ECE 661 Computer Vision (2018 Fall)
Homework 6

Runzhe Zhang

October 22, 2018



1. Introduction

The homework deals with image segmentation. In particular, we are provided with three
images and you need to separate out the foreground from the background in these images.
Subsequently, we will extract the contour of the segmented output.

For each image we need to know what is the desired foreground that we would like you
to segment out of the image. The foreground for the first image is the red lighthouse. The
foreground for the second image is the head and body of the cute baby. The foreground for
the third image is the whole body of the jumping man.

In this homework, we apply Otsu’s method to perform image segmentation. The RGB
segmentation is achieved by applying the Otsu’s algorithm to the three RGB color channel
separately, and then combine the segmentation results to get the final image segmentation.

The texture-based segmentation is achieved by first computing the texture features
with three different windows, apply the Otsu’s algorithm to the three texture features
separately, and then combine the segmentation results to get the final image segmentation.

After the segmentation is done, we use contour extraction techniques to get the bound-
ary of the foreground.



2. OTSU Method

Otsu’s method is used to automatically perform clustering-based image thresholding or,
the reduction of a graylevel image to a binary image. The algorithm assumes that the
image contains two classes of pixels following bi-modal histogram (foreground pixels and
background pixels), it then calculates the optimum threshold separating the two classes
so that their combined spread (intra-class variance) is minimal, or equivalently (because
the sum of pairwise squared distances is constant), so that their inter-class variance is
maximal (Reference: Wikipedia).

In Otsu’s method we exhaustively search for the threshold that minimizes the intra-
class variance (the variance within the class), defined as a weighted sum of variances of
the two classes:

o2(t) = wo(o§(t) + w1 (2)

Weights wg andw; are the probabilities of the two classes separated by a threshold ¢
,and Ug and 0% are variances of these two classes. The class probability wg 1(¢) is computed
from the L bins of the histogram:

-1
wo(t) = Z p(i)
i=0

L-1
wi®) =) p@)
i=t
Otsu shows that minimizing the intra-class variance is the same as maximizing inter-
class variance:
o3(t) = 0% — o5 (t) = woBw1 (Ol po(t) — p1 (O

which is expressed in terms of class probabilities w and class means pu, while the class
mean f,1,7(¢) is:

Yitip(i)

="
o(2) 20
Yiolip@)
== - -
p1(2) o)
L-1
pr = ip(i)
i=0

The following relations can be easily verified:

WoHo + W11 = HT

wot+wi=1



The class probabilities and class means can be computed iteratively. This idea yields
an effective algorithm.

Algorithm:

1. Compute histogram and probabilities of each intensity level,
2. Set up initialw;(0) and p;(0)

3. Step through all possible thresholds ¢ = 1 maximum intensity

(a) Update w; and y;;
(b) Compute o3 (¢);

4. Desired threshold corresponds to the maximum U%(t)

After these process, we can get the OTSU threshold to segment the image.

3. RGB Image Segmentation

The image segmentation can be achieved by applying Otsu’s method to the three RGB color
channels separately, and then combine the segmentation results to get final segmentation
of the image. The procedure is described as follows.

1. Separate the three RGB color channels and convert them into three gray- scale
images;

2. Construct the mask for each channel using Otsu’s method;

3. Combine the three masks by logical operator AND. To get a better segmentation
result, the combination logic is chosen depending on the image.



4. Texture-based Image Segmentation

The texture-based segmentation method is similar to what we have done in Section 3. The
only difference is that we use three texture feature channels as the input to Otsu’s method
instead of using the three RGB channels. The procedure is described as follows.

1. Convert the image to gray-scale image;

2. Generate a new gray-scale image whose pixel value is the variance of the gray-scale
values in a N x N window around the corresponding pixels of the original gray-scale
image.

3. Do Step 1 to Step 2 for three different window sizes N =3,N =5,andN =7 . These
three gray-scale images are considered to be the texture features of the original
image.

