
ECE 661: Computer Vision

Homework 4, Fall 2018

Arindam Bhanja Chowdhury

abhanjac@purdue.edu

1 Overview

This homework is about finding the interest points from two photos of the same object taken from
different viewpoints and then automatically establish correspondence between the interest points
in the two images. The pair of original images provided are shown in Fig 1, 2 and 3, 4.

Interest points are the points in the image that stays invariant to change in viewpoints, illumination,
scale and x and y variations. So they can be very important to find out or localize an object in
different scenes.

Figure 1: Reference image 1 of homework from viewpoint 1.

Figure 2: Reference image 1 of homework from viewpoint 2.
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Figure 3: Reference image 2 of homework from viewpoint 1.

Figure 4: Reference image 2 of homework from viewpoint 2.

2 Harris Corner Interest Points

Harris corners are extracted from a grayscale image by finding the pixels near which there is a
significant variation in both the x and y directions.

First the x-derivative (Dx) and y-derivative (Dy) images are extracted. For finding these, the
convolution filter kernel used is calculated using Haar Wavelet Filters. The size of the kernel is
defined as equal to the smallest even integer greater than 4σ. So for σ = 1.2 the kernel size is 6×6.
The filters used for σ = 1.2 to find the Dx and Dy images, by convolving with the grayscale version
of the input image, are as follows.
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Dx =



−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1



Dy =



1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1


Similar filters can be constructed for different σ values.

Then for each pixel location, a C matrix is constructed from the derivative values obtained from
Dx and Dy images using the pixels from a 5σ × 5σ neighbohood of the corresponding pixel. The
value of 5σ is rounded up to the nearest odd interger. The C matrix is shown in the following
equation.

C2×2 =

[
ΣD2

x ΣDxDy

ΣDxDy ΣD2
y

]
(1)

The D2
x is the square of the Dx value, not the double derivative with respect to x. This is a

symmetric matrix. Now in a real corned there is always variation in both the x and y directions.
So the DxDy terms are non-zero in the corresponding C matrix. Hence, at a proper corner, this
C matrix will have a rank of 2. For example, near the edges, along the y direction, the Dy terms
will be zero and hence the rank of the C matrix is not 2 as the terms with Dy in them will be
all zeros. So, at a proper corner, the C matrix will have two eigen values. These eigen values are
found at each pixel location from the corresponding C matrix and then the ratio λ2/λ1 (assuming
that λ1 >= λ2). This ratio is can be used as a threshold to find good corners. However, explicit
calculation of the eigen values is not needed, as the the trace and determinant of C can be used to
create another parameter which can instead be used as a threshold (k).

k =
Det(C)

Trace(C)2
=

λ1λ2
(λ1 + λ2)2

(2)

So, after calculating the determinant and trace at every pixel location, an k value is calculated as
the average of the ratio Det(C)/Trace(C)2 at all pixel locations in the image. This k is then used
to rewrite the equation 2 as follows,

Det(C) − k Trace(C)2 >= 0 (3)

Now, the LHS of the equation 2 can be written as R and this is the Harris corner detector Response
image. Only the points in this image which are greater than zero (as also shown by the equation)
are potential corners.

Now, there can be a number of clusters of pixels which are very bright in this R image. So a
non-maximum suppression operation is done by sliding a window over R, to replace all the high
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pixel values with zeros and only keeping the brightest pixel alive. This final image gives the Harris
corners.

The Harris corners from two viewpoints of an image are compared using Sum of Squared Differences
(SSD) or Normalized Cross Correlation (NCC) metric and only those which can pass a certain
threshold are kept as good corners. The expressions for SSD and NCC are given as follows.

SSD = ΣxΣy(f1(x, y) − f2(x, y))2 (4)

NCC =
ΣxΣy(f1(x, y) −m1)(f2(x, y) −m2)√

(ΣxΣy(f1(x, y) −m1)2)(ΣxΣy(f2(x, y) −m2)2)
(5)

3 Procedure of Harris Corner Detection

Harris corners are detected in the images pairs shown earlier in the Fig, 1, 2, 3, 4 in the same
manner as explained in the theory. The matching corners are extracted based on the SSD and
NCC values. These are shown in the result section. The neighborhood used to perform non-
maximum suppression is 29× 29 and the neighborhood used to calculate the SSD and NCC values
are 21 × 21 in size.

The Harris Corner detector is also tested on two separate image pairs other than the ones given in
the problem set. Those are also shown in the result section.
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4 Results of Harris Corner Detection

Figure 5: SSD on the Harris Corners on image pair 1 with σ = 0.707.

Figure 6: SSD on the Harris Corners on image pair 1 with σ = 1.

Figure 7: SSD on the Harris Corners on image pair 1 with σ = 1.414.
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Figure 8: SSD on the Harris Corners on image pair 1 with σ = 2.

Figure 9: NCC on the Harris Corners on image pair 1 with σ = 0.707.

Figure 10: NCC on the Harris Corners on image pair 1 with σ = 1.
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Figure 11: NCC on the Harris Corners on image pair 1 with σ = 1.414.

Figure 12: NCC on the Harris Corners on image pair 1 with σ = 2.
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Figure 13: SSD on the Harris Corners on image pair 2 with σ = 0.707.

