Purdue University - ECE 661: Homework 1 - Fall 2022
Student: Carlos A. S. Oliveira (Sousa de Oliveira, Carlos Augusto)

Homework 1

August 31, 2022

1.

As seen in class and the lecture 2 handout, the homogeneous coordinate representation of a physical 2D point $(x, y) \in \mathbb{R}^{2}$ is the 3 D vector $\mathbf{x}=(u, v, 1)^{\top} \in \mathbb{R}^{3}$, where $x=u / 1$ and $y=v / 1$. We also know that for any multiple $k \in \mathbb{R}, \quad k \neq 0, \quad k \cdot(u, v, 1)^{\top}$ is the same physical point in \mathbb{R}^{2} as that represented by $(u, v, 1)^{\top}$. Therefore, for the origin, that is, the point $(0,0) \in \mathbb{R}^{2}$, we have the homogeneous coordinate representation $(0,0,1)^{\top}$ and all the points in the representational space \mathbb{R}^{3} that are homogeneous coordinates of the origin are given by $k \cdot(0,0,1)^{\top}=(0,0, k)^{\top}$.

2.

Points at infinity in the physical plane \mathbb{R}^{2} have homogeneous coordinate representations of the form $(u, v, 0)^{\top}$ (ideal points) and are not all the same. As an arbitrary point $(x, y) \in \mathbb{R}^{2}$ approaches infinity its homogeneous coordinate representation (u, v, w) will be such that $x=u / w$ and $y=v / w$ with $w \rightarrow 0$, with the direction of the approximation to infinity determined by the values of u and v. Thus, points at infinity differ from each other according to the direction dictated by their respective u and v coordinates. These differing points at infinity, however, form a straight line in \mathbb{R}^{2}, the line whose representation is $\mathbf{l}_{\infty}=(0,0,1)^{\top}$.
3.

We know that a degenerate conic \mathbf{C} manifests as a pair of intersecting straight lines, with $\mathbf{C}=\mathbf{l m}^{\top}+\mathbf{m l}^{\top}$. As noted in the lecture notes, we can see that the two terms that constitute \mathbf{C} are vector outer products and we know from linear algebra that for nonzero vectors \mathbf{m} and \mathbf{l} the outer product is of matrix rank 1 (that is, all columns are linearly dependent on the first column), so we conclude that \mathbf{C}, the sum of two vector outer products, can have at most matrix rank 2 (which will be the case when the first column vectors of each of the rank 1 matrices being summed are linearly independent from each other). While the previous statements are mathematically sound, we note, as pointed out in class, that the case where C has matrix rank 1 is an extreme case where the degenerate conic is two identical, superimposed lines (in effect actually a single line), rather than two intersecting lines, meaning that other than this extreme case, the matrix rank of \mathbf{C} will be precisely 2 .

4.

A conic in \mathbb{R}^{2} is defined by 5 points. As pointed out on a post on Piazza, we can see this by noticing that if we express the equation for a conic as the dot product $\left(x^{2}, x y, y^{2}, x, y, 1\right)(a, b, c, d, e, f)^{\top}=0$ we create a system of linear equations with 6 equations and 6 unknowns and we know that a system of equations with n equations and n unknowns can be solved with $n-1$ of the equations. Therefore, given that our $n=6$, the system of equations that expresses the conic can be solved with 5 of those equations, meaning that a conic is defined by 5 points. Alternatively, following the argument sketched in Hartley \& Zisserman's "Multiple View Geometry in Computer Vision" (2nd edition, page 5), another way we can see that a conic is defined by 5 points is by counting the number of coefficients of x and y terms in the implicit form equation of a conic, which is $a x^{2}+b x y+c y^{2}+d x+e y+f=0$ (totalling 5 coefficients of x and y terms), much like we see that a line in \mathbb{R}^{2} is defined by two points by counting the coefficients of x and y terms in the implicit form equation of a line $(a x+b y+c=0$, with 2 coefficients of x and y terms).

5.

Step 1: We find the line $\mathbf{l}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \times\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \cdot 1-1 \cdot 2 \\ 1 \cdot 1-0 \cdot 1 \\ 0 \cdot 2-0 \cdot 1\end{array}\right]=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$
We note that this line passes through the origin (one of the points through which it passes is the origin $(0,0)$ and the w coordinate of the line is equal to 0$)$.
Step 2: We find the line $\mathbf{l}_{2}=\left[\begin{array}{l}3 \\ 4 \\ 1\end{array}\right] \times\left[\begin{array}{l}5 \\ 6 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \cdot 1-1 \cdot 6 \\ 1 \cdot 5-3 \cdot 1 \\ 3 \cdot 6-4 \cdot 5\end{array}\right]=\left[\begin{array}{c}-2 \\ 2 \\ -2\end{array}\right]$
Step 3: We find the intersection of \mathbf{l}_{1} and \mathbf{l}_{2}, given by

$$
\mathbf{l}_{1} \times \mathbf{l}_{2}=\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] \times\left[\begin{array}{c}
-2 \\
2 \\
-2
\end{array}\right]=\left[\begin{array}{c}
1 \cdot-2-0 \cdot 2 \\
0 \cdot-2-(-2 \cdot-2) \\
-2 \cdot 2-1 \cdot-2
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-4 \\
-2
\end{array}\right]
$$

