lines [5][0] ,\

195 lines [4][1]* lines [5][0]\

196 + lines [4][0]* lines [5][1] ,\

197 lines [4][1]* lines [5][1] ,\

198 lines [4][2]* lines [5][0]\

199 + lines [4][0]* lines [5][2] ,\

200 lines [4][2]* lines [5][1]\

201 + lines [4][1]* lines [5][2]])

202 b[3] = - lines [4][2]* lines [5][2]

203 #c = np.linalg.inv(A.T @ A) @ A.T @ b

204 c = np.linalg.inv(A) @ b # [a, b/2, c, d/2, e/2, f=1]

205 return c

206

207 def one_step_method(points , img , title , rescale =1):

208 # one -step approach

209 l1 = get_line_from_points(points [0], points [3])

210 l2 = get_line_from_points(points [1], points [0])

211 l3 = get_line_from_points(points [2], points [1])

212 l4 = get_line_from_points(points [3], points [2])

213 l5 = get_line_from_points(points [1], points [3])

214 l6 = get_line_from_points(points [0], points [2])

215 c = get_conic ([l1, l2, l3, l4, l5, l6])

216 u, s, vh = np.linalg.svd(np.array ([[c[0], c[1]],\

217 [c[1], c[2]]]))

218 eigenvalues = np.sqrt(np.diag(s))

219 A = vh @ eigenvalues @ np.transpose(vh)

220 v = np.linalg.inv(A) @ np.array ([c[3], c[4]])

221 H = np.zeros ((3, 3), dtype=float)

222 H[0:2, 0:2] = A

223 H[2, 0:2] = v

224 H[2, 2] = 1

225 plot_transformation(img , np.linalg.inv(H), title , rescale)

226

227 np.set_printoptions(suppress=True)

228 print(’H for %s:\n’%title , np.linalg.inv(H)/np.linalg.inv(H)[2 ,2])

229 np.set_printoptions(suppress=False)

230

19

231 def draw_lines(points , img , title):

232 # draw annotation lines

233 rr, cc = draw.line(points [0][0] , points [0][1] ,\

234 points [3][0] , points [3][1])

235 draw.set_color(img , [rr , cc], [0, 255, 0])

236 rr, cc = draw.line(points [1][0] , points [1][1] ,\

237 points [0][0] , points [0][1])

238 draw.set_color(img , [rr , cc], [0, 255, 0])

239 rr, cc = draw.line(points [2][0] , points [2][1] ,\

240 points [1][0] , points [1][1])

241 draw.set_color(img , [rr , cc], [0, 255, 0])

242 rr, cc = draw.line(points [3][0] , points [3][1] ,\

243 points [2][0] , points [2][1])

244 draw.set_color(img , [rr , cc], [0, 255, 0])

245 rr, cc = draw.line(points [3][0] , points [3][1] ,\

246 points [1][0] , points [1][1])

247 draw.set_color(img , [rr , cc], [0, 255, 0])

248 rr, cc = draw.line(points [2][0] , points [2][1] ,\

249 points [0][0] , points [0][1])

250 draw.set_color(img , [rr , cc], [0, 255, 0])

251 io.imsave(’%s_lines.jpg ’%title , img)

252

253 if __name__ == ’__main__ ’:

254 # ’1.1’, ’2.1’ -- point -to-point in task 1 or 2

255 # ’1.2’, ’2.2’ -- two -step approach in task 1 or 2

256 # ’1.3’, ’2.3’ -- one -step approach in task 1 or 2

257 parser = argparse.ArgumentParser ()

258 parser.add_argument(’-t’, ’--task ’, type=str , default =’1.1’,\

259 help=’choose a task ’, choices =[’1.1’,’1.2’,’1.3’,\

260 ’2.1’,’2.2’,’2.3’])

261 args = parser.parse_args ()

262 # P ------l1----- S

263 # | \ / |

264 # | l6\ /l5 |

265 # l2 X l4

266 # | / \ |

267 # | / \ |

268 # Q ------l3----- R

269

270 if args.task == ’1.1’ or ’1.2’ or ’1.3’:

271 building = io.imread (’./ hw3images/building.jpg ’)

272 nighthawks = io.imread (’./ hw3images/nighthawks.jpg ’)

273 building_points = np.array ([[156 , 320],\

274 [377, 317] ,\

275 [388, 459] ,\

276 [203, 458]])

277 nighthawks_points = np.array ([[195 , 383],\

278 [640, 384],\

279 [623, 746],\

280 [216, 745]])

281 if not os.path.exists(’building_lines.jpg ’):

282 draw_lines(building_points , building , ’building ’)

283 if not os.path.exists(’nighthawks_lines.jpg ’):

284 draw_lines(nighthawks_points , nighthawks , ’nighthawks ’)

20

285

286 if args.task == ’1.1’:

287 building_points_undist = np.array ([[0, 0],\

288 [120, 0],\

289 [120, 120] ,\

290 [0, 120]])

291 nighthawks_points_undist = np.array ([[0, 0],\

292 [170, 0],\

293 [170, 170] ,\

294 [0, 170]])

295 point2point(building_points_undist , building_points ,\

296 building , ’building_p2p ’)

297 point2point(nighthawks_points_undist , nighthawks_points ,\

298 nighthawks , ’nighthawks_p2p ’)

299

300 if args.task == ’1.2’:

301 lines_proj_bldg , H_aff_bldg = remove_proj_dist(building_points ,\

302 building , ’building_remove_proj ’)

303 lines_proj_nh , H_aff_nh = remove_proj_dist(nighthawks_points ,\

304 nighthawks , ’nighthawks_remove_proj ’)

305

306 remove_aff_dist(lines_proj_bldg , H_aff_bldg ,\

307 building , ’building_remove_proj_aff ’)

308 remove_aff_dist(lines_proj_nh , H_aff_nh ,\

309 nighthawks ,’nighthawks_remove_proj_aff ’)

310

311 if args.task == ’1.3’:

312 one_step_method(building_points , building ,\

313 ’building_1step ’, 3000)

314 one_step_method(nighthawks_points , nighthawks ,\

315 ’nighthawks_1step ’, 3000)

316

317 if args.task == ’2.1’ or ’2.2’ or ’2.3’:

318 painting = io.imread (’./ painting.jpg ’)

319 square = io.imread (’./ square.jpg ’)

320 painting_points = np.array ([[370 , 401],\

321 [795, 343] ,\

322 [756, 813] ,\

323 [261, 817]])

324 square_points = np.array ([[339 , 476],\

325 [688, 426] ,\

326 [769, 792] ,\

327 [446, 800]])

328 if not os.path.exists(’painting_lines.jpg ’):

329 draw_lines(painting_points , painting , ’painting ’)

330 if not os.path.exists(’square_lines.jpg ’):

331 draw_lines(square_points , square , ’square ’)

332

333 if args.task == ’2.1’:

334 painting_points_undist = np.array ([[0, 0],\

335 [400, 0],\

336 [400, 400] ,\

337 [0, 400]])

338 square_points_undist = np.array ([[0, 0],\

21

339 [200, 0],\

340 [200, 200] ,\

341 [0, 200]])

342 point2point(painting_points_undist , painting_points ,\

343 painting , ’painting_p2p ’)

344 point2point(square_points_undist , square_points ,\

345 square , ’square_p2p ’)

346

347 if args.task == ’2.2’:

348 lines_proj_ptg , H_aff_ptg = remove_proj_dist(painting_points ,\

349 painting , ’painting_remove_proj ’)

350 lines_proj_sq , H_aff_sq = remove_proj_dist(square_points ,\

351 square , ’square_remove_proj ’)

352

353 remove_aff_dist(lines_proj_ptg , H_aff_ptg ,\

354 painting , ’painting_remove_proj_aff ’)

355 remove_aff_dist(lines_proj_sq , H_aff_sq ,\

356 square , ’square_remove_proj_aff ’)

357

358 if args.task == ’2.3’:

359 one_step_method(painting_points , painting ,\

360 ’painting_1step ’, 3000)

361 one_step_method(square_points , square ,\

362 ’square_1step ’, 3000)

22

