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1 Logic

This homework consists of two parts:

1. PCA, LDA and Autoencoder for dimensionality reduction and nearest neighbor for face recognition.

2. Cascaded AdaBoost Classifiers for object detection.

1.1 PCA, LDA and Autoencoders for Dimensionality Reduction

1.1.1 Principal Component Analysis (PCA)

PCA is dimensionality reduction technique in which we transform the original dataset into a new coordinate
system, where the axes are the principal components of the data. The principal components are the directions
in the data that capture the most variance. By projecting the data onto these axes, we can reduce the
dimensionality of the data.
The steps to perform PCA are as follows:

1. Read each image, convert into a column vector (i.e. m × n sized image converts to an mn × 1 sized
vector), and normalize each image vector to unit magnitude.

2. Calculate the global mean vector m⃗ of all N images:

m⃗ =
1

N

N∑
i=1

xi

where xi is a normalized image vector

3. Find the covariance matrix by

C =
1

N

N∑
i=1

xix
T
i

4. Calculate eigen-values from the Covariance matrix (use the computational trick when Covariance ma-
trix size is too large, also remember to normalize these eigen vectors after using the trick).

5. Retain first P sorted eigen-vectors: WP = [w1|w2|...|wp]

6. Now we project all the training images onto this feature subspace using:

Y = WT
P (X − m⃗)

7. For classification, we can project each of the testing vectors onto the feature subspace using the above
formula.

8. Here we are using a 1-NearestNeighbor classifier, hence we calculate the L2-norm between each pro-
jected testing vector and each element in the training feature subspace. The training label associated
to the least distance for each test vector is our predicted test label.

9. For accuracy, we just compare each predicted test label and ground truth test label.
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1.1.2 Linear Discriminant Analysis (LDA)

The goal of LDA is to find the directions in the underlying vector space that are maximally discriminating
between the classes.

1. For C classes, we define the between-class scatter by

Sb =
1

|C|

|C|∑
1

(m⃗i − m⃗)(m⃗i − m⃗)T

where m⃗i and m⃗ are the in-class and global means respectively.

2. The within-class scatter is given by

Sw =
1

|C|

|C|∑
i=1

1

|Ci|

|Ci|∑
k=1

(x⃗i
k − m⃗i)(x⃗i

k − m⃗i)
T

3. The goal is to find the eigen values that are maximally discriminating between the classes, by maxi-
mizing the ratio between within-class and between-class scatter of the feature vectors.

4. This can be expressed mathematically by finding the eigenvectors that maximize the Fisher Discrimi-
nant function:

J(w⃗) =
w⃗TSBw⃗

w⃗TSW w⃗

5. The eigen-vectors are found using the Yu-Yang method and steps 5-9 from PCA are repeated.

1.2 Cascaded AdaBoost Classifiers for object detection

The Viola-Jones method was used to create a cascaded AdaBoost classifer. It consists of the following steps:

1. Feature Extraction:

• Haar filters of different sizes in horizontal and vertical orientations were used for feature extraction.

• The filters are of the sizes 1×2 to 1×N for horizontal features and 2×1 to N ×1 for the vertical
features (M and N are the width and height of the image respectively).

• A horizontal and vertical haar filter for M=4 and N=4 is of the format:[
−1 −1 1 1

]
and 

−1
−1
1
1


• While applying these filters, we use integral images for efficiency.

2. Creating a Weak Classifier:

• Before creating a weak classifier, we need to initialize a weight matrix where the first M(number
of positive samples) values are 1

2M and the next N(number of negative samples) values are 1
2M

• We can begin creating the weak classifier by first normalizing the weights. Then we sort each
feature in ascending order across all images to separate the set into two classes with ¿ 50%
accuracy. We use the feature values as thresholds.
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• Calculate the error for a threshold and use the least error as the threshold. The error is given by

error = (S+ + (T− − S−), S− + (T+ − S+))

where the first value in the bracket is if polarity is 1 and second is if polarity is -1. In the above
equation

– S+ : sum of weights of positive examples with feature value greater than the threshold

– S− : sum of weights of negative examples with feature value less than the threshold

– T+ : sum of weights of positive examples

– T− : sum of weights of negative examples

• The feature with the minimum error value is selected and its corresponding index, feature value,
polarity, and error is returned as a list.

• We iteratively check for the feature with least error values and return the best weak classifier.

