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Theory and Mathematical Background

In the First Section, we present the Theory and Mathematical Equations required for solving the Homework. To eliminate
the projective and the affine distortions, we have three methods at our disposal:

1. Using point-to-point correspondences (in exactly the same manner as we did in the previous homework) to find
a homography between two images, assuming that one represents the original scene and the other its photograph with
projective and affine distortion and then reversing the homography to eliminate the distortion in the latter image.

2. We use what is known as the 2-Step method in which we first remove the projective distortion using the Vanishing
Line method discussed in Lecture 4. Subsequently, we remove the affine distortion by using the Cosθ expression with θ
equal to 90 degrees. We must first remove the projective distortion before we can remove the affine distortion with the
Cosθ based method.

3. We use what is known as the 1-Step method that gets rid of both the projective and the affine distortion in one go.

The above 3 methods are described in detail below:-

1 Point-to-Point Correspondence Method

In this method , we use Point-to-Point Correspondence to estimate the Homography H, to remove distortion from
images. We use the height and width of planar objects in the scene, and use them to find the corresponding points in
the undistorted image. We now apply the Homography to remove distortion from images. This is a straight-forward
method, but in practice requires a large number of correspondences to give a numerically stable solution for estimating
the Homography.

Xi = HXw

This is the result we used from HW2 , for mapping points from the World Plane to the image Plane. For this HW 3, All
the Homography Matrices H computed, refer to the inverse of the Matrix computed in HW2, i.e. :

Xw = HXi

Xi is the set of points in the image plane, in homogeneous coordinates, Xw is the set of point points in the world
plane, in homogeneous coordinates. H is the Homogrpahy Matrix. We remove both Projective and Affine distortion
using this mapping H obtained.

The transformation of a point from 1 plane to another plane can be described by the mathematical equation:-

Xw = HXi

where the matrix H is given by:- h11 h12 h13
h21 h22 h23
h31 h32 h33


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Let Xw = [x′, y′, z′] and Xi = [x, y, z]T

Then we have the following set of equations :-

x′1 = h11x1 + h12x2 + h13x3
x′2 = h21x1 + h22x2 + h23x3
x′3 = h31x1 + h32x2 + h33x3

The point in the physical image plane is given by (x , y) and a point in the physical world plane is given by (x’ , y’).
So, we have :-

x = x1

x3
, y = x2

x3

x′ =
x′1
x′3

, y′ =
x′2
x′3

Combining the mathematical equations above we get :-

x′ = h11x+h12y+h13

h31x+h32y+h33

y′ = h21x+h22y+h23

h31x+h32y+h33

We set h33 = 1, Since only the ratios matter in the matrix. Hence we are left with :-

x′ = h11x+ h12y + h13 − h31xx′ − h32yx′

y′ = h21x+ h22y + h23 − h31xy′ − h32yy′

We have 8 unknowns from 2 equations, So we require a minimum of 4 points to find all the unknowns. We write the
equations in the form of a matrix :-

AH = b

where A =


x1 y1 1 0 0 0 −x1x′1 −y1x′1
0 0 0 x1 y1 1 −x1y′1 −y1y′1
...
x4 y4 1 0 0 0 −x4x′4 −y4x′4
0 0 0 x4 y4 1 −x4y′4 −y4y′4



, H =



h11
h12
h13
h21
h22
h23
h31
h32



and b =



x′1
y′1
x′2
y′2
x′3
y′3
x′4
y′4


Solving this matrix equation using pinv (pseudo-inverse) for the general case or (inverse) for the 4 points case we get

H = A−1b.

Hence we have found the Homography matrix H between the 2 planes ( the world plane and the image plane ).

Once H is found, we can perform the mapping from the image plane to the world plane.
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Programming Notes:-
a) The homography Matrix H calculated satisfies Xw = HXi.
b) The information of World Coordinates is given in Centimeters. So, I assume one pixel is equal to one centimeter.
c) We use 4 corresponding point pairs, to estimate the Homography H.
d) Similar to the reasoning in HW2, we compute H−1, to map the points in the world plane to the image plane and use
weighted average method for computing Pixel Values.
e) This part of computing the Homography Matrix H, is used in both the Two-Step Method and One-Step Method.

2 Two-Step Method

The second method of removing the distortions is the Two-Step Method. This involves removing Projective Distortion
first, then removing Affine Distortion. Regarding the implementation of the Vanishing Line (VL) method for removing
the projective distortion, we will have to estimate the VL in the image plane. For that we’ll need to click on the pixels
that fall on lines that are parallel in the original scene. Taking the cross-product of two such pixels on any one line in the
image will give you the homogeneous representation of that line. Taking the cross-product of 3-vectors for two different
lines (which are parallel in the original scene) will give you the homogeneous representation for the Vanishing Point for
those two lines. And then taking the cross-product of two such vanishing points for two different pairs of parallel lines
will give us the VL you need for getting rid of the projective distortion. The steps involved are described in detail below
:-

2.1 Removing Protective Distortion - Vanishing Line Method

We use the concept of Vanishing Lines and l∞ , to remove Projective Distortion. We compute the Homography that
maps the vanishing line back to l∞ .