4. Treat the three texture features as the three channels of the original image, apply
Otsu’s method separately to get the three masks.

5. Combine the three masks by logical operator AND. To get a better segmentation
result, the combination logic is chosen depending on the image. It should be noted
that the values in the texture feature represent the variance.

After these process, we can get the texture-based image segmentation result.

5. Contour Extraction

After the segmentation is done, the contour can be extract for better visualization. My
contour extraction algorithm is implemented based on 8-neighbors. The foreground corre-
sponds to the pixel values equal to 1 in the overall mask, while the background corresponds
to the pixel values equal to 0 in the overall mask. For each pixel in the overall mask:

1. If the pixel value is 0, then it is not selected as thecontourpoint;

2. If the pixel value is 1, and all its 8-neighbors are 1, then it is not selected as the
contour point;

3. If the pixel value is 1, and not all of its 8-neighbors are 1, then it is selected as the
contour point.



6. Observations

According to the results,the texture-based method works worse in the smooth objective
image, while the RGB segmentation method works better in the smooth images. It is
reasonable since the texture-based method is suitable when our foreground image contains
more textures than the background image.

The contour extraction method could also influence the result. Right now my contour
extraction algorithm would depict the boundary of those tiny foreground regions. Use other
contour extraction algorithms may improve the results.

The performance of the segmentation results depends highly on the characteristic of
the original image. We should select the appropriate segmentation method based on the
input image.



7. Result

7.1 Image: baby

-

Figure 2: The R layer of the original RGB image



Figure 3: The G layer of the original RGB image

Figure 4: The B layer of the original RGB image



Figure 6: The G layer OTSU result



Figure 8: The combination of the RGB three layers OTSU result



Figure 9: The contour result based on the OTSU method(RED line is the contour)

Figure 10: The foreground based on the contour detection

10



K "\;(' TN ‘
— / :
L’*".’ 2N \ |

Figure 11: The OTSU result for 3*3 window texture method

iy

. ’ / A [l

Figure 12: The OTSU result for 5*5 window texture method

11



/ r 7 TN |
. " /.{ _

Figure 13: The OTSU result for 7#*7 window texture method

i

/ s \({'f/ \

Figure 14: The combination of texture OTSU result

12



7.2 Image: Light House

Figure 15: The original input image

13



Figure 16: The R layer of the original RGB image

14



Figure 17: The G layer of the original RGB image

15



Figure 18: The B layer of the original RGB image

16



Figure 19: The R layer OTSU result

17



Figure 20: The G layer OTSU result

18



Figure 21: The B layer OTSU result

19



Figure 22: The combination of the RGB three layers OTSU result

20



Figure 23: The contour result based on the OTSU method(RED line is the contour)

21



Figure 24: The foreground based on the contour detection

22



g %

’ U

. the

o e

; : h j—-—:’-—‘l* :
= - .

Figure 25: The OTSU result for 3*3 window texture method

23



e —_ ,
* ; ‘2‘
; [ 1] i r"

Figure 26: The OTSU result for 5*5 window texture method

24



5

|

i'j M W A ——— il

—--h -—-‘ - alrop—
I . 1\ r
- . .
- Y - TR A

Figure 27: The OTSU result for 7*7 window texture method

25



5

J} I N
-3 -

- h

—~mm
e al

—rr—

l"""r/

-
L

Figure 28: The combination of texture OTSU result

26



7.3 Image: Ski

Figure 29: The original input image

27



Figure 30: The R layer of the original RGB image

28



Figure 31: The G layer of the original RGB image

29



Figure 32: The B layer of the original RGB image

30



Figure 33: The R layer OTSU result

31



Figure 34: The G layer OTSU result

32



Figure 35: The B layer OTSU result

33



Figure 36: The combination of the RGB three layers OTSU result

34



Figure 37: The contour result based on the OTSU method(RED line is the contour)

