
ECE661: Homework 4

Fall 2018

Gopikrishnan Sasi Kumar
PUID 0030843999

gsasikum@purdue.edu

September 27, 2018

1 Introduction

The goal of the homework is to extract interest points from pairs of photos, and then automatically
establish correspondences between the interest points in the two images. Interest points is in general a
scale-space concept. Algorithms like SIFT and SURF are used to determine interest points. But when
scale-space is not considered, corners in an image can be used as interest points. Harris corner detector
is one of the most popular algorithms for corner detection. The objectives of the home work are

1. To first implement the Harris corner detector and apply it to pairs of images of the same scene
taken from different viewpoints.

2. To determine the correspondences between the interest points thus found out using two similarity
measures – SSD (Sum of Squared Differences) and NCC (Normalized Cross Correlation).

3. To subsequently use the SIFT operator for extracting the interest points and to establish corre-
spondences between the points in the pairs of images.

These tasks are to be carried out for 4 pairs of images – 2 of which are provided in the homework task
statement, and 2 of my own. These pairs of images shall be named Image pair 1 to 4, with 1, 2 being
the former, and 3, 4 the latter.

2 Harris Corner Detector

2.1 Theory

A corner is a pixel in the vicinity of which the gray levels have significant variations in at least two
different directions. The Harris corner detector is invariant to in-plane rotations of the image. The
Harris corner detection works as follows.

1. Haar filters Hx(σ) and Hy(σ) for the required scale (σ) are generated. These are operators with
half of the elements 1’s and the other half -1’s, with order M ×M , where M is the smallest even
integer greater than 4σ. The filters for σ = 1.2 are as follows.

1

Hx(σ = 1.2) =


−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1



Hy(σ = 1.2) =


1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1


2. Haar filters are convolved (or rather correlated) with the image to get the x and y derivatives (dx

and dy) of the gaussian-blurred image at scale σ.

3. The matrix C is computed for each pixel as:

C =

(∑
dx

2 ∑
dxdy∑

dxdy
∑
dy

2

)
(1)

where the summations are for a 5σ × 5σ neighborhood around each pixel. This C has a full rank
for genuine corners. It works based on the fact that if a particular pixel is not at a corner (it is at
an edge, or at a point which is neither a corner nor an edge), then either the derivatives are zero,
or the y-derivative is a constant times the x-derivative. Hence, the matrix C will not be of full
rank.
If λ1 and λ2 are the two eigen values of C (λ1 ≥ λ2), λ2

λ1
≥ 0.1 for the pixel to be a corner.

4. Instead of carrying out the eigen decomposition of C, we compute the harris response:

R = det(C)− k(trace(C))2 (2)

where k is the empirical constant set to 0.05, and the determinant and trace of C are computed as:

det(C) =
∑

dx
2
∑

dy
2 − (

∑
dxdy)

2
(3)

trace(C) =
∑

dx
2 +

∑
dy

2 (4)

5. The correspondences are established between the corners determined in the 2 images based on the
SSD (Sum of Squared Differences) and NCC (Normalized Cross Correlation) metrics, based on
their gray levels in an (M + 1)× (M + 1) window, as follows.

SSD =
∑
i

∑
j

|f1(i, j)− f2(i, j)|2 (5)

NCC =

∑
i

∑
j (f1(i, j)−m1)(f2(i, j)−m2)√[∑

i

∑
j (f1(i, j)−m1)2

][∑
i

∑
j (f2(i, j)−m2)2

] (6)

where f1 is image 1, f2 is image 2, m1 is the mean of f1’s gray levels within the window, and m2

is the mean of the gray levels of f2 in the window.

2.2 Implementation Notes

• The σ value is configurable, and the code works for multiple values of σ in a single execution, with
the values input as a list.

2

• dx and dy matrices obtained by convolving with the Haar operators are multiplied element-wise
using numpy to generate dx

2, dy
2 and dxdy matrices.

• The sum over the 5σ× 5σ neighborhood around each of the pixels is carried out by convolving (or
rather correlating) with a kernel of size 5σ × 5σ with all the elements equal to 1. This method
simplifies implementation.

• The Harris response values R (equation 2) at each of the pixels are used to sort the pixels, and the
pixels with the largest values of R are identified as corners. The number of corners identified in
the image is configurable in the code, and is set as a large value, so as to enable detection of a rich
set of corners.

• The size of the window used for computing SSD and NCC to determine the correspondences
between images is set as a configurable value. But a window of size 21× 21 is set as the default in
the work. In case the corner point happens to be near the image boundaries such that a window
of the required size goes beyond the boundaries, the pixels at the boundary are replicated beyond
the boundaries and the window of the required size is generated.

• f1, f2, m1 and m2 for the window for each of the corner pixels in the images for computing SSD and
NCC are saved into a list and used for computations, instead of accessing the big image matrices
each time a new pair of corners is to be assessed for closeness.