3. Cascading Weak Classifiers to make a strong classifier:

• We combine many weak classifiers to form a strong classifier in a stage.

• For each best weak classifier found, we find a few parameters which help us find the next best
weak classifier.

•
β =

ϵ

1− ϵ

and

α = ln
1

β

where ϵ is the error associated with that classifier.

• We then update the weight matrix for the next classifier by multiplying it with β1−δ, where δ is
the difference between the label and the prediction.

• We then compute the predictions of the best weak classifier in a stage by multiplying α with the
predictions which is the intermediate output of the cascade. We also keep track of all alphas
calculated for the number of weak classifiers in a cascade with the classifier values.

• We then determine the final classifications by thresholding the product calculated above using
the α list.

• We also calculate the false positive and negative rates and return the output of the final best weak
classifier in the stage. We stop whenever we satisfy a stopping criterion related to the FPR and
TPR At the end of each stage, we remove the correctly classified negative examples from current
set.

4. Using Stages to combine strong classifiers:

• We aggregate strong classifiers to achieve very low FPR.

• The maximum number of stages were set to 10 and the training was stopped at a stage which did
not have any more false postives left.

5. Testing:

• For testing we simply propagate each example through each classifier in each cascade and adjust
the outputs using the α values from each classifier and also threshold it using the same method
as in the training phase.

• We also have to remove the correctly classified negative examples from current set to accurately
measure the FPR as a function of stages.
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• To calculate FPR and FNR we use the following formulae:

FPR =
# of misclassified negative image

# of negative images

FNR =
# of misclassified positive test images

# of positive images
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2 Results & Observations

2.1 Task 1 & 2

Figure 1: Accuracy Plot of Different Dimensionality Reduction Methods vs Feature Dimension Size

• The performance of PCA and LDA is comparable at higher dimensionality but at lower dimensionality
LDA tends to perform better.

• The results are in agreement with theoretical expectations that LDA performs better than PCA, and
reaches 100% classification accuracy before PCA while increasing the dimensionality

• For the autoencoder approach we observe better results than PCA and LDA at lower dimensionalities
while it reaches comparable levels of performance at higher dimensionalities.
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2.2 Task 3

Figure 2: FPR during Training vs Number of Stages

Figure 3: FPR and FNR during Testing vs Number of Stages

• We can observe that during training as we increase the number of stages the FPR decreases till we
reach FPR = 0.

• During testing we can see that we reach a very low FPR with more stages but this comes at the cost
of increasing FNR. This is very design specific and this tradeoff can be tuned in the program.
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3 Code Listing

Task 1 & 2

import numpy as np

import cv2

import glob

import os

import matplotlib.pyplot as plt

from matplotlib import rcParams

import autoencoder

def readImages(root_dir, sub_dir):

# saves images to npz format if reading for the first time, else loads the images

from the npz file↪→

if not os.path.exists(f ' { root_dir} _ { sub_dir} .npz' ):

img_list = []

label_list = []

img_path_list = glob.glob(os.path.join(root_dir, sub_dir, f '*' ))

for pth in img_path_list:

# read image and append to array

im_flat = cv2.imread(pth, 0).flatten()

img_list.append(im_flat)

# create array for labels

f_name = os.path.split(pth)[-1]

f_name = os.path.splitext(f_name)[0]

c_num = int(f_name.split('_' )[0])

label_list.append(c_num)

np.savez_compressed(f ' { root_dir} _ { sub_dir} ' , x=np.array(img_list),

y=np.array(label_list))↪→

imgs = np.load(f ' { root_dir} _ { sub_dir} .npz' , allow_pickle=True)

return imgs['x' ], imgs['y' ]

def normalize(x):

x = np.divide(x, np.expand_dims(np.linalg.norm(x, axis=1), axis=-1))

return x

def calcPCA(x, p=None):

x = np.transpose(x) # arranged as column vectors

m = np.mean(x, axis=1, keepdims=True)

x = x - m

# using computational trick

cov = np.dot(np.transpose(x), x) # calc X'X

_, _, ut = np.linalg.svd(cov) # eigen vecs of X'X

# multipy by X to get eigenvecs of XX'

w = np.dot(x, ut)

w = normalize(w)
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# retain first p eigen vecs

w_p = w[:, :p]

return w_p, m

def calcLDA(x, y, p):

num_clss = np.max(y)

dat_per_class = np.zeros(num_clss)

for val in y: dat_per_class[val - 1] += 1 # count number of samples in each class

cl_ms = np.zeros((num_clss, x.shape[1]))