Figure 14: SSD on the Harris Corners on image pair 2 with σ = 1.
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Figure 15: SSD on the Harris Corners on image pair 2 with σ = 1.414.

Figure 16: SSD on the Harris Corners on image pair 2 with σ = 2.
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Figure 17: NCC on the Harris Corners on image pair 2 with σ = 0.707.

Figure 18: NCC on the Harris Corners on image pair 2 with σ = 1.
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Figure 19: NCC on the Harris Corners on image pair 2 with σ = 1.414.

Figure 20: NCC on the Harris Corners on image pair 2 with σ = 2.
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Figure 21: SSD on the Harris Corners on image pair 3 with σ = 0.707.

Figure 22: SSD on the Harris Corners on image pair 3 with σ = 1.

Figure 23: SSD on the Harris Corners on image pair 3 with σ = 1.414.
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Figure 24: SSD on the Harris Corners on image pair 3 with σ = 2.

Figure 25: NCC on the Harris Corners on image pair 3 with σ = 0.707.

Figure 26: NCC on the Harris Corners on image pair 3 with σ = 1.
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Figure 27: NCC on the Harris Corners on image pair 3 with σ = 1.414.

Figure 28: NCC on the Harris Corners on image pair 3 with σ = 2.
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Figure 29: SSD on the Harris Corners on image pair 4 with σ = 0.707.

Figure 30: SSD on the Harris Corners on image pair 4 with σ = 1.
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Figure 31: SSD on the Harris Corners on image pair 4 with σ = 1.414.

Figure 32: SSD on the Harris Corners on image pair 4 with σ = 2.
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Figure 33: NCC on the Harris Corners on image pair 4 with σ = 0.707.

Figure 34: NCC on the Harris Corners on image pair 4 with σ = 1.
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Figure 35: NCC on the Harris Corners on image pair 4 with σ = 1.414.

Figure 36: NCC on the Harris Corners on image pair 4 with σ = 2.
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5 Discussion and Overview of Results

An overview of the results of Harris corner detection is also given in the following tables. Note
that the k value and the number of corners found is not dependent on SSD or NCC as they are
calculated before applying the SSD and NCC and applying the thresholds.
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Pair 1
Image 1

Pair 1
Image 2

Pair 2
Image 1

Pair 2
Image 2

Method SSD SSD SSD SSD

Threshold 12000 12000 25000 25000

k value
(σ = 0.707)

0.083 0.082 0.105 0.112

Corners Found
(σ = 0.707)

260 266 240 255

Good Matches
(σ = 0.707)

96 96 44 44

k value
(σ = 1)

0.102 0.101 0.130 0.138

Corners Found
(σ = 1)

253 247 221 229

Good Matches
(σ = 1)

78 78 49 49

k value
(σ = 1.414)

0.095 0.093 0.121 0.128

Corners Found
(σ = 1.414)

214 217 207 206

Good Matches
(σ = 1.414)

70 70 33 33

k value
(σ = 2)

0.101 0.099 0.122 0.129

Corners Found
(σ = 2)

205 204 180 171

Good Matches
(σ = 2)

71 71 26 26

Table 1: Overview of performance for SSD on image pair 1 and pair 2

Arindam Bhanja Chowdhury abhanjac@purdue.edu Page 20 of 26



ECE 661 Fall 2018 Homework 4

Pair 1
Image 1

Pair 1
Image 2

Pair 2
Image 1

Pair 2
Image 2

Method NCC NCC NCC NCC

Threshold 0.96 0.96 0.82 0.82

k value
(σ = 0.707)

0.083 0.082 0.105 0.112

Corners Found
(σ = 0.707)

260 266 240 255

Good Matches
(σ = 0.707)

102 102 47 47

k value
(σ = 1)

0.102 0.101 0.130 0.138

Corners Found
(σ = 1)

253 247 221 229

Good Matches
(σ = 1)

89 89 46 46

k value
(σ = 1.414)

0.095 0.093 0.121 0.128

Corners Found
(σ = 1.414)

214 217 207 206

Good Matches
(σ = 1.414)

99 99 43 43

k value
(σ = 2)

0.101 0.099 0.122 0.129

Corners Found
(σ = 2)

205 204 180 171

Good Matches
(σ = 2)

95 95 22 22

Table 2: Overview of performance for NCC on image pair 1 and pair 2
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Pair 3
Image 1

Pair 3
Image 2

Pair 4
Image 1

Pair 4
Image 2

Method SSD SSD SSD SSD

Threshold 14000 14000 1200 1200

k value
(σ = 0.707)

0.078 0.076 0.099 0.117

Corners Found
(σ = 0.707)

257 264 267 271

Good Matches
(σ = 0.707)

107 107 105 105

k value
(σ = 1)

0.1 0.096 0.126 0.144

Corners Found
(σ = 1)

251 248 235 253

Good Matches
(σ = 1)

106 106 94 94

k value
(σ = 1.414)

0.086 0.084 0.114 0.132

Corners Found
(σ = 1.414)

211 225 232 224

Good Matches
(σ = 1.414)

89 89 63 63

k value
(σ = 2)

0.086 0.085 0.102 0.119

Corners Found
(σ = 2)

174 180 167 180

Good Matches
(σ = 2)