• The SSD and NCC are computed for each of the corner-pairs (one corner from each of the images),
and the pairs with the highest closeness (smallest SSD / largest NCC) give the correspondences.
Each of the corners in the first image is paired with each of the corners in the second image, and
the SSD and NCC metrics are computed. The pair that shows the most closeness is identified as
a valid pair. All such valid pairs are sorted according to the closeness metric, and the pairs that
exhibit the most closeness among the list of such pairs are concluded to be valid correspondences.
The number of valid correspondences is configurable, so as to avoid cluttering of the image that
shows the matching. Also, the match is displayed as a connected line between the matched corners.

3 SIFT

3.1 Theory

SIFT stands for Scale Invariant Feature Transform. It tries to find the pixels in the image (interest-
points) that are significantly invariant to scale, orientation and illumination. It uses the Difference of
Gaussian / DoG (which is an approximation to the Laplacian of Gaussian / LoG). The extraction of the
SIFT features is carried out as follows.

1. Find all the extrema in the DoG pyramid by comparing each point in the DoG with 8 points in the
immediate 3×3 neighborhood at the same scale, and the 9 points in each of the 3×3 neighborhoods
at the scale levels just above and just below (26 neighbors in total). This gives the local maxima
and minima in the (x, y, σ) space.

2. As σ increases from a lower octave to a higher octave, the DoG points represent increasingly coarse
sampling of the original image. Hence, in order to determine the precise positions of the maxima
with respect to the original image, we use the Taylor series expansion of D(x, y, σ) – the DoG
values at x, y, at scale σ. If ~x0 = (x0, y0, σ0)T is the location of an extremum found out in the first
step,

D(~x0 + ~h) ≈ D(~x0) + JT (~x0)~h+
1

2
~hTH(~x0)~h (7)

where J and H are the gradient vector and Hessian respectively estimated at ~x0, and ~h is the

incremental difference of the true-minimum from ~x0. At the true extremum, ∂D(~x)
∂~x = 0. Using this

with equation 7 gives:
~h = −H−1(~x0)J(~x0) (8)

3

3. Subsequently we weed out the weak extrema by thresholding |D(~x)| at the extrema (typical thresh-
old is 0.03). We also weed out those extrema that are at an edge in the image using the same
technique that we used for Harris corner detection (at the same σ at which the extremum was
discovered).

4. Find out a dominant local orientation for each extremum that remains after the previous step. For
this, we first find the gradient magnitude and orientation of the Gaussian smoothed image at the
scale σ of the extremum over a K ×K neighborhood around the extremum. Then we construct a
histogram of the orientation values using 36 bins spanning the full 360◦ range, with the gradient
magnitudes as weights for the corresponding orientations. The bin where the histogram peaks
gives the dominant orientation. A parabola may be fit to the peak and its immediate neighbors
for better accuracy. The descriptors are calculated with respect to this dominant local orientation
to make them invariant to in-plane rotations of the image.

5. At the scale of each extremum from the previous step, the 16 × 16 neighborhood around the
extremum is divided into 16 ‘4×4’ cells. The magnitudes of the gradients in the 16×16 neighborhood
are weighted by a Gaussian with scale half the width of the neighborhood in order to reduce
the importance of the points are farther from the extremum. For each of the 16 cells, an 8-bin
orientation histogram is generated for the 16 pixels with gradient orientations (with respect to
the dominant local orientation) weighted by the gradient magnitudes. Stringing together these 16
8-bin histograms gives a 128-dimensional vector at each retained extremum in the DoG pyramid.
This 128-element vector is normalised to a unit vector to make it invariant to illumination changes.
This is the SIFT descriptor for the interest point.

3.2 Implementation notes

• The SIFT algorithm in OpenCV was used for detecting features.

• The Euclidean distance between the 128-dimensional feature descriptors were used to determine
the closeness between pairs of feature points.

• The number of features to be detected is maintained as a variable that is configurable through the
script header. This value is kept high so as to detect a fairly large number of feature points.

• After determining the correspondences, feature pairs are sorted based on the closeness between
them (which is essentially the Euclidean distance between their descriptors). The pairs with the
highest degree of closeness are displayed with a line connecting them in order to show the match.
The number of pairs displayed is configurable, and limiting the number avoids the image from
getting cluttered to the point of nothing being visible.

4 Results

A total of 4 pairs of images are used in the work. 2 of them are a part of the homework question (image
pairs 1 and 2), and 2 are photos taken by me (image pairs 3 and 4). The results are generated for
multiple scales (σ values).

4.1 Image pair 1

The input pair of images is shown in figure 1. Harris corner detection was carried out for σ = [0.6, 1.2,
1.8, 2.4]. The corners detected are shown in figures 2, 3, 4 and 5. The correspondence-matching based
on SSD at different scales are shown in figures 6, 7, 8 and 9. The same based on NCC at different scales
are shown in figures 10, 11, 12 and 13. It is observed that for smaller scales the algorithm is able to find
smaller features in the image, which are not identified at the larger scales. Also, good correspondence-
match is observed using both SSD and NCC.
The features identified using SIFT are shown in figure 14. The correspondence-matching for the same

4

is shown in figure 15. It is observed that SIFT gives a much better and richer set of features and the
correspondences are much more robust.