35



Figure 38: The foreground based on the contour detection

36



Figure 39: The OTSU result for 3*3 window texture method

37



Figure 40: The OTSU result for 5*5 window texture method

38



Figure 41: The OTSU result for 7*7 window texture method

39



Figure 42: The combination of texture OTSU result

40



15

16

17

18

20
21
22
23
24

25

50

8. Code

##tH#H##
H#H#HH#H
HH#HHH
##tH###

HEHFHHHH R R R R

import ¢

ECE 661 Computer Vision(2018 Fall) Homework 6

Oct 11 2018 Runzhe Zhang

v2

import numpy as np

from ma

nnon

tplotlib import pyplot as plt

Description:
implementation of the otsu algorthm
Input:
imggray —— a grayscale image to which find threshold on
minval, maxval —— and minimum and maxmim of grascale values to find
threshold in
Output:
otsu_thresh —— the found threshold
Usage:
otsu_thresh = otsumethod(imggray, minval, maxval)

nnon

def otsumethod(imggray, minval, maxval):

size
num
L =
hist

# fo

# plt.

1, size2 = imggray.shape
pixel = sizel * size2
maxval — minval

= cv2.calcHist ([np.uint8 (imggray) 1,

r displaying his only using plt

propt = hist/ numpixel

var_
w0 =

b = np.zeros((L,1))
graysum0O = 0

[0], None,

[L], [minval, maxval])

hist (imggray.ravel () ,L,[ minval ,maxval]) ; plt.show ()

graylev = np.reshape(np.add(range(L), minval + 1), (L, 1))
graylev_propt = np.multiply(graylev, propt)
mean_total = np.sum(graylev_propt)

var_b_max =
otsu_thresh

for

0
=0

i in range(L):

w0 += propt[il]

wl=1- w0

graysum0Q += graylev_propt[i]
mean0 = graysumO / w0

if wl == 0:
var_b[i] = 0
else:

41



86

94
95

96

97

99

100
101

meanl = (mean_total — graysumO) / wl
var_b[i] = wO * wl %= ( mean0 — meanl ) *x 2

if var_b[i] > var_b_max:

var_b_max =
otsu_thresh

var_b[i]
= i + minval

print ("Found OTSU threshold: %i" %(otsu_thresh))

return otsu_thresh

def textureimage (img_gray, blocksize):

sizel, size2 = img_

texture_result = np

gray .shape
.zeros ((img_gray .shape))

half_block = np.uint8 ((blocksize — 1)/2)

for i in range(half_block, sizel-half_block):

for j in range(

half_block, size2—-half block):

kernal = img_gray[i—half_block:i+half_block+1,j—half block:j+half_block

+1]
texture_res

ult[i,j] = np.mean((kernal-np.mean(kernal))**2)

texture_resultf = np.uint8(texture_result/texture_result.max()*255)

# hist = cv2.calcHi

st ([texture_resultf], [0], None,

[256-0],

# plt.hist(texture_resultf.ravel(), 256-0, [0, 256]);

# plt.show ()

return texture_resultf

def find_countour (img,
if (connectivity !=
print(’connecti
return -1
h,w = img.shape
contour_mask = np.z

connectivity = 4):
4) and (connectivity != 8):
vity is not 4 or 8’)

eros ((h,w))

for i in range(l,w—1):
for j in range(l,h-1):

if imglj,il

== 255:

if connectivity ==

for

elif co

ii in range(3):
for jj in range(3):
if img[j+jj, i+ii] == 0:
contour_mask[j,i] = 255
nnectivity ==