We compute the vanishing line in an image, by finding two Vanishing Points and joining them. We can find 2 vanishing
points, by taking two different sets of Parallel lines in the World Plane, and computing their point of intersection in the
Image Plane.

Suppose if L1,M1 and L2,M2 are two parallel line pairs then the vanishing points are :-

P1 = L1 ×M1

P2 = L2 ×M2

Then the Vanishing Line is given by L = P1 × P2 .
Suppose if L = [l1, l2, l3]T , Then the Homography that maps the Vanishing line back to l∞ is given by:-

Hp =

1 0 0
0 1 0
l1 l2 l3


When we apply this Homography, we can get rid of the projective distortion in our image.

Programming Notes:-
a) The Homography Matrix Hp is given by Xw=Hp Xi. This is important, when we implement the Mapping Direction.
b) We normalize the Vanishing Points and Vanishing Line, before inserting the values into the Matrix Hp.
c) Once we compute Hp, we can now find the mapping between World Plane and Image Plane, similar to the First
Method in HW3.
d) Similar to the reasoning in HW2, we compute H−1, to map the points in the world plane to the image plane and use
weighted average method for computing Pixel Values.

2.2 Removing Affine Distortion

Affine Distortion causes angles to not be preserved in the image, and causes unequal scaling in orthogonal directions.
We use two physically orthogonal lines to remove affine distortion. If we have two orthogonal lines L = [l1, l2, l3]T and
M = [m1,m2,m3]T , then the angle between these 2 lines is given by:

cosθ =
LTC∗∞M√

(LTC∗∞L)(MTC∗∞M)

where

C∗∞ =

1 0 0
0 1 0
0 0 0


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Now if there is a Homography H, which transforms the World Plane to the Image Plane and is denoted by Ha. The
lines are now mapped by L = HTL′ and M = HTM ′ . The conic is mapped by C∗

′

∞ = HTC∗∞H. Since the lines will be
orthogonal in the World Plane we have cosθ = 0. Hence :-

L′THaC
∗
∞H

T
a M

′ = 0

where

Ha =

[
A 0
0 1

]
Expanding the above equation we get:

[
l′1 l′2 l′3

] [AAT 0
0 0

]m′1m′2
m′3

 = 0

Denoting S = AAT =

[
s11 s12
s12 s22

]
We get :-

s11m
′
1l
′
1 + s12(l′1m

′
2 + l′2m

′
1) + s22l

′
2m
′
2 = 0

We set s22 = 1, Since only the ratios matter. We require two sets of orthogonal line pairs to solve for S. We must
ensure that these set of orthogonal lines are not repetitive , but actually different sets from each other, like for example the
Adjacent sides and diagonals for a square. Once we obtain S, we compute the SVD(S) the singular value decomposition
to get A.

S = AAT = V D2V T , A = V DV T

Once we compute A, we can find Ha, and compute the Affine Homography Matrix. Hence we have eliminated the
affine distortion.

Programming Notes:-

a) Hp is the matrix which removes Projective Distortion.
b) Ha is the matrix which removes Affine Distortion.
c) We multiply H−1a × Hp to get the resultant Homography Matrix which removes both distortions from the original
image directly. This is because Ha is a mapping from the world plane to the image plane.
d) We compute the coordinates of the diagonal lines in the image square, once we remove the Projective Distortion, by
Applying the Homography Hp on the original image square points in the code itself. e) We need to estimate the mapping
direction properly in implementation.
f) The points for finding Ha are found from the points of the image, after removing Projective Distortion.
g) Similar to the reasoning in HW2, we compute H−1, to map the points in the world plane to the image plane and use
weighted average method for computing Pixel Values.
h) Points must be selected appropriately, Else results obtained might not be excellent.