# compute per class means

for data, lbl in zip(x, y): cl_ms[lbl - 1] += data

cl_ms = np.transpose(cl_ms / np.expand_dims(dat_per_class, axis=1))

x = np.transpose(x)

m = np.mean(cl_ms, axis=1, keepdims=True) # global mean

m_i = cl_ms - m

x_i = x - m

# -----yu-yang method-----#

# using computational trick

sb = np.dot(np.transpose(m_i), m_i)

_, d, ut = np.linalg.svd(sb) # eigen vecs of X'X

# multipy by X to get eigenvecs of XX'

w = np.dot(m_i, ut)

w = normalize(w)

# remove eigen-vec corresponding to eigenval closest to 0; last one in this case

y = w[:, :-1]

D = d[:-1]

D_b = np.diag(D)

Z = np.dot(y, np.sqrt(np.linalg.inv(D_b)))

zt_x = np.dot(np.transpose(Z), x_i) ##

sw = np.dot(zt_x, np.transpose(zt_x))

_, d, u_t = np.linalg.svd(sw)

# multipy by X to get eigenvecs of XX'

w = np.dot(Z, u_t)

w = normalize(w)

# retain first p eigen vecs

w_p = w[:, :p]

return w_p, m

# 1 nearest neighbor classifier

def oneNN(ft_space, p_x_test, y_train):

p_x_test = np.expand_dims(p_x_test, axis=1)

ft = np.transpose(ft_space)

pxt = np.transpose(p_x_test)

# calculate L2 distance between test vec and trained feature subspace
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dist = np.sqrt(np.linalg.norm(ft - pxt, axis=1))

pred_label = y_train[np.argmin(dist)]

return pred_label

# TASK 1: PCA and LDA Features Classification

def classifier(x_train, x_test, y_train, y_test, p):

# calculate principal components and linear discriminants

W_p_PCA, m = calcPCA(x_train, p)

W_p_LDA, _ = calcLDA(x_train, y_train, p)

x_train = np.transpose(x_train)

x_test = np.transpose(x_test)

# project onto respective subspaces

PCA_space = np.dot(np.transpose(W_p_PCA), x_train - m)

LDA_space = np.dot(np.transpose(W_p_LDA), x_train - m)

num_test_samples = len(y_test)

x_testm = x_test - m

pred_lbls_PCA = []

pred_lbls_LDA = []

# make predictions using nearest neighbor classifier

for i in range(num_test_samples):

PCA_x_test = np.dot(np.transpose(W_p_PCA), x_testm[:, i])

LDA_x_test = np.dot(np.transpose(W_p_LDA), x_testm[:, i])

pred_PCA = oneNN(PCA_space, PCA_x_test, y_train)

pred_LDA = oneNN(LDA_space, LDA_x_test, y_train)

pred_lbls_PCA.append(pred_PCA)

pred_lbls_LDA.append(pred_LDA)

# calculate classification accuracy

accuracy_PCA = np.mean(np.equal(np.array(pred_lbls_PCA), y_test)) * 100

accuracy_LDA = np.mean(np.equal(np.array(pred_lbls_LDA), y_test)) * 100

return accuracy_PCA, accuracy_LDA

# TASK 2: Autoencoder Features Classification

def autoenc_classifier(X_train, Y_train, X_test, Y_test):

pred_lbls = []

num_test_samples = len(Y_test)

for i in range(num_test_samples):

pred = oneNN(np.transpose(X_train), X_test[i], Y_train)

pred_lbls.append(pred)

accuracy = np.mean(np.equal(np.array(pred_lbls), Y_test)) * 100

return accuracy

def main():

root_dir = 'FaceRecognition'
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x_train, y_train = readImages(root_dir, 'train' )

x_test, y_test = readImages(root_dir, 'test' )

x_train, x_test = normalize(x_train), normalize(x_test)

acc_PCA, acc_LDA, acc_auto = [], [], []

# evaluate PCA and LDA classifiers for different subspace dimensions

for p in range(1, 21):

pca_acc, lda_acc = classifier(x_train, x_test, y_train, y_test, p)

acc_PCA.append(pca_acc)

acc_LDA.append(lda_acc)