88 88 57 57

Table 3: Overview of performance for SSD on image pair 3 and pair 4
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Pair 3
Image 1

Pair 3
Image 2

Pair 4
Image 1

Pair 4
Image 2

Method NCC NCC NCC NCC

Threshold 0.95 0.95 0.9 0.9

k value
(σ = 0.707)

0.078 0.076 0.099 0.117

Corners Found
(σ = 0.707)

257 264 267 271

Good Matches
(σ = 0.707)

65 65 27 27

k value
(σ = 1)

0.1 0.096 0.126 0.144

Corners Found
(σ = 1)

251 248 235 253

Good Matches
(σ = 1)

61 61 24 24

k value
(σ = 1.414)

0.086 0.084 0.114 0.132

Corners Found
(σ = 1.414)

211 225 232 224

Good Matches
(σ = 1.414)

49 49 17 17

k value
(σ = 2)

0.086 0.085 0.102 0.119

Corners Found
(σ = 2)

174 180 167 180

Good Matches
(σ = 2)

36 36 9 9

Table 4: Overview of performance for NCC on image pair 3 and pair 4

Arindam Bhanja Chowdhury abhanjac@purdue.edu Page 23 of 26



ECE 661 Fall 2018 Homework 4

6 Overview of SIFT

This will be a very brief overview of the Scale Invariant Feature Transform (SIFT) algorithm. This
is one of the most popular interest point detectors. It finds the interest points using the following
steps.

• Constructing a scale space: This is the initial preparation. We create internal represen-
tations of the original image to ensure scale invariance. This is done by generating a ”scale
space”.

• LOG Approximation: The Laplacian of Gaussian is great for finding interesting points (or
key points) in an image. But it’s computationally expensive. So we approximate it using the
Difference of Gaussian (DOG).

• Finding keypoints: With the super fast approximation, we now try to find key points.
These are maxima and minima in the Difference of Gaussian image we calculate in step 2.

• Get rid of bad key points Edges and low contrast regions are bad keypoints. Eliminating
these makes the algorithm efficient and robust. A technique similar to the Harris Corner
Detector is used here.

• Assigning an orientation to the keypoints An orientation is calculated for each key
point. Any further calculations are done relative to this orientation. This effectively cancels
out the effect of orientation, making it rotation invariant.

• Generate SIFT features Finally, with scale and rotation invariance in place, one more
representation is generated. This helps uniquely identify features. Lets say you have 50,000
features. With this representation, you can easily identify the feature you’re looking for.

That was an overview of the entire algorithm. We will be using the SIFT package in opencv for
implementing the algorithm.

Figure 37: SIFT on image pair 1.

Number of good matches for Sift is 276 out of 961 total matches (with threshold: 50).
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Figure 38: SIFT on image pair 2.

Number of good matches for Sift is 123 out of 991 total matches (with threshold: 125).

Figure 39: SIFT on image pair 3.

Number of good matches for Sift: 115 out of 924 total matches (with threshold: 75).

Number of good matches for Sift: 41 out of 191 total matches (with threshold: 230).
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Figure 40: SIFT on image pair 4.

7 Comments

• The number of corners found also decreases as σ increases due to increased smoothing.

• The overall performance of Harris corner detector using SSD and NCC stays more or less at
the same level and comparable for almost all the image pairs except for the image pair 3.

• In image pair 3 the Harris Corners detected using NCC performed much better than those
detected using SSD.

• It seems that the performance of the Harris corner detector is better for the image 1 pair.
This may be because, the level of change in viewpoint in the image pair 2 is more than that
of image pair 1.

• SIFT seems to far outperform the Harris Corner detector in all the image pairs. This is
because of the DOG calculation used in SIFT. It takes care of scale invariance in a very
sophisticated manner. So the keypoints detected are far more reliable and robust in this case.
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file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw4/hw4_code.py

#!/usr/bin/env	python

import	numpy	as	np,	cv2,	os,	time,	math,	copy
from	scipy	import	signal

#===============================================================================
#	ARINDAM	BHANJA	CHOWDHURY
#	abhanjac@purdue.edu
#	ECE	661	FALL	2018,	HW	4
#===============================================================================

#===============================================================================
#	FUNCTIONS	CREATED	IN	HW4.
#===============================================================================

def	calculateHaarFilter(	sigma=None	):
				'''
				Calculates	the	Haar	Wavelet	filter	from	given	sigma.
				'''
				
				#	Calculating	the	kernel	size	of	the	filter.
				ksize	=	math.ceil(	sigma	*	4	)
				ksize	=	int(	ksize	)
				ksize	=	ksize	+	1	if	ksize	%	2	>	0	else	ksize
				
				dxFilter	=	np.ones(	(ksize,	ksize)	)
				dxFilter[	:,	:	int(	ksize	/	2	)	]	=	-1
				
				dyFilter	=	np.ones(	(ksize,	ksize)	)
				dyFilter[	int(	ksize	/	2	)	:,	:	]	=	-1
				
				return	dxFilter,	dyFilter

#===============================================================================

#	Function	to	normalize	input	image	to	the	range	of	0	to	1
#	(provided	all	the	elements	dont	have	the	same	values,	in	which	case	it	returns
#	the	original	array).
normalize	=	lambda	x:	(x	-	np.min(x))	/	(np.max(x)	-	np.min(x))	\
																																if	np.max(x)	>	np.min(x)	else	x