3 One-Step Method

The Mathematical equations for this method are similar to that used in Method 2.
In this method we estimate the camera image of C∗

′

∞ of the Dual Degenerate Conic C∗∞ . From the parameters of the
conic images, you estimate the homography that gets rid of both the projective and the affine distortion in one go. We
use the concept of dual conics to estimate the Matrix which removes both the projective and affine distortions in a single
step. We obtain the general homography :-

H =

[
A 0
vT 1

]
The dual conic in the image plane is given by:-

C∗∞ = HC∞H
T

C∗∞ =

[
AAT Av
vTAT vT v

]

C∗∞ =

 a b/2 c/2
b/2 c e/2
d/2 e/2 f


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When we have two lines in the image plane, which are orthogonal to each other in the world plane, i.e. L = [l′1, l
′
2, l
′
3]

and M = [m′1,m
′
2,m

′
3]T , then :-

LT ′C∗
′

∞M
′ = 0 = [l′1, l

′
2, l
′
3]

 a b/2 c/2
b/2 c e/2
d/2 e/2 f

 [m′1,m
′
2,m

′
3]T

We can set f = 1 , since only the ratios matter in Homographies. We have 5 variables, so we need a minimum 5 sets
of equations (orthogonal lines) to solve for them. Once we solve them, we need to normalize them, before applying SVD
on the matrix S.

S = AAT =[
a b/2
b/2 c

]
Now we apply SVD to get the Matrix A, Similar to the second method.

We solve for the vector v using the equation A× v = [d/2, e/2]T .

Hence we have found the homography which gets rid of the projective and affine distortion in 1 step.

Programming Notes:-
a) The homography is given by Xi = HXw, So again we would need compute the inverse, when finding the mapping
from the image plane to world plane. So, we need to estimate the mapping direction appropriately.
b) Normalize all the lines, before computing H.
c) Normalize the C∗

′

∞ Matrix , before applying the SVD.
d) Similar to the reasoning in HW2, we compute H−1, to map the points in the world plane to the image plane and use
weighted average method for computing Pixel Values.
e) Points must be selected appropriately, Else results obtained might not be excellent.
f) Ensure the atleast 1 set of orthogonal lines are completely different, from the rest, to remove affine distortion.

Tasks and Results

The Red lines represent orthogonal and parallel lines taken from the rectangle. The orthogonal lines are adjacent sides in
the rectangle ( 4 sets can be formed ). The parallel lines are opposite sides in the rectangle ( 2 sets can be formed ). The
Yellow lines represent Diagonal Lines take from the square. ( 1 pair can be formed ). The opposite red lines and green
lines, represent the parallel lines used in computing the affine transform. The adjacent red lines represent the orthogonal
lines used in computing the one-step method. One centimeter = 1 pixel is assumed for the point-to-point correspondence
method in estimating homography. The results obtained for the Given Image Inputs and Custom Image Inputs are given
below :-

Given Image Inputs

The image inputs and results are shown in the following manner for all results:-

Input Image
Results from Method 1
Results from Method 2
Results from Method 3
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Results for Given input image 1

Figure 1: Input Image 1
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Figure 2: Result obtained using Method 1 :- Point-to-Point Correspondence Method for removing distortion
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Figure 3: Results obtained using Method 2: Two Step Method :- Removing Projective Distortion
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Figure 4: Results obtained using Method 2: Two Step Method :- Removing Affine Distortion as well as Projective
Distortion

Figure 5: Results obtained using Method 3: One Step Method :- Removing Affine Distortion as well as Projective
Distortion
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Results for Given input image 2

Figure 6: Input Image 2

Figure 7: Result obtained using Method 1 :- Point-to-Point Correspondence Method for removing distortion
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Figure 8: Results obtained using Method 2: Two Step Method :- Removing Projective Distortion

Figure 9: Results obtained using Method 2: Two Step Method :- Removing Affine Distortion as well as Projective
Distortion
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Figure 10: Results obtained using Method 3: One Step Method :- Removing Affine Distortion as well as Projective
Distortion

Custom Image Inputs

Results for Custom input image 1

Figure 11: Input Image 1
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Figure 12: Result obtained using Method 1 :- Point-to-Point Correspondence Method for removing distortion
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Figure 13: Results obtained using Method 2: Two Step Method :- Removing Projective Distortion

Figure 14: Results obtained using Method 2: Two Step Method :- Removing Affine Distortion as well as Projective
Distortion
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Figure 15: Results obtained using Method 3: One Step Method :- Removing Affine Distortion as well as Projective
Distortion

Results for Custom input image 2

Figure 16: Input Image 2
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Figure 17: Result obtained using Method 1 :- Point-to-Point Correspondence Method for removing distortion

Figure 18: Results obtained using Method 2: Two Step Method :- Removing Projective Distortion
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Figure 19: Results obtained using Method 2: Two Step Method :- Removing Affine Distortion as well as Projective
Distortion
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Figure 20: Results obtained using Method 3: One Step Method :- Removing Affine Distortion as well as Projective
Distortion
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4 Observations and Comments

In general, while experimenting with different images I have observed that :- In the single step method, the orthogonal
lines required for estimating H, should be chosen in a consistent and good manner. If even 1 set of orthogonal lines is not
good, or if all the lines are chosen poorly, such that together they cannot accurately or robustly capture the H matrix
which is required for mapping, then we get poor results. This method is sensitive to the points chosen for computing the
orthogonal lines.