Figure 1: Image Pair 1

Figure 2: Harris corners identified at σ = 0.6 for Image pair 1

5

Figure 3: Harris corners identified at σ = 1.2 for Image pair 1

Figure 4: Harris corners identified at σ = 1.8 for Image pair 1

Figure 5: Harris corners identified at σ = 2.4 for Image pair 1

6

Figure 6: Correspondence-matching of corners at σ = 0.6 based on SSD for Image pair 1

Figure 7: Correspondence-matching of corners at σ = 1.2 based on SSD for Image pair 1

Figure 8: Correspondence-matching of corners at σ = 1.8 based on SSD for Image pair 1

7

Figure 9: Correspondence-matching of corners at σ = 2.4 based on SSD for Image pair 1

Figure 10: Correspondence-matching of corners at σ = 0.6 based on NCC for Image pair 1

Figure 11: Correspondence-matching of corners at σ = 1.2 based on NCC for Image pair 1

8

Figure 12: Correspondence-matching of corners at σ = 1.8 based on NCC for Image pair 1

Figure 13: Correspondence-matching of corners at σ = 2.4 based on NCC for Image pair 1

Figure 14: SIFT features identified for Image pair 1

9

Figure 15: Correspondence-matching of SIFT features for Image pair 1

4.2 Image pair 2

Similar results for image pair 2 are shown in figures 16 to 30. The scales for Harris corner detector are
[0.6, 1.2, 1.8, 2.4]. It is observed that the smaller scales of 0.6 and 1.2 result in detection of the pebbles
on the ground as corner points, and it is only at the higher scales of 1.8 and 2.4 that the edges on the
writing “U-HAUL” on the truck get detected. SIFT performs really well, apart from some pebbles on
the ground getting detected and matched to pebbles at some other locations in the second image.

Figure 16: Image Pair 2

10

Figure 17: Harris corners identified at σ = 0.6 for Image pair 2

11

Figure 18: Harris corners identified at σ = 1.2 for Image pair 2

12

Figure 19: Harris corners identified at σ = 1.8 for Image pair 2

13

Figure 20: Harris corners identified at σ = 2.4 for Image pair 2

Figure 21: Correspondence-matching of corners at σ = 0.6 based on SSD for Image pair 2

14

Figure 22: Correspondence-matching of corners at σ = 1.2 based on SSD for Image pair 2

Figure 23: Correspondence-matching of corners at σ = 1.8 based on SSD for Image pair 2

15

Figure 24: Correspondence-matching of corners at σ = 2.4 based on SSD for Image pair 2

Figure 25: Correspondence-matching of corners at σ = 0.6 based on NCC for Image pair 2

16

Figure 26: Correspondence-matching of corners at σ = 1.2 based on NCC for Image pair 2

Figure 27: Correspondence-matching of corners at σ = 1.8 based on NCC for Image pair 2

17

Figure 28: Correspondence-matching of corners at σ = 2.4 based on NCC for Image pair 2

Figure 29: SIFT features identified for Image pair 2

18

Figure 30: Correspondence-matching of SIFT features for Image pair 2

19

4.3 Image pair 3

Similar results for image pair 3 are shown in figures 31 to 45. The scales for Harris corner detector
are [0.3, 0.6, 1.2, 2.4]. It is observed that the smaller values of the scale detect much finer corners in
the images. Harris corner correspondence matching works well for both SSD and NCC. With SSD, no
correspondences are seen for the car at the largest scale. This is because all the strongest correspondences
in the lot are between the portions of the sky that are matched. The SIFT correspondences are observed
to be extremely robust and work really well for the pair of images.

Figure 31: Image Pair 3

20

Figure 32: Harris corners identified at σ = 0.3 for Image pair 3

21

Figure 33: Harris corners identified at σ = 0.6 for Image pair 3

22

Figure 34: Harris corners identified at σ = 1.2 for Image pair 3

23

Figure 35: Harris corners identified at σ = 2.4 for Image pair 3

24

Figure 36: Correspondence-matching of corners at σ = 0.3 based on SSD for Image pair 3

25

Figure 37: Correspondence-matching of corners at σ = 0.6 based on SSD for Image pair 3

26

Figure 38: Correspondence-matching of corners at σ = 1.2 based on SSD for Image pair 3

27

Figure 39: Correspondence-matching of corners at σ = 2.4 based on SSD for Image pair 3

28

Figure 40: Correspondence-matching of corners at σ = 0.3 based on NCC for Image pair 3

29

Figure 41: Correspondence-matching of corners at σ = 0.6 based on NCC for Image pair 3

30

Figure 42: Correspondence-matching of corners at σ = 1.2 based on NCC for Image pair 3

31

Figure 43: Correspondence-matching of corners at σ = 2.4 based on NCC for Image pair 3

32

Figure 44: SIFT features identified for Image pair 3

33

Figure 45: Correspondence-matching of SIFT features for Image pair 3

34

4.4 Image pair 4

Similar results for image pair 4 are shown in figures 46 to 60. The scales for Harris corner detector are
[0.3, 0.6, 1.2, 2.4]. It is observed that Harris corner detection works well for the lower values of the scale.
Even though correspondence matching works fairly well, there are some erroneous correspondences too.
On the other hand, SIFT works extremely well in comparison.

