
ECE661: Homework 6

Wan-Eih Huang

October 20, 2018

1 Logic and Method

In this assignment we are going to use two methods to segment the images.
One is based on R, G, and B values. And the other is using local statistic
value, variance, as texture measure. To separate the image into foreground
and background, this assignment needs us use Otsu’s algorithm. In addition,
extracting contour after segmentation.

1.1 Otsu’s Algorithm

Otsu’s algorithm is a clustering-based thresholding method. It separates gray
levels into two classes, foreground and background. (It also can be extended to
multi-level, but here we only discuss bi-level case.)

There are three descriminant criteria:
σ2
B

σ2
W

,
σ2
T

σ2
W

, and
σ2
B

σ2
T

. σ2
T is the total variance

of data set which is not a function of threshold value k. σ2
W is winthin-class

variance given by

σ2
W = w0σ

2
0 + w1σ

2
1

w0, w1 are the probabilities of two classes and w0 + w1 = 1. σ2
0 and σ2

1 are the
variances of two classes. σ2

B is between-class variance given by

σ2
B = w0(µ0 − µT)2 + w1(µ1 − µT)2

= w0w1(µ0 − µ1)2

µ0, µ1, and µT = w0µ0+w1µ1 are the mean values of class 0, class 1, and overall
data. Because σ2

W is the second order, Otsu’s algorithm adopts σ2
B which is the

first order as its criterion to achieve best separation. That is, find the optimum
value of k which maximize σ2

B .
First, construct the 256-bin historgram of the image. Then we can compute w0,
w1, µ0, and µ1 by

w0 =
∑k−1
i=0 pi =

∑k−1
i=0

ni
N

w1 = 1 − w0

µ0 =
∑k−1
i=0

ipi
w0

=

∑k−1
i=0 ini∑k−1
i=0 ni

µ1 =
µT − w0µ0

w1

1

where pi is the probability of i gray level, ni is the number of pixels with i gray
level, and N is the total number of pixels.
Finally, the solution is obtained by iterating k from 0 to 255 and always keeping
best-so-far threshold value.

1.2 RGB Based Segmentation

First, we separate a color image into three single-channel monochrome images.
Then we can use Otsu’s algorithm to segment the foreground and background.
Last, create a mask for each channel and then merge them together.
However, this application is kind of image dependent. For flexibility, we set
several parameters to adjust the program.
1. We may need to use Otsu’s algorithm iteratively to obtain better result.
Hence, we can set number of iterations of Otsu’s algorithm.
2. For iterative Otsu’s algorithm, we use the data of one class obtained from
previous iteration. This class can be class 0 or class 1. In other words, the
threshold value can be go up or down based on the mode we choose.
3. The foreground object may be with low gray levels. So, we have a flag to
indicate the mask should be low gray level class or high gray level class.

1.3 Texture Based Segmentation

The process of texture based segmentation is very similar to the process of RGB
based segmentation. We compute variance images with different window size.
Using a sliding window to compute the variance within the window around the
pixel and scaling the result to (0, 255). Then we use Otsu’s algorithm again
to create a mask for each window size. Last, merge the masks obtained from
different window size. The parameters we can adjust is the same as last section.

1.4 Contour Extraction

Before contour extraction, we want to eliminate the noise on the segmentation
image. There are some tiny holes in foreground or dots in background. We adopt
dilation and erosion methods by square window. Unfortunately, the applications
are also kind of dependent on images. Thus, we need to set the window size
and number of iterations.
After we removed the noise, the contour extraction method is following the
criterion; if the pixel is foreground and its 8 neighbors are not all in foreground,
then it is the border pixel. All the border pixels form the contour.

1.5 Steps of Implementation

1.5.1 Task 1: RGB based segmentation

Step 1 : Separate the input color image into three single channel images.
Step 2 : Create a mask for each single channel image by iterative Otsu’s algo-
rithm.
Step 3 : Merge the masks into one overall mask.
Step 4 : Eliminate the noise by erosion and dilation.
Step 5 : Extract the contour.