#===============================================================================

def	calculateHarrisCorners(	img=None,	sigma=None,	k=None	):
				'''
				This	function	takes	in	the	input	image	and	a	sigma	and	finds	out	the	harris	
				corners	from	it.
				'''
				if	len(img.shape)	==	3:					grayImg	=	cv2.cvtColor(	img,	cv2.COLOR_BGR2GRAY	)
				else:											grayImg	=	img
				
				h,	w	=	grayImg.shape
				
				#	Calculating	the	derivative	images.
				dxFilter,	dyFilter	=	calculateHaarFilter(	sigma=sigma	)					#	Calculate	kernel.
				
				dxImg	=	signal.convolve2d(	grayImg,	dxFilter,	mode='same'	)	#	Derivative	image	along	x.
				dyImg	=	signal.convolve2d(	grayImg,	dyFilter,	mode='same'	)	#	Derivative	image	along	y.
				
				dx2Img	=	dxImg	*	dxImg
				dy2Img	=	dyImg	*	dyImg
				dxyImg	=	dxImg	*	dyImg

#-------------------------------------------------------------------------------
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file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw4/hw4_code.py

				#	Calculating	the	sum	of	the	derivatives	around	each	pixel.
				#	This	is	done	using	a	convolution	filter	that	acts	like	a	sum.
				kint	=	int(5	*	sigma)
				ksize	=	kint	if	kint	%	2	>	0	else	kint	+	1		#	Rounding	to	nearest	odd	integer.
				kernel	=	np.ones(	(ksize,	ksize)	)
				
				sumx2Img	=	signal.convolve2d(	dx2Img,	kernel,	mode='same'	)			#	Sum	of	dx2.
				sumy2Img	=	signal.convolve2d(	dy2Img,	kernel,	mode='same'	)			#	Sum	of	dy2.
				sumxyImg	=	signal.convolve2d(	dxyImg,	kernel,	mode='same'	)			#	Sum	of	dxy.

				traceImg	=	sumx2Img	+	sumy2Img						#	lambda1	+	lambda2	image.
				detImg	=	sumx2Img	*	sumy2Img	-	sumxyImg	*	sumxyImg						#	lambda1	*	lambda2	image.

#-------------------------------------------------------------------------------

				if	k	==	None:							#	Find	the	average	k	if	k	is	not	specified.
								kImg	=	detImg	/	(	traceImg	*	traceImg	+	0.000001	)					#	k	=	r	/	(1+r)^2.
								k	=	np.sum(	kImg	)	/	(h	*	w)				#	Finding	average	k	value	over	the	image.
								print(	f'k:	{k}'	)
				
				#	Response	of	the	harris	corner	detector.
				R	=	detImg	-	k	*	traceImg	*	traceImg
				
				#	Removing	the	negative	pixels	and	also	the	ones	less	than	k	value.
				R	=	R	*	np.asarray(	R	>	0,	dtype=np.uint8	)
				#R	=	np.asarray(	R,	dtype=np.uint8	)

#-------------------------------------------------------------------------------

				#	Non-max	suppression.
				nmsR	=	np.zeros(	R.shape,	dtype=np.uint8	)
				kernel	=	29
				win	=	int(kernel	/	2)
				
				for	x	in	range(	win,	w-win,	1	):
								for	y	in	range(	win,	h-win,	1	):
												#	Finding	the	max	value	inside	the	kernel	window.
												neighborhood	=	R[	y-win	:	y+win+1,	x-win	:	x+win+1	]
												maxVal	=	np.amax(	neighborhood	)
												
												#	Only	keeping	the	maxValue	pixel	and	making	all	others	0.
												if	R[	y,	x	]	==	maxVal:
																nmsR[	y,	x	]	=	maxVal
												else:			continue

				#	Now	extract	these	maximum	points	from	the	nmsR	image.
				#	These	points	are	the	non-zero	points	in	nmsR	as	all	the	other	non	max	points
				#	are	made	0.
				listOfCorners	=	[]						#	List	of	corner	coordinates.	Format	(x,	y),	like	opencv.
				for	x	in	range(	w	):
								for	y	in	range(	h	):
												if	nmsR[	y,	x	]	>	0:				#	Append	all	the	non	zero	points.
																listOfCorners.append(	[x,y]	)

				#cv2.imshow(	'img',	R	)
				#cv2.waitKey(0)
				
				listOfCorners	=	sorted(	listOfCorners,	key=lambda	x:	x[1]	)
				
				return	listOfCorners

#===============================================================================

def	distanceHarris(	img1=None,	kp1=None,	img2=None,	kp2=None,	kernel=21,	mode=None	):
				'''
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				Calculate	the	Sum	of	Squared	Difference	(SSD)	between	the	keypoints	of	image1	with
				those	of	image2	in	the	neighborhood	of	size	kernel	x	kernel	around	the	keypoint
				locations.	This	is	when	the	mode	is	'SSD'.
				The	distance	is	calculated	as	Normalized	Cross	Correlation	if	the	mode	is	'NCC'.
				'''
				if	mode	==	None:
								print(	'mode	not	specified.	Aborting...'	)
								return
				
				if	len(img1.shape)	==	3:					grayImg1	=	cv2.cvtColor(	img1,	cv2.COLOR_BGR2GRAY	)
				else:											grayImg1	=	img1
				
				if	len(img2.shape)	==	3:					grayImg2	=	cv2.cvtColor(	img2,	cv2.COLOR_BGR2GRAY	)
				else:											grayImg2	=	img2

				h,	w	=	grayImg1.shape
				
#-------------------------------------------------------------------------------

				win	=	int(	kernel	/	2	)
				