# evaluate autoencoder classifier for different subspace dimensions

for p in [3, 8, 16]:

X_train, Y_train, X_test, Y_test = autoencoder.auto_encoder(p)

auto_acc = autoenc_classifier(X_train, Y_train, X_test, Y_test)

acc_auto.append(auto_acc)

# plot accuracy vs subspace dimension

rcParams['figure.dpi' ] = 300

plt.figure(figsize=(9, 7))

fig, ax = plt.subplots()

ps = np.arange(1, 21, 1)

ax.plot(ps, acc_PCA, label="PCA" , marker='x' )

ax.plot(ps, acc_LDA, label="LDA" , marker='o' )

ax.plot([3, 8, 16], acc_auto, label="Autoencoder" , marker="*" )

ax.set_title("Accuracy of Different Dimensionality Reduction Methods vs P" )

ax.set_ylabel("Accuracy %" )

ax.set_xlabel("Feature Dimension (P)" )

ax.set_xticks(np.arange(0, 22, 1))

ax.legend()

plt.show()

if __name__ == '__main__' :

main()

Task 3

import numpy as np

import cv2

import glob

import os

import matplotlib.pyplot as plt

from matplotlib import rcParams

def readImages(root_dir, sub_dir):

# saves images to npz format if reading for the first time, else loads the images

from the npz file↪→

if not os.path.exists(f ' { root_dir} / { sub_dir} .npz' ):
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img_list = []

label_list = []

img_path_list = glob.glob(os.path.join(root_dir, sub_dir, f '*' ))

for pth in img_path_list:

# read image and append to array

im = cv2.imread(pth, 0)

img_list.append(im)

np.savez_compressed(f ' { root_dir} / { sub_dir} ' , x=np.array(img_list))

imgs = np.load(f ' { root_dir} / { sub_dir} .npz' , allow_pickle=True)

return imgs['x' ]

# reffered to past years solutions to implement various functions,

# mainly from 2020 and 2018 solution no 1

# few functions are derived directly from other solutions

def integral_img(img):

intg_img = np.cumsum(np.cumsum(img, axis=0), axis=1).astype(np.int32)

return intg_img

def rect_sum(img, coords):

# takes integral image and calculates the value of the pixel given the filter size in

terms of coords↪→

r, c, off_x, off_y = coords

A, B, C, D = img[r, c], img[r, c + off_x], img[r + off_y, c], img[

r + off_y, c + off_x]

rectsum = A + D - B - C

return rectsum

def extract_features(img):

h, w = img.shape

feats = []

ct1, ct2 = 0, 0

# horizontal features

# b_sum refers to pixels covered by -1 part of filter

# w_sum refers to pixels covered by 1 part of filter

for fs in range(2, w, 2):

for i in range(h - 1):

for j in range(w - fs):

coord_b = [i, j, fs // 2, 1]

coord_w = [i, j + fs // 2, fs // 2, 1]

# print(fs,coord_b,coord_w)

b_sum = rect_sum(img, coord_b)

w_sum = rect_sum(img, coord_w)

feat_val = w_sum - b_sum

feats.append(feat_val)

ct1 += 1

# vertical features

for fs in range(2, h, 2):

for j in range(w - 1):
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for i in range(h - fs):

coord_b = [i, j, 1, fs // 2]

coord_w = [i + fs // 2, j, 1, fs // 2]

# print(fs, coord_b, coord_w)

b_sum = rect_sum(img, coord_b)

w_sum = rect_sum(img, coord_w)

feat_val = w_sum - b_sum

feats.append(feat_val)

ct2 += 1

# print(ct1, ct2, ct1 + ct2)

return feats

def calc_feat_mat(imgs, name):

if not os.path.exists(f ' { name} .npz' ):

feat_mat = []

for im in imgs:

int_img = integral_img(im)

feat_vec = extract_features(int_img)

feat_mat.append(feat_vec)

np.savez_compressed(f ' { name} ' , x=np.transpose(np.array(feat_mat)))

arr = np.load(f ' { name} .npz' , allow_pickle=True)

return arr['x' ]

# construct weak classifier

def weak_classifier(weight, feats, labels):

least_err = np.inf

# normalising weights arr

weight = np.divide(weight, np.sum(weight))

# calc sum of positive and negative example weights

Tp = np.sum(weight[np.where(labels == 1)])