2

1.5.2 Task 2: Texture based segmentation

Step 1 : Convert the input color image to grayscale image.
Step 2 : Compute variance image for given window size. In this experiment,
we use 3 × 3, 5 × 5, and 7 × 7. And scale each variance image to the range (0,
255).
Step 3 : Create a mask for each variance image by iterative Otsu’s algorithm.
Step 4 : Merge the masks into one overall mask.
Step 5 : Eliminate the noise by erosion and dilation.
Step 6 : Extract the contour.

2 Result

(a) (b) (c)

Figure 1: Original images. (a) Image 1 (b) Image 2 (c) Image 3

2.1 Task 1

Image 1:

3

(a) (b)

Figure 2: The foreground generated by R channel image. (a) The first iteration
(k=139) (b) The second iteration (k=192)

(a)

Figure 3: The foreground generated by G channel image. (k=153)

4

(a)

Figure 4: The foreground generated by B channel image. (k=163)

(a) (b)

Figure 5: (a) The overall foreground (b) The contour

Image 2:

5

[R, G, B]
Number of iterations [2,1,1]

Class 0 is the candidate set for next iteration ? [No, NA, NA]
Foreground is low gray level class ? [No, Yes, Yes]

Erosion 3 × 3, 1 iteration
Dilation 5 × 5, 2 iterations

Table 1: The parameters of image 1.

(a) (b)

Figure 6: The foreground generated by R channel image. (a) The first iteration
(k=207) (b) The second iteration (k=239)

(a) (b)

Figure 7: The foreground generated by G channel image. (a) The first iteration
(k=186) (b) The second iteration (k=229)

6

(a) (b)

Figure 8: The foreground generated by B channel image. (a) The first iteration
(k=180) (b) The second iteration (k=228)

(a) (b)

Figure 9: (a) The overall foreground (b) The contour

[R, G, B]
Number of iterations [2,2,2]

Class 0 is the candidate set for next iteration ? [No, No, No]
Foreground is low gray level class ? [Yes, Yes, Yes]

Erosion 3 × 3, 1 iteration
Dilation 5 × 5, 2 iterations

Table 2: The parameters of image 2.

Image 3:

7

(a)

Figure 10: The foreground generated by R channel image. (k=136)

(a)

Figure 11: The foreground generated by G channel image. (k=150)

8

(a) (b)

Figure 12: The foreground generated by B channel image. (a) The first iteration
(k=150) (b) The second iteration (k=81)

(a) (b)

Figure 13: (a) The overall foreground (b) The contour

9

[R, G, B]
Number of iterations [1,1,2]

Class 0 is the candidate set for next iteration ? [NA, NA, Yes]
Foreground is low gray level class ? [No, Yes, Yes]

Erosion 3 × 3, 1 iteration
Dilation 5 × 5, 3 iterations

Table 3: The parameters of image 3.

2.2 Task 2

Image 1:

(a) (b) (c)

Figure 14: The foreground generated by local variance with 3 × 3 window. (a)
The first iteration (k=33) (b) The second iteration (k=8) (c) The third iteration
(k=2)

10

(a) (b) (c)

Figure 15: The foreground generated by local variance with 5 × 5 window. (a)
The first iteration (k=33) (b) The second iteration (k=9) (c) The third iteration
(k=2)

(a) (b) (c)

Figure 16: The foreground generated by local variance with 7 × 7 window. (a)
The first iteration (k=35) (b) The second iteration (k=9) (c) The third iteration
(k=2)

11

(a) (b)

Figure 17: (a) The overall foreground (b) The contour

[3 × 3, 5 × 5, 7 × 7]
Number of iterations [3,3,3]

Class 0 is the candidate set for next iteration ? [Yes, Yes, Yes]
Foreground is low level class ? [Yes, Yes, Yes]

Erosion 5 × 5, 2 iteration
Dilation 5 × 5, 1 iterations

Table 4: The parameters of image 1.