				#	Neighborhood	of	the	kp1.
				x1lw,	x1up	=	kp1[0]	-	win,	kp1[0]	+	win
				if	x1lw	<	0:				x1lw	=	0
				if	x1up	>=	w:				x1up	=	w-1
				
				y1lw,	y1up	=	kp1[1]	-	win,	kp1[1]	+	win
				if	y1lw	<	0:				y1lw	=	0
				if	y1up	>=	h:				y1up	=	h-1

				#	Neighborhood	of	the	kp2.
				x2lw,	x2up	=	kp2[0]	-	win,	kp2[0]	+	win
				if	x2lw	<	0:				x2lw	=	0
				if	x2up	>=	w:				x2up	=	w-1
				
				y2lw,	y2up	=	kp2[1]	-	win,	kp2[1]	+	win
				if	y2lw	<	0:				y2lw	=	0
				if	y2up	>=	h:				y2up	=	h-1

#-------------------------------------------------------------------------------

				#	It	may	happen	that	one	of	the	keypoint	is	in	the	edge	of	one	image	and	the	
				#	other	is	not.	In	that	case	the	smaller	of	the	two	neighborhoods	around	the
				#	two	keypoints	are	considered	in	both	the	images.
				leftBound1	=	kp1[0]	-	x1lw
				leftBound2	=	kp2[0]	-	x2lw
				if	leftBound1	<	leftBound2:					x2lw	=	kp2[0]	-	leftBound1
				elif	leftBound2	<	leftBound1:			x1lw	=	kp1[0]	-	leftBound2

				rightBound1	=	x1up	-	kp1[0]
				rightBound2	=	x2up	-	kp2[0]
				if	rightBound1	<	rightBound2:					x2up	=	kp2[0]	+	rightBound1
				elif	rightBound2	<	rightBound1:			x1up	=	kp1[0]	+	rightBound2

				topBound1	=	kp1[1]	-	y1lw
				topBound2	=	kp2[1]	-	y2lw
				if	topBound1	<	topBound2:					y2lw	=	kp2[1]	-	topBound1
				elif	topBound2	<	topBound1:			y1lw	=	kp1[1]	-	topBound2

				botBound1	=	y1up	-	kp1[1]
				botBound2	=	y2up	-	kp2[1]
				if	botBound1	<	botBound2:					y2up	=	kp2[1]	+	botBound1
				elif	botBound2	<	botBound1:			y1up	=	kp1[1]	+	botBound2

				neighborhood1	=	grayImg1[	y1lw	:	y1up,	x1lw	:	x1up	]
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				neighborhood2	=	grayImg2[	y2lw	:	y2up,	x2lw	:	x2up	]
				
				#print(	x1lw,	x1up,	y1lw,	y1up	)
				#print(	x2lw,	x2up,	y2lw,	y2up	)
				
#-------------------------------------------------------------------------------

				if	mode	==	'SSD':
								diff	=	neighborhood1	-	neighborhood2
								ssd	=	np.sum(	diff	*	diff	)
								
								return	ssd

#-------------------------------------------------------------------------------

				if	mode	==	'NCC':
								winMean1	=	np.mean(	neighborhood1	)
								winMean2	=	np.mean(	neighborhood2	)
								
								num1	=	neighborhood1	-	winMean1
								num2	=	neighborhood2	-	winMean2
								num	=	np.sum(	num1	*	num2	)
								
								den1	=	(	num1	*	num1	)
								den1	=	np.sum(	den1	)
								den2	=	(	num2	*	num2	)
								den2	=	np.sum(	den2	)
								den	=	np.sqrt(	den1	*	den2	)
								
								ncc	=	num	/	(	den	+	0.000001	)
								
								return	ncc								

#===============================================================================

def	findGoodMatches(	img1=None,	listOfCorners1=None,	img2=None,	listOfCorners2=None,	\
																					kernel=21,	mode=None,	matchThresh=None	):
				'''
				Calculate	the	matching	keypoints	between	the	two	input	images	given	the	
				set	of	keypoints	as	lists.	Sum	of	Squared	Difference	(SSD)	between	the	keypoints	
				is	used	(on	a	neighborhood	of	size	kernel	x	kernel	around	the	keypoint)
				when	the	mode	is	'SSD'.	Normalized	Cross	Correlation	is	used	if	the	mode	is	'NCC'.
				