Figure 46: Image Pair 4

Figure 47: Harris corners identified at σ = 0.3 for Image pair 4

Figure 48: Harris corners identified at σ = 0.6 for Image pair 4

35

Figure 49: Harris corners identified at σ = 1.2 for Image pair 4

Figure 50: Harris corners identified at σ = 2.4 for Image pair 4

Figure 51: Correspondence-matching of corners at σ = 0.3 based on SSD for Image pair 4

Figure 52: Correspondence-matching of corners at σ = 0.6 based on SSD for Image pair 4

36

Figure 53: Correspondence-matching of corners at σ = 1.2 based on SSD for Image pair 4

Figure 54: Correspondence-matching of corners at σ = 2.4 based on SSD for Image pair 4

Figure 55: Correspondence-matching of corners at σ = 0.3 based on NCC for Image pair 4

Figure 56: Correspondence-matching of corners at σ = 0.6 based on NCC for Image pair 4

37

Figure 57: Correspondence-matching of corners at σ = 1.2 based on NCC for Image pair 4

Figure 58: Correspondence-matching of corners at σ = 2.4 based on NCC for Image pair 4

Figure 59: SIFT features identified for Image pair 4

Figure 60: Correspondence-matching of SIFT features for Image pair 4

38

5 Observations and Conclusion

In all the pairs of images, it was observed that the effectiveness of Harris corner detection and correspon-
dence matching depended extremely on the scale used. Even when the scale was good enough to detect a
fairly large number of corners, the correspondence matching suffered in some cases as wrong correspon-
dence pairs had higher strength. In addition, the success of Harris corner detection also depends on the
window size selected for correspondence matching with SSD or NCC. In conclusion, even though Harris
corner detector is a really good tool for interest point detection and correspondence matching, it is not
robust to variations due to scale, illumination and noise. Its performance largely depends on the various
tune-able parameters in the algorithm.

A comparison between the metrics SSD and NCC is worthwhile. Even though both the methods give
fairly similar results for the image pairs 1, 2 and 3, NCC is observed to be marginally superior to SSD in
image pair 4. But I highly doubt if the results add up to a justifiable sample space to draw any concrete
inferences about the relative performance between SSD and NCC. Further investigation is required to
state any meaningful remark regarding the same.

SIFT feature detection performs extremely well in comparison to Harris corner detection for all the image
pairs. It gives a richer and more robust set of interest points. This is expected as SIFT makes effective
use of the scale-space invariance criterion and dominant local orientation for interest point detection
and matching. The robustness of the algorithm with respect to scale, orientation and illumination are
unmatched by Harris corner detection. I recommend SIFT over Harris corner detection in situations
where scales and illumination of the interest points are ambiguous.

39

6 Source code

The code is in python 2.7, with library hw4.py having the common functions used, and task*.py calling
the required functions from library hw4.py. task*.py is the script for each of the tasks identified in the
homework assignment. The names are self-explanatory.

The whole source code is provided in the pages that follow.

6.1 library hw4

Author: Gopikrishnan Sasi Kumar (Krish)

import numpy as np

import cv2

import scipy.signal as scisig

Variables used globally

scales = [0.6, 1.2, 1.8, 2.4] # scales at which detection carried out

featureRadius = 10

featureThickness = 2

PINK = (147, 20, 255)

BLUE = (255, 0, 0)

RED = (0, 0, 255)

CYAN = (255, 255, 0)

GREEN = (0, 255, 0)

base_colors = [BLUE, RED, PINK, CYAN]

corresp_window = 10 # correspondence checked with 21x21 windows

for Harris corner detector

line_thickness = 2

Number of best matched corners to be displayed for Harris

no_featurePoints_harris = 150

k-ratio used for computing harris response

k_ratio = 0.05

Number of corners to be detected per image per scale

no_harris_corners_detect = 1000

Number of SIFT features per image

no_sift_features = 7000

Number of best matched SIFT features to display

no_sift_display = 50

def get_haar(sigma):

"""

Function to generate the Haar wavelet for a given sigma

:param sigma: standard deviation of gaussian/scale

:return: [haar_dx, haar_dy] the Haar wavelets for

d/dx and d/dy for the given sigma

"""

The Haar wavelets for sigma is of size

40

M x M, where M is the smallest even integer

greater than 4sigma

M = np.ceil(4 * sigma)

if M % 2 == 1:

M = M + 1

M = int(M)

haar1 = -1.0 * np.ones([M, M/2])

haar2 = np.ones([M, M / 2])

haar_dx = np.c_[haar1, haar2]

haar_dy = -1 * haar_dx.T

return [haar_dx, haar_dy]

def get_harris_corners(image, sigmas):

"""

The function to get the Harris corners in a gray-scale image

:param image: input image

:param sigmas: array of sigmas to carry out corner detection

:param fraction: fraction of max of Harris response for threshold

:return: the coordinates of the corners

"""

loop through each of the sigma values

corner_pixels = []

index = 0

for sigma in sigmas:

[haar_dx, haar_dy] = get_haar(sigma) # get Haar-wavelets

Convolve with haar wavelets as kernels to get dx, dy

dx = scisig.correlate2d(image, haar_dx, mode="same")

dy = scisig.correlate2d(image, haar_dy, mode="same")

Find dx^2, dy^2 and dxdy for each of the pixels through

element-wise multiplication

dx2 = np.multiply(dx, dx)

dy2 = np.multiply(dy, dy)

dxdy = np.multiply(dx, dy)

Generate a kernel for finding sums over 5sigma x 5sigma window

ker_width = np.ceil(5 * sigma)

if ker_width % 2 == 0:

ker_width = ker_width + 1

ker_width = int(ker_width)

kernel = np.ones([ker_width, ker_width])

Now, convolve with kernel to get sums of dx2, dy2 and dxdy over

5sigma x 5sigma windows

dx2sum = scisig.correlate2d(dx2, kernel, mode="same")

dy2sum = scisig.correlate2d(dy2, kernel, mode="same")

dxdysum = scisig.correlate2d(dxdy, kernel, mode="same")

Find the determinant and trace of C matrix

(ref. Harris corner detection)

C_det = np.subtract(np.multiply(dx2sum, dy2sum),

np.multiply(dxdysum, dxdysum))

C_trace = np.add(dx2sum, dy2sum)

Find the square of trace of C

C_trace2 = np.multiply(C_trace, C_trace)

41

Find the Harris response

checker = np.subtract(C_det, k_ratio * C_trace2)

Find pixels where ratio is above threshold

checkerflat = checker.flatten()

sortedChecker = sorted(checkerflat)

sortedChecker.reverse()

R_thresh = sortedChecker[no_harris_corners_detect-1]

R_thresh = np.percentile(checker, R_threshold)

print(R_thresh)

i, j = np.where(checker >= R_thresh) #checker.max()/fraction)

Updating corner pixels

corner_pixels.append(zip(j, i))

return corner_pixels

def mark_feature_pixels(image, pixel_locs, feature_color):

"""

Function to return the input image with pixels marked

:param image: Input image

:param pixel_locs: locations of pixels to be marked

:param feature_color: color for feature marking

:return: image with pixels marked

"""

for point in pixel_locs:

cv2.circle(image, point, featureRadius, feature_color,

featureThickness, cv2.LINE_AA)

return image

def mark_feature_pixels_all_scales(image, corners):

"""

Function to mark corners with all scales

:param image: Input image

:param corners: List of corners at different scales

:return: image with all corners marked

"""

index = 0

for cornerset in corners:

print(index)

image = mark_feature_pixels(image, cornerset,

base_colors[index % len(base_colors)])

index = index + 1

return image

def find_harris_corresp(image1, corners1, image2, corners2, ssd_or_ncc):

"""

Function to find the correspondences between image1 with corners1

and image2 with corners2

:param image1: first image

:param corners1: corners of 1st image

:param image2: second image

42

:param corners2: corners of 2nd image

:param ssd_or_ncc: flag to define if ssd or ncc is used.

True: ssd, False: ncc

:return: correspondences: as pixel pairs, one list of pairs per scale

"""

class data:

def __init__(self, point_pair, value):

self.point_pair = point_pair

self.value = value

image1 = image1.astype("int32")

image2 = image2.astype("int32")

index = 0

innerindex = 0

corresp_output = []

Unpacking corners for all sigmas into single list

corners1_counter = [item for sublist in corners1 for item in sublist]

corners2_counter = [item for sublist in corners2 for item in sublist]

print("Determining Harris Corner Correspondences")

print("Corner {}/{}".format(index, len(corners1_counter)))

for corner_index in range(len(corners1)):

corners1_this = corners1[corner_index]

corners2_this = corners2[corner_index]

correspondences = []

ssd_ncc_trace = []

f1_corpus = []

f2_corpus = []

m1_corpus = []

m2_corpus = []

for corner1 in corners1_this:

f1 = get_corresp_window(image1, corner1, corresp_window)

f1 = f1.astype("int64")

f1_corpus.append(f1)

m1_corpus.append(f1.sum() / np.prod(f1.shape)) # mean of f1

for corner2 in corners2_this:

f2 = get_corresp_window(image2, corner2, corresp_window)

f2 = f2.astype("int64")

f2_corpus.append(f2)

m2_corpus.append(f2.sum() / np.prod(f2.shape)) # mean of f2

for f1_counter, corner1 in enumerate(corners1_this):

get correspondence window for corner1

f1 = f1_corpus[f1_counter]

m1 = m1_corpus[f1_counter]

f1_minus_m1 = f1 - m1

ssd_best = np.inf # best ssd initialisation

ncc_best = -np.inf # best ncc initialisation

for f2_counter, corner2 in enumerate(corners2_this):

get correspondence window for corner2

f2 = f2_corpus[f2_counter]