Image 2:

(a) (b) (c)

Figure 18: The foreground generated by local variance with 3 × 3 window. (a)
The first iteration (k=16) (b) The second iteration (k=4) (c) The third iteration
(k=1)

12

(a) (b) (c)

Figure 19: The foreground generated by local variance with 5 × 5 window. (a)
The first iteration (k=25) (b) The second iteration (k=6) (c) The third iteration
(k=1)

(a) (b) (c)

Figure 20: The foreground generated by local variance with 7 × 7 window. (a)
The first iteration (k=31) (b) The second iteration (k=8) (c) The third iteration
(k=2)

(a) (b)

Figure 21: (a) The overall foreground (b) The contour

[3 × 3, 5 × 5, 7 × 7]
Number of iterations [3,3,3]

Class 0 is the candidate set for next iteration ? [Yes, Yes, Yes]
Foreground is low level class ? [Yes, Yes, Yes]

Erosion 5 × 5, 1 iteration
Dilation 5 × 5, 1 iterations

Table 5: The parameters of image 2.

13

Image 3:

(a) (b) (c)

Figure 22: The foreground generated by local variance with 3 × 3 window. (a)
The first iteration (k=28) (b) The second iteration (k=8) (c) The third iteration
(k=2)

(a) (b) (c)

Figure 23: The foreground generated by local variance with 5 × 5 window. (a)
The first iteration (k=29) (b) The second iteration (k=8) (c) The third iteration
(k=2)

14

(a) (b) (c)

Figure 24: The foreground generated by local variance with 7 × 7 window.
(a) The first iteration (k=32) (b) The second iteration (k=10) (c) The third
iteration (k=3)

(a) (b)

Figure 25: (a) The overall foreground (b) The contour

15

[3 × 3, 5 × 5, 7 × 7]
Number of iterations [3,3,3]

Class 0 is the candidate set for next iteration ? [Yes, Yes, Yes]
Foreground is low level class ? [No, No, No]

Erosion No
Dilation 5 × 5, 1 iterations

Table 6: The parameters of image 3.

3 Observation

RGB based segmentation
In image 1, there are three clear color regions, red lighthouse, blue sky, and
green grass. Because we define foreground is red lighthouse, we can expect the
pixel values in foreground should be high in red, low in blue and green. So we
have the clue to set foreground flag which indicates high or low level class is
foreground. And this segmentation method did a great job in image 1.
In image 2, there is no dominant color. Most pixels in background are close
to white. Hence, we expect the pixel values in foreground are relative low in
3 channels. However, it is hard to separate the foreground baby, blanket, and
some shadows in image, if we only threshold the single-channel image indepen-
dently and ignore the relationship among three channels.
From the observation on image 3, we can know the pixel values on the jumping
man are low in green and blue channel. In addition, the pixels on the arms of
the jumping man are high in red. However, the pixels on the pants are low in
red. Thus, it is difficult to segment the person in red channel. In this image,
I did a little change in merging the masks. That is, if two of three channels
support this area is foreground, then it is foreground.
Texture based segmentation
In all three images, when we use larger window size, the segmentations are more
coarse.
Moreover, in image 1 both lighthouse and blue sky are flat. In means both they
have low variance statistic characteristic. So, when we use texture to segment
the image 1, we obtain these two regions as foreground. The mask acts like edge
detection.
Similarly, in image 2, the baby’s skin and near-white background do not have
obvious texture. However, the baby’s eyes, nose, and mouth have larger vari-
ations. Thus our result shows the flat area and masked parts are like edges.
Because they have relatively higher variance.
In image 3, the pixel values of the jumping man are with higher variance except
the pants area. The sky and snow are with relative low variance. Therefore, the
texture based segmentation can partially segment the person except the pants.