				The	matchThresh	is	the	threshold	value	of	the	matched	distance.	If	it	is	200,
				then	for	SSD	mode,	all	the	matched	keypoint	pairs	whose	distance	is	above	200
				are	ignored	as	bad	matches,	and	the	rest	is	returned.
				If	the	mode	is	NCC	mode,	then	for	a	distance	of	200,	all	matched	keypoint	pairs
				whose	distance	is	below	200	are	ignored	as	bad	matches,	and	the	rest	is	returned.
				'''
				if	mode	==	None:
								print(	'mode	not	specified.	Aborting...'	)
								return

#-------------------------------------------------------------------------------

				#	Taking	the	smaller	set	among	the	two	listOfCorners.	Such	that	the	
				#	no.	of	corners	in	A	image	is	always	less	than	that	of	B	image.
				if	len(	listOfCorners1	)	<	len(	listOfCorners2	):
								cornersA	=	listOfCorners1
								imgA	=	copy.deepcopy(	img1	)
								cornersB	=	listOfCorners2
								imgB	=	copy.deepcopy(	img2	)
								Ais1	=	True					#	Shows	if	imgA	is	img1	or	not.	
								#	Used	later	to	return	matched	pair	of	points.
				else:
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								cornersA	=	listOfCorners2
								imgA	=	copy.deepcopy(	img2	)
								cornersB	=	listOfCorners1
								imgB	=	copy.deepcopy(	img1	)
								Ais1	=	False					#	Shows	if	imgA	is	img1	or	not.	
								#	Used	later	to	return	matched	pair	of	points.

				#	Creating	lists	of	same	lenth	as	cornersA
				matchedCornersB	=	copy.deepcopy(	cornersA	)
				distValue	=	copy.deepcopy(	cornersA	)
																
#-------------------------------------------------------------------------------

				if	mode	==	'SSD':								#	Matching	by	SSD.

								#	Scanning	all	the	corners	of	A	and	finding	the	SSD	with	each	of	B	to	get	the	
								#	match	(i.e.	the	corner	in	B	with	which	it	has	the	minimum	ssd	value).
								for	idxa,	a	in	enumerate(cornersA):
												minSSD	=	100000
												for	idxb,	b	in	enumerate(cornersB):
																ssd	=	distanceHarris(	imgA,	a,	imgB,	b,	kernel=21,	mode='SSD'	)
																
																if	minSSD	>	ssd:
																				minSSD	=	ssd				#	Calculating	the	minimum	ssd	value.
																				matchedCornersB[	idxa	]	=	cornersB[	idxb	]				#	Storing	best	match.
																				distValue[	idxa	]	=	minSSD						#	Storing	the	distance	values.
								
#-------------------------------------------------------------------------------

								#	The	matchedPairs1To2	list	stores	the	tuple	of	matched	points	of	image	1	to	2.
								#	And	not	the	other	way	round.	So	the	first	element	of	each	of	the	tuples	is	
								#	a	keypoint	of	image	1	and	the	2nd	element	is	a	keypoint	of	image	2.
								#	This	is	done	using	the	flag	Ais1.
								if	Ais1:
												matchedPairs1To2	=	[	(	cornersA[i],	matchedCornersB[i]	)	for	i	in	range(	\
																																																																				len(	cornersA	)	)	]
								else:
												matchedPairs1To2	=	[	(	matchedCornersB[i],	cornersA[i]	)	for	i	in	range(	\
																																																																				len(	cornersA	)	)	]
								
								#	Sorting	the	list	with	ascending	order	of	SSD	value,	such	that	the	best
								#	lowest	SSD	value	is	at	the	beginning.
								matchedPairs1To2	=	sorted(	matchedPairs1To2,	\
																																			key=lambda	x:	distValue[	matchedPairs1To2.index(x)	]	)
								distValue	=	sorted(	distValue	)

								#	If	no	matchThresh	is	specified	then	all	points	are	returned.
								matchThresh	=	100000	if	matchThresh	==	None	else	matchThresh
								#print(matchThresh)
								
								goodMatches1to2	=	[	matchedPairs1To2[i]	for	i	in	range(	len(matchedPairs1To2)	)	\
																																								if	distValue[i]	<	matchThresh	]
								
#-------------------------------------------------------------------------------

				elif	mode	==	'NCC':					#	Matching	by	NCC.
								
								#	Scanning	all	the	corners	of	A	and	finding	the	NCC	with	each	of	B	to	get	the	
								#	match	(i.e.	the	corner	in	B	with	which	it	has	the	maximum	ncc	value).
								for	idxa,	a	in	enumerate(cornersA):
												maxNCC	=	0
												for	idxb,	b	in	enumerate(cornersB):
																ncc	=	distanceHarris(	imgA,	a,	imgB,	b,	kernel=21,	mode='NCC'	)
																
																if	maxNCC	<	ncc:
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																				maxNCC	=	ncc				#	Calculating	the	maximum	ncc	value.
																				matchedCornersB[	idxa	]	=	cornersB[	idxb	]				#	Storing	best	match.
																				distValue[	idxa	]	=	maxNCC						#	Storing	the	distance	values.