The two-step method however, is more robust, and is not as sensitive to the points we initially pick for computing
the orthogonal and parallel lines when compared to the one-step method. Though it has two steps, Both the steps are
pretty simple, More Stable, and they run faster than the one-step method.

The images for which I have shown results above, Both the One-Step and Two-Step work equally good, for a similar
set of points chosen. I would generally go ahead and use the two-step method, Since it is more Robust, Practical to
understand as well as runs faster than the one-step method.

Extra Credit for the Two-Step Method :- Calculating different VL’s

Figure 21: Extra Credit

l1=np.cross(np.array([31.0,296.0,1.0]),np.array([53.0,219.0,1.0]))
m1=np.cross(np.array([90.0,313.0,1.0]),np.array([110.0,235.0,1.0]))
l2=np.cross(np.array([31.0,296.0,1.0]),np.array([90.0,313.0,1.0]))
m2=np.cross(np.array([53.0,219.0,1.0]),np.array([110.0,235.0,1.0]))
l3=np.cross(np.array([31.0,296.0,1.0]),np.array([110.0,235.0,1.0]))
m3=np.cross(np.array([90.0,313.0,1.0]),np.array([167.0,252.0,1.0]))

Normalizing the lines, to find the vanishing points and normalizing them, we get :-
vp1 = array([ 6.48750000e+02, -1.86612500e+03, 1.00000000e+00])
vp2 = array([ -1.11577600e+04, -2.92788000e+03, 1.00000000e+00])
vp3 = array([ 3.20913115e+03, -2.15800000e+03, 1.00000000e+00])

Finding the Vanishing Lines, and normalizing them, we get :-
vl1 = array([ -4.67296300e-05, 5.19624437e-04, 1.00000000e+00])
vl2 = array([ -2.29990700e-05, 4.29190439e-04, 1.00000000e+00])
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This implies that approximately:-
vl1=[0,0,1]
vl2=[0,0,1]

We get the line at infinity in this case, because, we have taken points which are close together on a very small square,
which are parallel, even in the distorted image. Theoretically this can be extended to any image with distortions and we
would get the same vanishing line, within numerical error and precision limits. For this example, I chose these points
and lines, since its easier to illustrate that, multiple vanishing lines are actually the same within numerical limits It just
so happens the vanishing lines in this case are the same as l∞ , But the results hold true generally for other points and
lines chosen as well.

5 Python Code

5.1 Method 1

import numpy as np
import cv2
import math

# Importing the Neccessary L i b r a r i e s r equ i r ed

de f HomographyMatrix ( s r c img pt s , wor ld p l ane pt s ) :

tb =[ ] # L i s t s used f o r c r e a t i n g Matr ices A, b
ta =[ ]

f o r i in range (0 , l en ( s r c i m g p t s ) ) :
# MATHEMATICAL EQUATIONS which are used f o r f i l l i n g up e n t r i e s o f A, b
tmp=[ wor ld p l ane pt s [ i ] [ 0 ] , wo r ld p l ane pt s [ i ] [ 1 ] , 1 , 0 , 0 , 0 ,
−s r c i m g p t s [ i ] [ 0 ] ∗ wor ld p l ane pt s [ i ] [ 0 ] ,
−s r c i m g p t s [ i ] [ 0 ] ∗ wor ld p l ane pt s [ i ] [ 1 ] ]
ta . append (tmp)
tmp=[0 ,0 ,0 , wor ld p l ane pt s [ i ] [ 0 ] , wo r ld p l ane pt s [ i ] [ 1 ] , 1 ,
−s r c i m g p t s [ i ] [ 1 ] ∗ wor ld p l ane pt s [ i ] [ 0 ] ,
−s r c i m g p t s [ i ] [ 1 ] ∗ wor ld p l ane pt s [ i ] [ 1 ] ]
ta . append (tmp)
A=np . asar ray ( ta ) # Computing the Matrix A f o r e s t imat ing the Homography H

tmp=[ s r c i m g p t s [ i ] [ 0 ] , s r c i m g p t s [ i ] [ 1 ] ]
tb . append (tmp)
tmp=np . asar ray ( tb )
b=tmp . reshape (−1) # Computing the Matrix b f o r e s t imat ing the Homography H

tmp=np . dot (np . l i n a l g . pinv (A) , b . t ranspose ( ) ) # Computing Pesudo Inve r s e
H=np . z e ro s ( ( 3 , 3 ) )
H[0 ]=tmp [ 0 : 3 ]
H[1 ]=tmp [ 3 : 6 ]
H[ 2 ] [ 0 : 2 ] = tmp [ 6 : 8 ]
H[ 2 ] [ 2 ] = 1