(o,

2561)

if (img[j+1, i] == 0 or img[j—-1, i] == 0 or img[j, i+1] == 0 or

img[j, i-1] == 0):

return contour_mask

contour_mask|[j,i] = 255

42



102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117

118
119
120
121
122
123

124

130

132
133
134
135
136

137
138
139
140
141

143

144
145
146
147
148

def main() :

img = int(input(’Please choose image (baby—-1; lighthouse—--2; ski—-3): ’))
method = int(input(’Please choose method (RGB OTSU--1; Texture_ OTSU--2): ’))

if img == 1:
imgBGR = cv2.imread( ’baby.jpg’, cv2.IMREAD_COLOR)
img_gray = cv2.imread( ’baby.jpg’, cv2.IMREAD_GRAYSCALE)
elif img ==
imgBGR = cv2.imread(’lighthouse.jpg’, cv2.IMREAD COLOR)
img_gray = cv2.imread(’lighthouse.jpg’, cv2.IMREAD GRAYSCALE)
elif img ==
imgBGR = cv2.imread(’ski.jpg’, cv2.IMREAD_COLOR)
img_gray = cv2.imread(’ski.jpg’, cv2.IMREAD GRAYSCALE)
else:
print(’You input the wrong number for choosing image, please input the real
number (1, 2 ,or 3) and run again.’)

# cv2.imshow (’imgRGB’, img_gray)
# cv2.waitKey ()

if method !'= 1 and method !=2:
print ( ’Please choose the right method (RGB_OTSU--1; Texture_OTSU--2) and run
again.’)

if method == 1:

maskll = np.zeros ((imgBGR.shape))
maskl2 = np.zeros ((imgBGR. shape))

for iteration in range(1,3):

# First iteration to get foreground
for i in range(3):
img_layer = imgBGR[:, :, i]
img_layer_blur = cv2.GaussianBlur(img_layer, (5, 5), 0)
cv2.imwrite(str(img) + ’layer’ + str(i) + ’itration’ + str(
iteration) + '.jpg’, img_layer_blur)
# OISU iteration 1
otsu_threshl = otsumethod(img_layer_blur, 0, 256)
maskll[:, :, i] = img_layer <= otsu_threshl
otsucv_threshl, otsucv_resultl = cv2.threshold(img_layer_blur, O,
255,
cv2 .THRESH_BINARY +
cv2 .THRESH OTSU)
cv2.imwrite(str (img) + ’mask’ + str(i) + ’itration’ + str(iteration
) + ’.jpg’, maskll[:, :, i] * 255)

# high_img = np.array(maskl[:, :, i] * img_layer, np.uint8)
# low_img = np.logical_not(maskl[:, :, i]) * img_layer

# cv2.imshow(’subimage, high value’, high_img)

# cv2.imshow(’subimage, low value’, low_img)

43



149
150
151
152

153

=
SISy
[ B

b

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

181
182
183
184
185
186
187
188
189
190

191
192
193
194
195
196
197

# cv2.waitKey(0)

# combined_mask = np.array(maskl[:,:,0] * 255, np.uint8)
combined_maskll = np.array(
np.logical_and(np.logical_and (mask11[:, :, O], maskl1[:, :, 11),

mask11[:, :, 2]) % 255, np.uint8)

# cv2.imshow(’combined_mask’, combined_mask)
cv2.imwrite(str (img) + 'RGBcombinedmasklteration’ + str(iteration) +

3

jpg’, combined_maskll)

# cv2.waitKey(0)

# combined_mask = cv2.imread(’combined_mask.jpg’, 0)
combined_mask112 = c¢v2.medianBlur(combined_mask11l, 13)
# cv2.imshow (’combined_mask’, combined_mask)

# cv2.imshow (’combined_mask2’, combined_mask2)

maskll = combined_mask112 > 240

clean_maskll = np.array(maskll * 255, np.uint8)

# cv2.imshow(’clean_mask’, clean_mask)

# cv2.waitKey(0)

contourll = find_countour(clean_mask11)
# cv2.imshow(’contour’, contour)

# cv2.imwrite (’contour.jpg’, contour)

# cv2.waitKey (0)

b, g, r = cv2.split (imgBGR)

mask_logciallll = np.logical_and(np.logical_not(clean_maskll), 1)
b[mask_logciallll] = 0

g[mask_logcialll1] 0

r[mask_logcialll1] 0

imgBGR2 = cv2.merge([b, g, rl)