#-------------------------------------------------------------------------------

								#	The	matchedPairs1To2	list	stores	the	tuple	of	matched	points	of	image	1	to	2.
								#	And	not	the	other	way	round.	So	the	first	element	of	each	of	the	tuples	is	
								#	a	keypoint	of	image	1	and	the	2nd	element	is	a	keypoint	of	image	2.
								#	This	is	done	using	the	flag	Ais1.
								if	Ais1:
												matchedPairs1To2	=	[	(	cornersA[i],	matchedCornersB[i]	)	for	i	in	range(	\
																																																																				len(	cornersA	)	)	]
								else:
												matchedPairs1To2	=	[	(	matchedCornersB[i],	cornersA[i]	)	for	i	in	range(	\
																																																																				len(	cornersA	)	)	]
								
								#	Sorting	the	list	with	descending	order	of	NCC	value,	such	that	the	best
								#	highest	NCC	value	is	at	the	beginning.
								matchedPairs1To2	=	sorted(	matchedPairs1To2,	\
																																			key=lambda	x:	distValue[	matchedPairs1To2.index(x)	],
																																			reverse=True	)
								distValue	=	sorted(	distValue,	reverse=True	)
								
								#	If	no	matchThresh	is	specified	then	all	points	are	returned.
								matchThresh	=	0	if	matchThresh	==	None	else	matchThresh
								
								goodMatches1to2	=	[	matchedPairs1To2[i]	for	i	in	range(	len(matchedPairs1To2)	)	\
																																								if	distValue[i]	>	matchThresh	]

#-------------------------------------------------------------------------------

				return	matchedPairs1To2,	goodMatches1to2,	distValue

#===============================================================================

def	distanceSift(	kp1=None,	des1=None,	kp2=None,	des2=None,	matchThresh=None	):
				'''
				This	calculates	the	euclidean	distance	between	two	keypoint	descriptors	for	sift.
				keypoints	are	lists	of	keypoint	object	in	opencv	and	descriptors	are	numpy	arrays
				with	128	columns	(for	sift),	where	each	of	the	rows	represent	the	128	element	
				vector	for	the	corresponding	keypoint.
				'''

				#	Taking	the	smaller	set	among	the	two	listOfCorners.	Such	that	the	
				#	no.	of	corners	in	A	image	is	always	less	than	that	of	B	image.
				if	len(	kp1	)	<	len(	kp2	):
								kpA,	desA,	kpB,	desB	=	kp1,	des1,	kp2,	des2
								Ais1	=	True					#	Shows	if	desA	is	des1	or	not.	
								#	Used	later	to	return	matched	pair	of	points.
				else:
								kpA,	desA,	kpB,	desB	=	kp2,	des2,	kp1,	des1
								Ais1	=	False					#	Shows	if	desA	is	des1	or	not.	
								#	Used	later	to	return	matched	pair	of	points.

				#	Creating	lists	of	same	lenth	as	kpA
				matchedKpB	=	np.ones(	len(kpA)	).tolist()
				distValue	=	np.ones(	len(kpA)	).tolist()
				
#-------------------------------------------------------------------------------

				#	Scanning	all	the	descriptors	of	A	and	finding	the	euclidean	distance	with	
				#	each	of	B	to	get	the	match	(i.e.	the	descriptor	in	B	with	which	it	has	the	
				#	minimum	ssd	value).
				for	idxa,	a	in	enumerate(	desA	):



9/26/18 hw4_code.py 7

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw4/hw4_code.py

								minDist	=	100000
								for	idxb,	b	in	enumerate(	desB	):
												dist	=	(a	-	b)	*	(a	-	b)
												dist	=	np.sqrt(	np.sum(	dist	)	)
												
												if	minDist	>	dist:
																minDist	=	dist				#	Calculating	the	minimum	euclidean	distance	value.
																pt	=	[	int(kpB[	idxb	].pt[0]),	int(kpB[	idxb	].pt[1])	]
																matchedKpB[	idxa	]	=	pt				#	Storing	best	match.
																distValue[	idxa	]	=	minDist						#	Storing	the	distance	values.

#-------------------------------------------------------------------------------

				#	The	matchedPairs1To2	list	stores	the	tuple	of	matched	points	of	image	1	to	2.
				#	And	not	the	other	way	round.	So	the	first	element	of	each	of	the	tuples	is	
				#	a	keypoint	of	image	1	and	the	2nd	element	is	a	keypoint	of	image	2.
				#	This	is	done	using	the	flag	Ais1.
				if	Ais1:
								matchedPairs1To2	=	[	(	[	int(kpA[i].pt[0]),	int(kpA[i].pt[1])	],	matchedKpB[i]	)	\
																																for	i	in	range(	len(	kpA	)	)	]
				else:
								matchedPairs1To2	=	[	(	matchedKpB[i],	[	int(kpA[i].pt[0]),	int(kpA[i].pt[1])	]	)	\
																																for	i	in	range(	len(	kpA	)	)	]
				
				#	Sorting	the	list	with	ascending	order	of	distance	value,	such	that	the	best
				#	lowest	distance	value	is	at	the	beginning.
				matchedPairs1To2	=	sorted(	matchedPairs1To2,	\
																															key=lambda	x:	distValue[	matchedPairs1To2.index(x)	]	)
				distValue	=	sorted(	distValue	)

				#	If	no	matchThresh	is	specified	then	all	points	are	returned.
				matchThresh	=	100000	if	matchThresh	==	None	else	matchThresh
				#print(matchThresh)
				
				goodMatches1to2	=	[	matchedPairs1To2[i]	for	i	in	range(	len(matchedPairs1To2)	)	\
																																				if	distValue[i]	<	matchThresh	]
				
#-------------------------------------------------------------------------------

				return	matchedPairs1To2,	goodMatches1to2,	distValue

#===============================================================================

if	__name__	==	'__main__':
				