43

print(corner1, corner2)

if ssd_or_ncc: # if SSD is the metric chosen

ssd = abs(f1 - f2)

ssd = ssd.sum() # get Sum of Squared Differences

minimize ssd

if ssd < ssd_best:

ssd_best = ssd

new_pair = [corner1, corner2]

else: # if NCC is the metric chosen

m2 = m2_corpus[f2_counter]

f2_minus_m2 = f2 - m2

num = np.multiply(f1_minus_m1, f2_minus_m2)

num = num.sum()

den1 = f1_minus_m1 ** 2

den1 = den1.sum()

den2 = f2_minus_m2 ** 2

den2 = den2.sum()

ncc = num / np.sqrt(den1 * den2)

maximize ncc

if ncc > ncc_best:

ncc_best = ncc

new_pair = [corner1, corner2]

innerindex = innerindex + 1

corners2.remove(pixel_to_remove)

append the new matched pair of pixels

if ssd_or_ncc:

correspondences.append(data(new_pair, ssd_best))

else:

correspondences.append(data(new_pair, ncc_best))

index = index + 1

if index % 100 == 0:

print("Corner {}/{}".format(index, len(corners1_counter)))

corr_new = []

correspondences = sorted(correspondences, key = lambda x:x.value)

if ssd_or_ncc:

pass

else:

correspondences.reverse()

for i in range(len(correspondences)):

corr_new.append(correspondences[i].point_pair)

corresp_output.append(corr_new[:no_featurePoints_harris])

return corresp_output

44

def get_corresp_window(image, point, window):

"""

Function that returns 2M+1 by 2M+1 window centred at point in image

:param image: input image

:param point: centre point

:param window: M

:return: 2M+1 by 2M+1 window from image

"""

imagecopy = cv2.copyMakeBorder(image, window, window,

window, window,

cv2.BORDER_REPLICATE)

x = point[0]

y = point[1]

return imagecopy[y:y+2*window+1, x:x+2*window+1]

def get_matching_image(image1, image2, correspondences, color):

"""

Function that returns the image matching the correspondences

:param image1: 1st image

:param image2: 2nd image

:param correspondences: pairs of pixels with correspondences

between image1 and image2

:param color: Color for matching line

:return: image with correspondences matched

"""

shape1 = image1.shape

shape2 = image2.shape

height = max(shape1[0], shape2[0])

img1 = np.zeros((height, shape1[1], 3), dtype='uint8')

img1[0:height, 0:shape1[1]] = image1

img2 = np.zeros((height, shape2[1], 3), dtype='uint8')

img2[0:height, 0:shape2[1]] = image2

generate an image with image 1 and 2 on left and right

image = np.concatenate((img1, img2), axis=1)

index = 0

for point_pair in correspondences:

point1 = point_pair[0]

point2 = point_pair[1]

cv2.circle(image, tuple(point1), featureRadius,

color, featureThickness, cv2.LINE_AA)

cv2.circle(image, tuple([point2[0] + shape1[1], point2[1]]), featureRadius,

color, featureThickness, cv2.LINE_AA)

cv2.line(image, tuple(point1), tuple([point2[0] + shape1[1], point2[1]]),

color, line_thickness)

index = index + 1

return image

def task_harris(img1, img2, input_folder, output_folder):

45

"""

Function that carries out Harris corner detection and correspondence

matching for img1 and img2 in input_folder

:param img1: image1

:param img2: image2

:param input_folder: input folder

:param output_folder: output folder into which results are saved

:return: saving of files into result folder

"""

detect corners in both images

[corners1, image1_g] = harris_detect_save(img1, input_folder, output_folder,

"Image1", False)

[corners2, image2_g] = harris_detect_save(img2, input_folder, output_folder,

"Image2", False)

print("Corners detection complete")

determine correspondences between image features based on SSD

correspondences_ssd = find_harris_corresp(image1_g.copy(), corners1, image2_g.copy(),

corners2, True)

print("Correspondences determined based on SSD")

print("Generating output image")

image1 = cv2.imread(input_folder + img1)

image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)

image1 = cv2.cvtColor(image1, cv2.COLOR_GRAY2BGR)

image2 = cv2.imread(input_folder + img2)

image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)

image2 = cv2.cvtColor(image2, cv2.COLOR_GRAY2BGR)

for scale_index in range(len(correspondences_ssd)):

image = get_matching_image(image1.copy(), image2.copy(), correspondences_ssd[scale_index],

base_colors[scale_index % len(base_colors)])

cv2.imwrite(output_folder + "match_SDD_scale{}.jpg".format(scale_index), image)