Now, for a line passing through the points $(7,-8)$ and $(-7,8)$ we would do, in two steps:
Step 1: We find the line $\mathbf{l}_{2^{\prime}}=\left[\begin{array}{c}7 \\ -8 \\ 1\end{array}\right] \times\left[\begin{array}{c}-7 \\ 8 \\ 1\end{array}\right]=\left[\begin{array}{c}-8 \cdot 1-1 \cdot 8 \\ 1 \cdot-7-7 \cdot 1 \\ 7 \cdot 8-(-8 \cdot-7)\end{array}\right]=\left[\begin{array}{c}-16 \\ -14 \\ 0\end{array}\right]$
We note that this line passes through the origin (the w coordinate of the line is equal to 0).
Step 2: Since we found that both line \mathbf{l}_{1} and line $\mathbf{l}_{2^{\prime}}$ pass through the origin, we conclude that the origin (a point of the form $(0,0, k)^{\top}$) is where they intersect and, indeed, $\mathbf{l}_{1} \times \mathbf{l}_{2^{\prime}}=(0,0,44)^{\top}$.
6.

We find the line $\mathbf{l}_{1}=\left[\begin{array}{c}-4 \\ 0 \\ 1\end{array}\right] \times\left[\begin{array}{c}-2 \\ 8 \\ 1\end{array}\right]=\left[\begin{array}{c}-8 \\ 2 \\ -32\end{array}\right]$
We find the line $\mathbf{l}_{2}=\left[\begin{array}{c}0 \\ -2 \\ 1\end{array}\right] \times\left[\begin{array}{c}4 \\ 14 \\ 1\end{array}\right]=\left[\begin{array}{c}-16 \\ 4 \\ 8\end{array}\right]$
We find the intersection of \mathbf{l}_{1} and \mathbf{l}_{2}, given by $\mathbf{l}_{1} \times \mathbf{l}_{2}=\left[\begin{array}{c}-8 \\ 2 \\ -32\end{array}\right] \times\left[\begin{array}{c}-16 \\ 4 \\ 8\end{array}\right]=\left[\begin{array}{c}144 \\ 576 \\ 0\end{array}\right]$
Since we found that the intersection of the lines is of the form $(u, v, 0)^{\top}$, we conclude that the lines intersect at an ideal point, thus at infinity, meaning that they are parallel.

7.

Knowing that given the algebraic form, $a x+b y+c=0$, the parameter vector $\mathbf{l}=(a, b, c)^{\top}$ can serve as the homogeneous coordinates representation of the line, we find that, with the equations given (that is, $x=1 \Rightarrow x-1=0 \quad$ and $\quad y=-1 \Rightarrow y+1=0)$ the two lines are $\mathbf{l}_{1}=(1,0,-1)^{\top}$ and $\mathbf{l}_{2}=(0,1,1)^{\top}$.
Their intersection is thus found at $\mathbf{l}_{1} \times \mathbf{l}_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right] \times\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
8.

We know from analitic geometry that the equation of the ellipse (with axes parallel to the plane's x and y axes) is $\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1$ (where the point $\left(x_{0}, y_{0}\right)$ is the center of the ellipse).
The ellipse described in the question prompt thus has the following equation:

$$
\frac{(x-2)^{2}}{(1 / 2)^{2}}+\frac{(y-3)^{2}}{1^{2}}=1 \Rightarrow 4 x^{2}-16 x+16+y^{2}-6 y+9-1=0 \Rightarrow 4 x^{2}+y^{2}-16 x-6 y+24=0
$$

We thus get $\mathbf{C}=\left[\begin{array}{ccc}4 & 0 & -8 \\ 0 & 1 & -3 \\ -8 & -3 & 24\end{array}\right]$ and, with \mathbf{p} being the origin of the plane, we have that $\mathbf{p}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
The polar line is thus given by $\mathbf{C p}=\left[\begin{array}{ccc}4 & 0 & -8 \\ 0 & 1 & -3 \\ -8 & -3 & 24\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}-8 \\ -3 \\ 24\end{array}\right]$.
Since the x -axis line $(y=0)$ is $(0,1,0)$ and the y -axis line $(x=0)$ is $(1,0,0)$, we have that their intersections with the polar line are, respectively: $\left[\begin{array}{c}-8 \\ -3 \\ 24\end{array}\right] \times\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}-24 \\ 0 \\ -8\end{array}\right]$ and $\left[\begin{array}{c}-8 \\ -3 \\ 24\end{array}\right] \times\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}0 \\ 24 \\ 3\end{array}\right]$.

That is, we find that in the physical plane \mathbb{R}^{2} the intersection of the polar line with the x -axis is the point $(-24 /-8,0)=(3,0)$ and the intersection of the polar line with the y-axis is the point $(0,24 / 3)=(0,8)$.