16

4 Source Code

4.1 Task 1

#!/ usr / b in /env python3
−∗− coding : u t f−8 −∗−
”””
Created on Thu Oct 18 19 :23 :33 2018
RGB based segmentat ion
@author : wehuang
”””

import cv2
import matp lo t l i b . pyplot as p l t
import numpy as np
from u t i l b a s i c import ∗

Parameters
l a b e l = [’b ’ , ’ g ’ , ’ r ’]
num iter = [1 , 1 , 2]
f l a g = [1 , 1 , 0]
go lower = [0 , 0 , 0]
e r o d e s i z e = 3
e r o d e i t e r = 1
d i l a t e s i z e = 5
d i l a t e i t e r = 2

Main program s t a r t s from here !
img = cv2 . imread (’HW6Pics/ l i gh thou s e . jpg ’)
mask = np . z e ro s (img . shape , dtype=np . u int8)
for i in range (3) :

img mono = img [: , : , i]
mask [: , : , i] = run otsu (img mono , num iter [i] , l a b e l [i] ,

f l a g [i] , go lower [i])

Merge masks
mask overa l l = mask [: , : , 0] ∗mask [: , : , 1] ∗mask [: , : , 2]
#mask ove ra l l = np . f l o o r ((mask [: , : , 0]+mask [: , : , 1]+mask [: , : , 2])

/2) # fo r image 3
img out = np . u int8 (mask overa l l ∗255)
cv2 . imwrite (’ otsu . jpg ’ , img out)

Eliminate no i se
mask overa l l = e r o s i on (mask overa l l , e r od e s i z e , e r o d e i t e r)
mask overa l l = d i l a t i o n (mask overa l l , d i l a t e s i z e , d i l a t e i t e r

)
Contour
f i nd con tou r (mask overa l l)

4.2 Task 2

#!/ usr / b in /env python3
−∗− coding : u t f−8 −∗−
”””

17

Created on Thu Oct 18 23 :48 :47 2018
Texture based segmentat ion us ing l o c a l var iance
@author : wehuang
”””

import cv2
import matp lo t l i b . pyplot as p l t
import numpy as np
from u t i l b a s i c import ∗

def t e x t u r e s t a t (img gray , N) :
var i ance = np . z e ro s (img gray . shape)
for j in range (img gray . shape [0]) :

for i in range (img gray . shape [1]) :
h a l f = np . int ((N−1)/2)
patch = img gray [max(0 , j−ha l f) :min(img gray . shape

[0] , j+ha l f +1) , max(0 , i−ha l f) :min(img gray .
shape [1] , i+ha l f +1)]

var i ance [j] [i] = np . var (patch)

Sca le to [0 , 255]
var iance = np . u int8 (np . round(255∗ var iance /(np .max(var iance

)−np .min(var iance))))
return var iance

Parameter
window size = [3 , 5 , 7]
num iter = [3 , 3 , 3]
l a b e l = [’ 3 ’ , ’ 5 ’ , ’ 7 ’]
f l a g = [0 , 0 , 0]
go lower = [1 , 1 , 1]
e r o d e s i z e = 5
e r o d e i t e r = 1
d i l a t e s i z e = 5
d i l a t e i t e r = 1

Main program s t a r t s from here !
img = cv2 . imread (’HW6Pics/ s k i . jpg ’)
img gray = cv2 . cvtColor (img , cv2 .COLORBGR2GRAY)
mask = np . z e ro s (img . shape , dtype=np . u int8)
for i , N in enumerate(window size) :

text img = t e x t u r e s t a t (img gray , N) # compute l o c a l
var iance

mask [: , : , i] = run otsu (text img , num iter [i] , l a b e l [i] ,
f l a g [i] , go lower [i])

Merge masks
mask overa l l = mask [: , : , 0] ∗mask [: , : , 1] ∗mask [: , : , 2]
img out = np . u int8 (mask overa l l ∗255)
cv2 . imwrite (’ t ex t . jpg ’ , img out)