open_named_window(image, "match_SDD_scale{}.jpg".format(scale_index))

determine correspondences between image features based on NCC

correspondences_ncc = find_harris_corresp(image1_g.copy(), corners1, image2_g.copy(),

corners2, False)

print("Correspondences determined based on NCC")

print("Generating output image")

for scale_index in range(len(correspondences_ncc)):

image = get_matching_image(image1.copy(), image2.copy(), correspondences_ncc[scale_index],

base_colors[scale_index % len(base_colors)])

cv2.imwrite(output_folder + "match_NCC_scale{}.jpg".format(scale_index), image)

open_named_window(image, "match_NCC_scale{}.jpg".format(scale_index))

print("Harris corner matching complete.\n"

"Check results folder.")

return 1

def harris_detect_save(img1, input_folder, output_folder, imagetext, display_switch):

"""

Function to read an image, detect corners, and save the images

46

with interest points marked

:param img1: image location

:param input_folder:

:param output_folder:

:param imagetext: text used to display and save outputs

:return:

"""

image1 = cv2.imread(input_folder + img1, cv2.IMREAD_GRAYSCALE)

outputimage = image1.copy()

find corners with harris corner detector

corners1 = get_harris_corners(image1, scales)

temp = [item for sublist in corners1 for item in sublist]

print("{} corners determined in {}".format(len(temp), imagetext))

index = 0

Marking interest points on image 1 at different scales

image1 = cv2.imread(input_folder + img1)

image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)

image1 = cv2.cvtColor(image1, cv2.COLOR_GRAY2BGR)

image1_marked_scale0 = image1.copy()

image1_marked_scale1 = image1.copy()

image1_marked_scale2 = image1.copy()

image1_marked_scale3 = image1.copy()

image1_marked_scale0 = mark_feature_pixels(image1_marked_scale0, corners1[0],

base_colors[index % len(base_colors)])

index = index + 1

image1_marked_scale1 = mark_feature_pixels(image1_marked_scale1, corners1[1],

base_colors[index % len(base_colors)])

index = index + 1

image1_marked_scale2 = mark_feature_pixels(image1_marked_scale2, corners1[2],

base_colors[index % len(base_colors)])

index = index + 1

image1_marked_scale3 = mark_feature_pixels(image1_marked_scale3, corners1[3],

base_colors[index % len(base_colors)])

saving image with interest points marked

cv2.imwrite(output_folder + imagetext + "_marked_scale0.jpg", image1_marked_scale0)

cv2.imwrite(output_folder + imagetext + "_marked_scale1.jpg", image1_marked_scale1)

cv2.imwrite(output_folder + imagetext + "_marked_scale2.jpg", image1_marked_scale2)

cv2.imwrite(output_folder + imagetext + "_marked_scale3.jpg", image1_marked_scale3)

print(imagetext + " with interest points saved to files")

if display_switch:

displaying image with interest points marked

open_named_window(image1_marked_scale0, imagetext + ': interest points scale 0')

open_named_window(image1_marked_scale1, imagetext + ': interest points scale 1')

open_named_window(image1_marked_scale2, imagetext + ': interest points scale 2')

open_named_window(image1_marked_scale3, imagetext + ': interest points scale 3')

cv2.destroyAllWindows()

return [corners1, outputimage]

def open_named_window(image, windowname, switch = False):

47

"""

Function to open cv2 named window with image and wait for keystroke

:param image:

:param windowname:

:param switch: window required or not? Optional input.

:return:

"""

if switch == False:

return 1

cv2.namedWindow(windowname, cv2.WINDOW_NORMAL)

cv2.imshow(windowname, image)

cv2.waitKey(0)

cv2.destroyAllWindows()

return 1

def task_sift(img1, img2, input_folder, output_folder):

"""

Function that carries out SIFT feature detection and

correspondence matching for img1 and img2 in input_folder

:param img1: image1

:param img2: image2

:param input_folder: input folder

:param output_folder: output folder into which results are saved

:return: saving of files into result folder

"""

Extract features from first image

image1 = cv2.imread(input_folder + img1)

gray1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)

sift1 = cv2.xfeatures2d.SIFT_create(no_sift_features)

print("Features determined in Image 1")

kp1, des1 = sift1.detectAndCompute(gray1, None)

image_op1 = cv2.drawKeypoints(gray1, kp1, outImage=np.array([]),

flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imwrite(output_folder + "sift_features_" + img1, image_op1)

Extract features from second image

image2 = cv2.imread(input_folder + img2)

gray2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)

sift2 = cv2.xfeatures2d.SIFT_create(no_sift_features)

print("Features determined in Image 2")

kp2, des2 = sift2.detectAndCompute(gray2, None)

image_op2 = cv2.drawKeypoints(gray2, kp2, outImage=np.array([]),

flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imwrite(output_folder + "sift_features_" + img2, image_op2)