# The Homography Matrix H
return H

def WeightedAverageRGBPixelValue ( pt , img ) :

x1=i n t (math . f l o o r ( pt [ 0 ] ) ) # Used in Weighted Average P ixe l Computation
x2=i n t (math . c e i l ( pt [ 0 ] ) )
y1=i n t (math . f l o o r ( pt [ 1 ] ) )
y2=i n t (math . c e i l ( pt [ 1 ] ) )

Wp=1/np . l i n a l g . norm(np . array ( [ pt [0]−x1 , pt [1]−y1 ] ) ) # Weights
Wq=1/np . l i n a l g . norm(np . array ( [ pt [0]−x1 , pt [1]−y2 ] ) )
Wr=1/np . l i n a l g . norm(np . array ( [ pt [0]−x2 , pt [1]−y1 ] ) )
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Ws=1/np . l i n a l g . norm(np . array ( [ pt [0]−x2 , pt [1]−y2 ] ) )

p i x e l v a l u e = (Wp∗ img [ y1 ] [ x1 ] + Wq∗ img [ y2 ] [ x1 ] + Wr∗ img [ y1 ] [ x2 ] + Ws∗ img [ y2 ] [ x2 ] )
/(Wp+Wq+Wr+Ws)

return p i x e l v a l u e # Return P ixe l Value

de f Project ionImage (H, wor ld plane img ) :

ImgP=np . asar ray ( [ 0 . 0 , 0 . 0 , 1 . 0 ] ) # Image Plane Coordinates
ImgQ=np . asar ray ( [ f l o a t (np . shape ( wor ld plane img ) [ 1 ] ) − 1 . 0 , 0 . 0 , 1 . 0 ] )
ImgR=np . asar ray ( [ 0 . 0 , f l o a t (np . shape ( wor ld plane img ) [ 0 ] ) − 1 . 0 , 1 . 0 ] )
ImgS=np . asar ray ( [ f l o a t (np . shape ( wor ld plane img ) [ 1 ] −1 . 0 ) ,
f l o a t (np . shape ( wor ld plane img ) [ 0 ] ) − 1 . 0 , 1 . 0 ] )

WorldA=np . dot (H, ImgP) # Computing World Coordinates from Image Plane
WorldA=WorldA/WorldA [ 2 ] # Using the Homography Matrix H
WorldB=np . dot (H, ImgQ)
# Finding corner po in t s in image and mapping to Real World
WorldB=WorldB/WorldB [ 2 ]
WorldC=np . dot (H, ImgR)
WorldC=WorldC/WorldC [ 2 ]
WorldD=np . dot (H, ImgS)
WorldD=WorldD/WorldD [ 2 ]

# Image Boundaries
xmin = i n t (math . f l o o r ( min ( [ WorldA [ 0 ] , WorldB [ 0 ] , WorldC [ 0 ] , WorldD [ 0 ] ] ) ) )
xmax = i n t (math . c e i l (max ( [ WorldA [ 0 ] , WorldB [ 0 ] , WorldC [ 0 ] , WorldD [ 0 ] ] ) ) )
ymin = i n t (math . f l o o r ( min ( [ WorldA [ 1 ] , WorldB [ 1 ] , WorldC [ 1 ] , WorldD [ 1 ] ] ) ) )
ymax = i n t (math . c e i l (max ( [ WorldA [ 1 ] , WorldB [ 1 ] , WorldC [ 1 ] , WorldD [ 1 ] ] ) ) )

yLength=ymax−ymin # Computing the Shape/ S i z e o f the output images
xLength=xmax−xmin

src img=np . z e r o s ( ( yLength , xLength , 3 ) )
Hn=np . l i n a l g . pinv (H)
Hn=Hn/Hn [ 2 ] [ 2 ]

# Applying Pro j e c t i on from Image to World
f o r i in range (0 , yLength ) :

f o r j in range (0 , xLength ) :
tmp=np . array ( [ j+xmin , i+ymin , 1 . 0 ] )
xp=np . array (np . dot (Hn, tmp ) ) # F i t t i n g the Image to World
xp=xp/xp [ 2 ]
i f ( ( xp [0 ]>0) and ( xp [0]<wor ld plane img . shape [1 ]−1)
and ( xp [1 ]>0) and ( xp [1]<wor ld plane img . shape [ 0 ] −1 ) ) :

s r c img [ i ] [ j ]=WeightedAverageRGBPixelValue (xp , wor ld plane img )