# cv2.imshow(’foreground’, imgBGR2)

# cv2.waitKey (0)

cv2.imwrite(str (img) + 'RGBforegroundIteration’ + str(iteration) +

)

jpg’, imgBGR2)

b, g, r = cv2.split (imgBGR)

mask_logciall12 = np.logical_and (contourll, 1)

b[mask_logciall12] = 0

glmask_logciall12] 255

r[mask_logciall12] 0

imgBGR2 = cv2.merge([b, g, rl)

# cv2.imshow(’contour’, imgBGR2)

# cv2.waitKey (0)

cv2.imwrite(str (img) + RGBcontourlteration’ + str(iteration) + ’.jpg’

imgBGR2)

elif method ==

mask21 = np.zeros ((imgBGR. shape))
imgtexture = np.zeros ((imgBGR. shape))

44



198
199
200
201
202

203

204
205
206
207

208
209
210
211
212
213
214
215
216
217
218

219

222

227
228
229
230

231

234

239
240
241
242
243
244
245
246
247

for

0, 255,

1 = 255)

i in range(3):

imgtexture[: ,: , i] = textureimage(img_gray, (i+1)*2+1)
otsu_threshl = otsumethod(imgtexturel[: ,: , i]l, 0, 256)
mask21[:, :, i] = imgtexture[: ,: , i] <= otsu_threshl

# otsucv_threshl, otsucv_resultl = cv2.threshold(imgtexture[: ,: |,

c¢v2 .THRESH _BINARY + cv2.THRESH OTSU)
cv2.imwrite(str (img) + 'mask’ + str(i) + ’texture.jpg’,

# combined_mask = np.array(mask[:,:,0] * 255, np.uint8)

combined_mask21 = np.array(np.logical_and(np.logical_and (mask21[:,:,0],
mask21[:,:,1]), mask21[:,:,2]) * 255, np.uint8)

# cv

2 .imshow ( ’combined_mask’, combined_mask)

mask21[:,

cv2.imwrite(str (img) + ’'texturecombinedmask.jpg’, combined_mask21)

# cv

2. waitKey (0)

# combined_mask = cv2.imread(’combined_mask.jpg’, 0)
combined_mask2 = c¢v2.medianBlur(combined_mask21, 13)

# cv
# cv

2 .imshow ( ’combined_mask’, combined_mask)
2 .imshow (’combined_mask2’, combined_mask2)

mask = combined_mask2 > 240
clean_mask = np.array(mask * 255, np.uint8)

# cv
# cv

cont
# cv
# cv
# cv

2 .imshow (’clean_mask’, clean_mask)
2. waitKey (0)

our = find_countour (clean_mask)
2 .imshow (’contour’, contour)
2.imwrite (’contour.jpg’, contour)
2. waitKey (0)

# imgBGR = cv2.imread (’picl.jpg’, 1)

b, g, r = cv2.split (imgBGR)

mask_logcial = np.logical_and(np.logical_not(clean_mask), 1)
b[mask_logcial] = 0

glmask_logcial]
r[mask_logcial ]

0
0

imgBGR2 = c¢v2.merge([b, g, r])

# cv
# cv
cv2.

2 .imshow (’ foreground ’, imgBGR2)
2. waitKey (0)
imwrite(str (img) +’ textureforeground.jpg’, imgBGR2)

b, g, r = cv2.split (imgBGR)
mask_logcial = np.logical_and(contour, 1)
b[mask_logcial] = 0

glmask_logcial]
r[mask_logcial ]

0
255

imgBGR2 = cv2.merge([b, g, rl)
# cv2.imshow(’contour’, imgBGR2)
# cv2.waitKey(0)

cv2.

imwrite(str (img) +’ texturecontour.jpg’, imgBGR2)

45

il,

ap

i



248

if

__name_

debug =
main ()

||

__main__

46



	Introduction
	OTSU Method
	RGB Image Segmentation
	Texture-based Image Segmentation
	Contour Extraction
	Observations
	Result 
	Image: baby
	Image: Light House
	Image: Ski

	Code 