Find correspondences between features in image1 and image2

correspondences = find_sift_correspondences(kp1, des1, kp2, des2, image_op1, image_op2)

image = get_matching_image(cv2.cvtColor(gray1, cv2.COLOR_GRAY2BGR),

cv2.cvtColor(gray2, cv2.COLOR_GRAY2BGR),

correspondences, BLUE)

cv2.imwrite(output_folder + "sift_match.jpg", image)

print("Files saved. Check Results folder.")

return 1

48

def find_sift_correspondences(kp1, des1, kp2, des2, img1, img2):

"""

Function to find the correspondences between feature points in image1

to those in image2

:param kp1: keypoints in image 1

:param des1: feature descriptors for keypoints in kp1

:param kp2: keypoints in image 2

:param des2: feature descriptors for keypoints in kp2

:param img1: image 1

:param img2: image 2

"""

class data: # class structure used for sorting point pairs

def __init__(self, point_pair, value):

self.point_pair = point_pair

self.value = value

des1_order = des1.shape

des2_order = des2.shape

correspondences = []

corr_new = []

Find euclidean distance between all pairs of keypoints

Add them to correspondences list based on closeness

for i in range(des1_order[0]):

dist_max = np.Inf

point1 = kp1[i].pt

point1 = (int(round(point1[0])), int(round(point1[1])))

for j in range(des2_order[0]):

point2 = kp2[j].pt

point2 = (int(round(point2[0])), int(round(point2[1])))

dist = np.linalg.norm(des1[i, :] - des2[j, :])

if dist < dist_max:

dist_max = dist

new_pair = [point1, point2]

correspondences.append(data(new_pair, dist_max))

Sort point pairs based on euclidean distance

correspondences = sorted(correspondences, key = lambda x:x.value)

Choose only the point pairs as output

for i in range(len(correspondences)):

corr_new.append(correspondences[i].point_pair)

return corr_new[:no_sift_display]

6.2 task harris image pair1

Author: Gopikrishnan Sasi Kumar (Krish)

from library_hw4 import *

input_folder = "HW4Pics/pair1/"

img1 = "1.jpg"

img2 = "2.jpg"

output_folder = "Results/pair1/"

49

task_harris(img1, img2, input_folder, output_folder)

6.3 task harris image pair2

Author: Gopikrishnan Sasi Kumar (Krish)

from library_hw4 import *

input_folder = "HW4Pics/pair2/"

img1 = "truck1.jpg"

img2 = "truck2.jpg"

output_folder = "Results/pair2/"

task_harris(img1, img2, input_folder, output_folder)

6.4 task harris image pair3

Author: Gopikrishnan Sasi Kumar (Krish)

from library_hw4 import *

input_folder = "HW4Pics/pair3/"

img1 = "1.jpg"

img2 = "2.jpg"

output_folder = "Results/pair3/"

task_harris(img1, img2, input_folder, output_folder)

6.5 task harris image pair4

Author: Gopikrishnan Sasi Kumar (Krish)

from library_hw4 import *

input_folder = "HW4Pics/pair4/"

img1 = "1.jpg"

img2 = "2.jpg"

output_folder = "Results/pair4/"

task_harris(img1, img2, input_folder, output_folder)

6.6 task sift image pair1.py

Author: Gopikrishnan Sasi Kumar (Krish)

from library_hw4 import *

input_folder = "HW4Pics/pair1/"

50

img1 = "1.jpg"

img2 = "2.jpg"

output_folder = "Results/pair1/"

task_sift(img1, img2, input_folder, output_folder)

6.7 task sift image pair2.py

Author: Gopikrishnan Sasi Kumar (Krish)

from library_hw4 import *

input_folder = "HW4Pics/pair2/"

img1 = "truck1.jpg"

img2 = "truck2.jpg"

output_folder = "Results/pair2/"

task_sift(img1, img2, input_folder, output_folder)

6.8 task sift image pair3.py

Author: Gopikrishnan Sasi Kumar (Krish)

from library_hw4 import *

input_folder = "HW4Pics/pair3/"

img1 = "1.jpg"

img2 = "2.jpg"

output_folder = "Results/pair3/"

task_sift(img1, img2, input_folder, output_folder)

6.9 task sift image pair4.py

Author: Gopikrishnan Sasi Kumar (Krish)

from library_hw4 import *

input_folder = "HW4Pics/pair4/"

img1 = "1.jpg"

img2 = "2.jpg"

output_folder = "Results/pair4/"

task_sift(img1, img2, input_folder, output_folder)

51

	Introduction
	Harris Corner Detector
	Theory
	Implementation Notes

	SIFT
	Theory
	Implementation notes

	Results
	Image pair 1
	Image pair 2
	Image pair 3
	Image pair 4

	Observations and Conclusion
	Source code
	library_hw4
	task_harris_image_pair1
	task_harris_image_pair2
	task_harris_image_pair3
	task_harris_image_pair4
	task_sift_image_pair1.py
	task_sift_image_pair2.py
	task_sift_image_pair3.py
	task_sift_image_pair4.py