Tn = np.sum(weight[np.where(labels == 0)])

# sort each feature in ascending order across all images

# returns the indices of sorted features

idx = np.argsort(feats, axis=1)

# sort features, weights and labels according to idx

sorted_feats = np.take_along_axis(feats, idx, axis=1)

sorted_weight = np.take_along_axis(np.expand_dims(weight, axis=0), idx, axis=1)

sorted_labels = np.take_along_axis(np.expand_dims(labels, axis=0), idx, axis=1)

# sum of pos and negative sample weights for each feature less than threshold

Sp = np.cumsum(sorted_weight * sorted_labels, axis=1)

Sn = np.cumsum(sorted_weight, axis=1) - Sp

# errors

err1 = Sp + (Tn - Sn)

err2 = Sn + (Tp - Sp)

best_weak_cl = None

f_pred = None
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# iterate through all features

for i, (feat, s_feat, er1, er2) in enumerate(zip(feats, sorted_feats, err1, err2)):

# calculate min val between error arrays

min_err = np.minimum(er1, er2)

# get index of min value to access params which will give the least error rate

min_err_idx = np.argmin(min_err)

# classify using threshold and set polarity depending on feature val

# being less or more than threshold

if er1[min_err_idx] <= er2[min_err_idx]:

pol = 1

pred = (feat >= s_feat[min_err_idx])

e = er1[min_err_idx]

else:

pol = -1

pred = (feat < s_feat[min_err_idx])

e = er2[min_err_idx]

# create a list with classifier parameters

# [feature index, threshold(feature val), polarity, error]

c_params = [i, s_feat[min_err_idx], pol, e]

# set the current classifier as the best weak classifier

# if it has lesser error than any of the previous classifers

if min_err[min_err_idx] < least_err:

best_weak_cl = c_params

f_pred = pred.astype(np.uint8)

least_err = min_err[min_err_idx]

return best_weak_cl, f_pred

# cascade multiple weak classifiers to create a strong classifier

def cascade(tr_pos_feat, tr_neg_feat, pos_lbls, neg_lbls, reqTpr, reqFpr, maxNumWcl):

cl_list = []

alpha_list = []

pred_list = []

tpr, fpr, tnr, fnr, rep_fpr = 0, 0, 0, 0, 0

numP = tr_pos_feat.shape[1]

numN = tr_neg_feat.shape[1]

weights = np.ones(numP) * 0.5 / numP # set pos weights

weights = np.append(weights, np.ones(numN) * 0.5 / numN) # append neg weights

# combine pos and neg feats into a single arr

feats = np.hstack((tr_pos_feat, tr_neg_feat))

labels = np.hstack((pos_lbls, neg_lbls))

# run in range till max possible num of weak classifiers

for n in range(maxNumWcl):

best_weak_cl, f_pred = weak_classifier(weights, feats, labels)

cl_list.append(best_weak_cl)
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eps = best_weak_cl[-1]

beta = eps / (1 - eps + 1e-6)

alpha = np.log(1 / beta + 1e-6) # to prevent division by zero

alpha_list.append(alpha)

# update weights

weights = weights * np.power(beta, (1 - np.abs(labels - f_pred)))

# compute output of the cascade

pred_list.append(f_pred)

feat_arr = np.transpose(np.array(pred_list))

alpha_arr = np.transpose(np.array([alpha_list]))

casc_out = np.dot(feat_arr, alpha_arr)

# get threshold based on minimum val of cascade output in first numP entries

thresh = np.min(casc_out[:numP])

Cx = np.zeros_like(casc_out)

# set final output of cascade wherever the cascade output is greater than

threshold↪→

Cx[casc_out >= thresh] = 1

# calculate true positive and false positive rates

tpr = np.sum(Cx[:numP]) / numP

fpr = np.sum(Cx[numP:]) / numN

tnr = 1 - fpr

fnr = 1 - tpr

rep_fpr = np.sum(Cx[numP:]) / 1758

if tpr >= reqTpr and fpr <= reqFpr:

print(f 'Num Classifier in stage is { n + 1} ' )

break

metrics = np.array([tpr, rep_fpr, tnr, fnr])