				#	TASK	2.1.1
				
				#	Finding	matching	harris	corners	in	image1	and	image2.

				filepath	=	'./PicsSelf'
				subfolder1	=	'pair2'
				filename1,	filename2	=	'1.jpg',	'2.jpg'

				img1	=	cv2.imread(	os.path.join(	filepath,	subfolder1,	filename1	)	)
				img2	=	cv2.imread(	os.path.join(	filepath,	subfolder1,	filename2	)	)
				
#-------------------------------------------------------------------------------

				#	Reshaping	the	images	as	some	of	them	are	too	big	for	display.
				
				imgW,	imgH	=	640,	480
				
				h,	w,	c	=	img1.shape
				if	h	>	imgH	or	w	>	imgW:				inp	=	cv2.INTER_AREA
				else:							inp=cv2.INTER_LINEAR
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				img1	=	cv2.resize(	img1,	(imgW,	imgH),	interpolation=inp	)
				
				h,	w,	c	=	img2.shape
				if	h	>	imgH	or	w	>	imgW:				inp	=	cv2.INTER_AREA
				else:							inp=cv2.INTER_LINEAR
				img2	=	cv2.resize(	img2,	(imgW,	imgH),	interpolation=inp	)
				
				#cv2.imshow(	'Image',	img1	)
				#cv2.waitKey(0)
				
#-------------------------------------------------------------------------------
				
				sigma	=	0.707					#	Scale.
				listOfCorners1	=	calculateHarrisCorners(	img1,	sigma=sigma	)
				print(	f'Number	of	corners	found	in	image1:	{len(listOfCorners1)}'	)
				listOfCorners2	=	calculateHarrisCorners(	img2,	sigma=sigma	)
				print(	f'Number	of	corners	found	in	image2:	{len(listOfCorners2)}'	)
				
				mode	=	'SSD'
				matchThresh	=	1200
				matchedPairs1To2,	goodMatches1to2,	distValue	=	findGoodMatches(	img1,	listOfCorners1,	\
																																																									img2,	listOfCorners2,	\
																																																									kernel=21,	mode=mode,	\
																																																									matchThresh=matchThresh	)

				print(	f'Number	of	good	matches	for	{mode}:	{len(goodMatches1to2)}	out	of	'	\
											f'{len(matchedPairs1To2)}	total	matches	(with	threshold:	{matchThresh}).'	)
				
				#print(distValue)

				img	=	np.hstack(	(	img1,	img2	)	)
				for	idx,	i	in	enumerate(	goodMatches1to2	):
								pt1	=	i[0]
								pt2	=	[	i[1][0]	+	imgW,	i[1][1]	]
								cv2.line(	img,	tuple(pt1),	tuple(pt2),	(0,255,255),	1	)
								
								cv2.circle(	img,	tuple(pt1),	2,	(0,255,0),	-1	)
								cv2.circle(	img,	tuple(pt1),	3,	(0,0,255),	1	)
								
								cv2.circle(	img,	tuple(pt2),	2,	(0,255,0),	-1	)
								cv2.circle(	img,	tuple(pt2),	3,	(0,0,255),	1	)

				#cv2.imshow(	'Matches',	img	)
				#cv2.waitKey(0)
				cv2.imwrite(	'./img4_ssd_sigma1.png',	img	)

#===============================================================================

				#	TASK	2.2
				
				#	Finding	matching	sift	keypoints	in	image1	and	image2.

				img1gray	=	cv2.cvtColor(	img1,	cv2.COLOR_BGR2GRAY	)
				img2gray	=	cv2.cvtColor(	img2,	cv2.COLOR_BGR2GRAY	)
				
				sift	=	cv2.xfeatures2d.SIFT_create()							#	Initiate	sift	detector.
				kp1,	des1	=	sift.detectAndCompute(	img1gray,	None	)
				kp2,	des2	=	sift.detectAndCompute(	img2gray,	None	)
				
				matchThresh	=	230
				
				matchedPairs1To2,	goodMatches1to2,	distValue	=	distanceSift(	kp1,	des1,	kp2,	des2,	\
																																																																	matchThresh=matchThresh)
				
				print(	f'Number	of	good	matches	for	Sift:	{len(goodMatches1to2)}	out	of	'	\
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							f'{len(matchedPairs1To2)}	total	matches	(with	threshold:	{matchThresh}).'	)

				#print(distValue)

				img	=	np.hstack(	(	img1,	img2	)	)
				for	idx,	i	in	enumerate(	goodMatches1to2	):
								pt1	=	i[0]
								pt2	=	[	i[1][0]	+	imgW,	i[1][1]	]
								cv2.line(	img,	tuple(pt1),	tuple(pt2),	(255,0,255),	1	)
								
								cv2.circle(	img,	tuple(pt1),	2,	(0,255,0),	-1	)
								cv2.circle(	img,	tuple(pt1),	3,	(0,0,255),	1	)
								
								cv2.circle(	img,	tuple(pt2),	2,	(0,255,0),	-1	)
								cv2.circle(	img,	tuple(pt2),	3,	(0,0,255),	1	)

				cv2.imshow(	'Matches',	img	)
				cv2.waitKey(0)
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