# Returning the Image

output img = src img
return output img

# Second Image
image2=cv2 . imread ( ” 2 . jpg ”)

t2 =[ ]
t I =[ ]

t2 . append ( [ 2 9 0 . 0 , 1 0 9 . 0 , 1 . 0 ] ) # Pixe l Coordinates f o r Mapping in the Image Plane
t2 . append ( [ 4 4 9 . 0 , 1 4 3 . 0 , 1 . 0 ] ) # Image 2 Input , P,Q,R, S
t2 . append ( [ 2 5 4 . 0 , 3 6 7 . 0 , 1 . 0 ] )
t2 . append ( [ 4 1 7 . 0 , 3 8 3 . 0 , 1 . 0 ] )

21



pts image2=np . asar ray ( t2 )

t I . append ( [ 0 . 0 , 0 . 0 , 1 . 0 ] ) # Actual S i z e s in the World Plane
t I . append ( [ 6 0 . 0 , 0 . 0 , 1 . 0 ] ) # P,Q,R, S
t I . append ( [ 0 , 1 0 0 . 0 , 1 . 0 ] )
t I . append ( [ 6 0 . 0 , 1 0 0 . 0 , 1 . 0 ] )

pt s imageI=np . asar ray ( t I )

H=HomographyMatrix ( pts imageI , pts image2 ) # Computing H Matrix

output=Project ionImage (H, image2 ) # Finding the Output p r o j e c t i o n onto World Plane
cv2 . imwrite ( ’ Out2 . jpg ’ , output )

# F i r s t Image

image1=cv2 . imread ( ” 1 . jpg ”)

t1 =[ ]
tJ =[ ]

t1 . append ( [ 1 0 4 . 0 , 2 3 8 . 0 , 1 . 0 ] )
t1 . append ( [ 1 6 3 . 0 , 2 5 4 . 0 , 1 . 0 ] ) # Image 1 Input P,Q,R, S
t1 . append ( [ 9 3 . 0 , 3 1 3 . 0 , 1 . 0 ] )
t1 . append ( [ 1 5 4 . 0 , 3 3 0 . 0 , 1 . 0 ] )

pts image1=np . asar ray ( t1 )

tJ . append ( [ 0 . 0 , 0 . 0 , 1 . 0 ] )
tJ . append ( [ 7 0 . 0 , 0 . 0 , 1 . 0 ] ) # P,Q,R, S
tJ . append ( [ 0 , 1 2 0 . 0 , 1 . 0 ] )
tJ . append ( [ 7 0 . 0 , 1 2 0 . 0 , 1 . 0 ] )

pts imageJ=np . asar ray ( tJ )

H=HomographyMatrix ( pts imageJ , pts image1 )

output=Project ionImage (H, image1 )
cv2 . imwrite ( ’ Out1 . jpg ’ , output )

5.2 Method 2

import numpy as np
import cv2
import math

# Importing the Neccessary L i b r a r i e s r equ i r ed

# Removing P r o j e c t i v e D i s t o r t i o n

de f VLMatrix ( array ) :
#Finding the Vanishing Line

l 1=np . c r o s s ( array [ 0 ] , array [ 1 ] )
l 2=np . c r o s s ( array [ 2 ] , array [ 3 ] )

Vp1=np . c r o s s ( l1 , l 2 )
Vp1=Vp1/Vp1 [ 2 ] # Vanishing Point 1

l 3=np . c r o s s ( array [ 0 ] , array [ 2 ] )
l 4=np . c r o s s ( array [ 1 ] , array [ 3 ] )

Vp2=np . c r o s s ( l3 , l 4 )
Vp2=Vp2/Vp2 [ 2 ] # Vanishing Point 2
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VL=np . c r o s s (Vp1 , Vp2)

VL=VL/VL[ 2 ] # Vanishing Line

H=np . z e ro s ( ( 3 , 3 ) )
H[ 0 ] [ 0 ] = 1
H[ 1 ] [ 1 ] = 1
H[2]=VL # Computing the Homography H

return H

# Removing Af f i n e D i s t o r t i o n

de f Af f ineMatr ix ( arrays1 , ar rays2 ) :

ta =[ ] # Using the Cos theta Method
tb =[ ]

l 1=np . c r o s s ( ar rays1 [ 0 ] , a r rays1 [ 1 ] )
m1=np . c r o s s ( ar rays1 [ 0 ] , a r rays1 [ 2 ] )
l 1=l 1 / l 1 [ 2 ] # 1 pa i r o f L ines pe rpend i cu la r
m1=m1/m1 [ 2 ]

l 2=np . c r o s s ( ar rays1 [ 0 ] , a r rays1 [ 3 ] )
m2=np . c r o s s ( ar rays1 [ 1 ] , a r rays1 [ 2 ] )
l 2=l 2 / l 2 [ 2 ] # 2 pa i r o f l i n e s pe rpend i cu l a r
m2=m2/m2 [ 2 ]