# remove correctly classified negative examples from current set

neg_preds = Cx[numP:]

neg_ids = np.where(np.equal(neg_preds, 1))[0] ###

refined_neg_feats = tr_neg_feat[:, neg_ids]

new_neg_labels = np.zeros(len(neg_ids))

print(f 'False Postives in stage = { len(neg_ids)} ' )

cl_list = np.array(cl_list)

alpha_list = np.array(alpha_list)

return refined_neg_feats, new_neg_labels, cl_list, alpha_list, metrics

def main():

root_dir = 'CarDetection'

# load images

train_pos, train_neg = readImages(root_dir, 'train/positive' ), readImages(root_dir,

'train/negative' )↪→

test_pos, test_neg = readImages(root_dir, 'test/positive' ), readImages(root_dir,

'test/negative' )↪→

# generate labels

tr_pos_lbl = np.ones((train_pos.shape[0]))
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tr_neg_lbl = np.zeros((train_neg.shape[0]))

# te_pos_lbl = np.ones((test_pos.shape[0]))

# te_neg_lbl = np.zeros((test_neg.shape[0]))

# calculate features and save to npz if not already saved

tr_pos_ft = calc_feat_mat(train_pos, 'train_pos' )

tr_neg_ft = calc_feat_mat(train_neg, 'train_neg' )

te_pos_ft = calc_feat_mat(test_pos, 'test_pos' )

te_neg_ft = calc_feat_mat(test_neg, 'test_neg' )

# training

if not os.path.exists(f 'stage_cl_al.npz' ):

max_stages = 10

stage_cl_list = []

stage_alpha_list = []

# create cascade with max num stages

tr_fpr_arr = []

for stage in range(max_stages):

tr_neg_ft, tr_neg_lbl, cl_list, alpha_list, metrics = cascade(tr_pos_ft,

tr_neg_ft, tr_pos_lbl, tr_neg_lbl,↪→

1,

0.45,

50)

_, fpr, _, _ = metrics

# append classifiers for testing later

stage_cl_list.append(cl_list)

stage_alpha_list.append(alpha_list)

# append fpr rates while training

tr_fpr_arr.append(fpr)

# if there are no more negative samples, stop training

if tr_neg_ft.shape[1] == 0:

print(f 'Training Stopped at Stage: { stage + 1} ' )

break

# save cascade (classifiers and alphas)

np.savez_compressed(f 'stage_cl_al' , x=np.array(stage_cl_list, dtype=object),

y=np.array(stage_alpha_list, dtype=object))

print(tr_fpr_arr)

# testing

# load saved cascade

stage_cl_al = np.load(f 'stage_cl_al.npz' , allow_pickle=True)

print(f 'stage_cl_al loaded' )

# unpack classifiers and alphas

stage_cl = stage_cl_al['x' ]

stage_al = stage_cl_al['y' ]

test_feats = np.hstack((te_pos_ft, te_neg_ft))

pred_arr = []

wt_mul = 0.5

# iterate through every stage's classifiers

for cls, als in zip(stage_cl, stage_al):

wpred_arr = []
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# print(len(cls), len(als))

# iterate through each weak classifier

for cl in cls:

# unpack classifier params

i, thresh, pol, _ = cl

# go to feature index in test samples

current_feat = test_feats[int(i)]

# classify

test_pred = current_feat >= thresh if pol == 1 else current_feat <= thresh

wpred_arr.append(np.array(test_pred).astype(np.uint8))

wpred_arr = np.transpose(np.array(wpred_arr))

# cascade output

c_out = np.dot(wpred_arr, als)

thr = np.sum(als) * wt_mul

cx = np.zeros_like(c_out)

cx[c_out >= thr] = 1

pred_arr.append(cx)

pred_arr = np.array(pred_arr)

# print(pred_arr.shape)

test_numP = test_pos.shape[0]

test_numN = test_neg.shape[0]

te_fpr_list = []

te_fnr_list = []

# evaluate predicted labels

for i in range(pred_arr.shape[0]):

ps_ = pred_arr[0].copy()

# this loop removes correctly classified negative examples from the pred label

set↪→

for j in range(i+1):

ps_= np.logical_and(ps_,pred_arr[j])

ref_pred = ps_

te_fpr_list.append(np.sum(ref_pred[test_numP:]) / test_numN)

te_fnr_list.append(1 - np.sum(ref_pred[:test_numP]) / test_numP)

print(te_fpr_list)

print(te_fnr_list)

if __name__ == '__main__' :

main()
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