Eliminate no i se
#mask ove ra l l = eros ion (mask overa l l , e r ode s i z e , e r o d e i t e r)
mask overa l l = d i l a t i o n (mask overa l l , d i l a t e s i z e , d i l a t e i t e r

18

)
Contour
f i nd con tou r (mask overa l l)

4.3 Basic functions

#!/ usr / b in /env python3
−∗− coding : u t f−8 −∗−
”””
Created on Sat Oct 19 11 :16 :34 2018
Basic f unc t i on s f o r image segmentat ion
@author : wehuang
”””

import cv2
import matp lo t l i b . pyplot as p l t
import numpy as np

def otsu (data) :
h i s t , b in edge s = np . histogram (data , b ins =256 , range

=(0 ,256))

N = len (data)
sum tota l = sum(h i s t ∗ b in edge s [: −1])
n back = 0 # number o f p i x e l s in background
sum back = 0 # sum of background
b e s t s c o r e = −1
for t in range (256) :

n back += h i s t [t]
n f o r e = N − n back # number o f p i x e l s in foreground
i f n back == 0 or n f o r e == 0 :

continue
sum back += t ∗ h i s t [t]
sum fore = np . int (sum tota l − sum back) # sum of

foreground
s c o r e = n back∗ n f o r e ∗(sum back/n back−sum fore / n f o r e

) ∗∗2
i f s c o r e >= be s t s c o r e :

th r e sho ld = t
b e s t s c o r e = sco r e

return th r e sho ld

def run otsu (img mono , num iter , l abe l , f l a g , go lower) :
a = img mono . f l a t t e n ()
for n in range (num iter) :

th r e sho ld = otsu (a)
Generate mask
print (th r e sho ld)
mask = np . z e ro s (img mono . shape , dtype=np . u int8)
i f f l a g : # low l e v e l i s foreground

mask [img mono <= thre sho ld] = 1
else : # high l e v e l i s foreground

mask [img mono > th r e sho ld] = 1

19

img out = mask∗255
#p l t . imshow (img out , cmap=”gray ”)
#p l t . show ()
cv2 . imwrite (’ o t su ’+l a b e l+str (n+1)+’ . jpg ’ , img out)
i f go lower : # low l e v e l c l a s s f o r next i t e r a t i o n

a tmp = [i for i in a i f i <= thre sho ld]
else : # high l e v e l c l a s s f o r i t e r a t i o n

a tmp = [i for i in a i f i > th r e sho ld]
a = np . asar ray (a tmp)

return mask

def e r o s i on (mask , e r od e s i z e , e r o d e i t e r) :
k e rne l = np . ones ((e r od e s i z e , e r o d e s i z e) , np . u int8)
mask = cv2 . erode (mask , kerne l , i t e r a t i o n s=e r o d e i t e r)
img out = np . u int8 (mask∗255)
cv2 . imwrite (’ o t su e rode . jpg ’ , img out)

return mask

def d i l a t i o n (mask , d i l a t e s i z e , d i l a t e i t e r) :
k e rne l = np . ones ((d i l a t e s i z e , d i l a t e s i z e) , np . u int8)
mask = cv2 . d i l a t e (mask , kerne l , i t e r a t i o n s=d i l a t e i t e r)
img out = np . u int8 (mask∗255)
cv2 . imwrite (’ o t s u d i l a t e . jpg ’ , img out)

return mask

def f i nd con tou r (mask) :
contour = np . z e r o s (mask . shape , dtype=np . u int8)
for j in range (mask . shape [0]) :

for i in range (mask . shape [1]) :
i f mask [j] [i] == 0 :

continue
patch = mask [j −1: j +2, i −1: i +2]
i f sum(patch . f l a t t e n ()) < 9 :

contour [j] [i] = 1

img out = contour ∗255
cv2 . imwrite (’ contour . jpg ’ , img out)

5 Reference

1 . https : // en . w ik iped ia . org / wik i /Otsu%27s method

20