ta . append ( [ l 1 [ 0 ] ∗m1[ 0 ] , l 1 [ 0 ] ∗m1[1]+ l 1 [ 1 ] ∗m1 [ 0 ] ] )
tb . append([− l 1 [ 1 ] ∗m1 [ 1 ] ] ) # Based on Theory and Mathematrical Equations

ta . append ( [ l 2 [ 0 ] ∗m2[ 0 ] , l 2 [ 0 ] ∗m2[1]+ l 2 [ 1 ] ∗m2 [ 0 ] ] )
tb . append([− l 2 [ 1 ] ∗m2 [ 1 ] ] )

A=np . asar ray ( ta )
b=np . asar ray ( tb )

tmp=np . dot (np . l i n a l g . pinv (A) , b) # Finding the Matrix S

S=np . z e ro s ( ( 2 , 2 ) )
S [ 0 ] [ 0 ] = tmp [ 0 ]
S [ 0 ] [ 1 ] = tmp [ 1 ]
S [ 1 ] [ 0 ] = tmp [ 1 ]
S [ 1 ] [ 1 ] = 1

u , s , vh=np . l i n a l g . svd (S) # Computing SVD of S

s1=np . diag ( s )

D=np . s q r t ( s1 )
K=np . dot (np . dot (u ,D) , u . t ranspose ( ) ) # Computing matrix A

H=np . z e ro s ( ( 3 , 3 ) )
H[ 0 ] [ 0 ] =K[ 0 ] [ 0 ] # Computing Matrix H
H[ 0 ] [ 1 ] =K[ 0 ] [ 1 ]
H[ 1 ] [ 0 ] =K[ 1 ] [ 0 ]
H[ 1 ] [ 1 ] =K[ 1 ] [ 1 ]
H[ 2 ] [ 2 ] = 1

return H

def WeightedAverageRGBPixelValue ( pt , img ) : # Applying the Weighted Average Method
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x1=i n t (math . f l o o r ( pt [ 0 ] ) ) # Used in Weighted Average P ixe l Computation
x2=i n t (math . c e i l ( pt [ 0 ] ) )
y1=i n t (math . f l o o r ( pt [ 1 ] ) )
y2=i n t (math . c e i l ( pt [ 1 ] ) )

Wp=1/np . l i n a l g . norm(np . array ( [ pt [0]−x1 , pt [1]−y1 ] ) )
Wq=1/np . l i n a l g . norm(np . array ( [ pt [0]−x1 , pt [1]−y2 ] ) ) # Weights
Wr=1/np . l i n a l g . norm(np . array ( [ pt [0]−x2 , pt [1]−y1 ] ) )
Ws=1/np . l i n a l g . norm(np . array ( [ pt [0]−x2 , pt [1]−y2 ] ) )

p i x e l v a l u e = (Wp∗ img [ y1 ] [ x1 ] + Wq∗ img [ y2 ] [ x1 ] + Wr∗ img [ y1 ] [ x2 ] + Ws∗ img [ y2 ] [ x2 ] )
/(Wp+Wq+Wr+Ws)

return p i x e l v a l u e # Return P ixe l Value

de f Project ionImage (H, wor ld plane img ) :

ImgP=np . asar ray ( [ 0 . 0 , 0 . 0 , 1 . 0 ] ) # Image Plane Coordinates
ImgQ=np . asar ray ( [ f l o a t (np . shape ( wor ld plane img ) [ 1 ] ) − 1 . 0 , 0 . 0 , 1 . 0 ] )
ImgR=np . asar ray ( [ 0 . 0 , f l o a t (np . shape ( wor ld plane img ) [ 0 ] ) − 1 . 0 , 1 . 0 ] )
ImgS=np . asar ray ( [ f l o a t (np . shape ( wor ld plane img ) [ 1 ] −1 . 0 ) ,
f l o a t (np . shape ( wor ld plane img ) [ 0 ] ) − 1 . 0 , 1 . 0 ] )

WorldA=np . dot (H, ImgP) # Computing World Coordinates from Image Plane
WorldA=WorldA/WorldA [ 2 ] # Using the Homography Matrix H
WorldB=np . dot (H, ImgQ) # Finding corner po in t s in image and mapping to Real World
WorldB=WorldB/WorldB [ 2 ]
WorldC=np . dot (H, ImgR)
WorldC=WorldC/WorldC [ 2 ]
WorldD=np . dot (H, ImgS)
WorldD=WorldD/WorldD [ 2 ]

# Image Boundaries
xmin = i n t (math . f l o o r ( min ( [ WorldA [ 0 ] , WorldB [ 0 ] , WorldC [ 0 ] , WorldD [ 0 ] ] ) ) )
xmax = i n t (math . c e i l (max ( [ WorldA [ 0 ] , WorldB [ 0 ] , WorldC [ 0 ] , WorldD [ 0 ] ] ) ) )
ymin = i n t (math . f l o o r ( min ( [ WorldA [ 1 ] , WorldB [ 1 ] , WorldC [ 1 ] , WorldD [ 1 ] ] ) ) )
ymax = i n t (math . c e i l (max ( [ WorldA [ 1 ] , WorldB [ 1 ] , WorldC [ 1 ] , WorldD [ 1 ] ] ) ) )

yLength=ymax−ymin # Computing the Shape/ S i z e o f the output images
xLength=xmax−xmin

# Applying Pro j e c t i on from Image to World
s rc img=np . z e r o s ( ( yLength , xLength , 3 ) )
Hn=np . l i n a l g . pinv (H)
Hn=Hn/Hn [ 2 ] [ 2 ]

f o r i in range (0 , yLength ) :
f o r j in range (0 , xLength ) :

tmp=np . array ( [ j+xmin , i+ymin , 1 . 0 ] )
xp=np . array (np . dot (Hn, tmp ) )
xp=xp/xp [ 2 ] # F i t t i n g the Image to World
i f ( ( xp [0 ]>0) and ( xp [0]<wor ld plane img . shape [1 ]−1)
and ( xp [1 ]>0) and ( xp [1]<wor ld plane img . shape [ 0 ] −1 ) ) :

s r c img [ i ] [ j ]=WeightedAverageRGBPixelValue (xp , wor ld plane img )

output img = src img # Returning Output Image
return output img

image1=cv2 . imread ( ” 1 . jpg ”) # Reading Image Input
image2=cv2 . imread ( ” 2 . jpg ”)

t1 =[ ]
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t2 =[ ]

t1 . append ( [ 1 0 4 . 0 , 2 3 8 . 0 , 1 . 0 ] ) # Pixe l Coordinates f o r Mapping in the Image Plane
t1 . append ( [ 1 6 3 . 0 , 2 5 4 . 0 , 1 . 0 ] ) # Rectangular Perpend icu lar Lines
t1 . append ( [ 9 3 . 0 , 3 1 3 . 0 , 1 . 0 ] ) # IMAGE 1 P,Q,R, S input
t1 . append ( [ 1 5 4 . 0 , 3 3 0 . 0 , 1 . 0 ] )

pts image1=np . asar ray ( t1 )

t2 . append ( [ 2 9 0 . 0 , 1 0 9 . 0 , 1 . 0 ] ) # Pixe l Coordinates f o r Mapping in the Image Plane
t2 . append ( [ 4 4 9 . 0 , 1 4 3 . 0 , 1 . 0 ] ) # Rectangular Perpend icua l r Lines
t2 . append ( [ 2 5 4 . 0 , 3 6 7 . 0 , 1 . 0 ] ) # Image 2 P,Q,R, S input
t2 . append ( [ 4 1 7 . 0 , 3 8 3 . 0 , 1 . 0 ] )

pts image2=np . asar ray ( t2 )

H1=VLMatrix ( pts image1 ) # Computing H Matrix
output=Project ionImage (H1 , image1 ) # Finding the Output p r o j e c t i o n onto World Plane
cv2 . imwrite ( ’ 1 2stepP . jpg ’ , output )

H2=VLMatrix ( pts image2 )
output=Project ionImage (H2 , image2 )
cv2 . imwrite ( ’ 2 2stepP . jpg ’ , output )

# P r o j e c t i v e D i s t o r t i o n Removed , Images wr i t t en above .

# Removing Af f i n e D i s t o r t i o n

tc =[ ]
tc . append ( [ 1 0 4 . 0 , 2 3 8 . 0 , 1 . 0 ] ) # Pixe l Coordinates f o r Mapping in the Image Plane
tc . append ( [ 1 6 3 . 0 , 2 5 4 . 0 , 1 . 0 ] ) # Sqare Diagonal Lines
tc . append ( [ 9 3 . 0 , 3 1 3 . 0 , 1 . 0 ] ) # Image 1 , SQUARE P,Q,R, S Input
tc . append ( [ 1 5 4 . 0 , 3 3 0 . 0 , 1 . 0 ] )

pts=np . asar ray ( tc )

pts [0 ]= np . dot (H1 , pts [ 0 ] ) # Finding the Points in image r e s u l t a f t e r 1 s tep i s app l i ed
pts [0 ]= pts [ 0 ] / pts [ 0 ] [ 2 ] # After the P r o j e c t i v e D i s t o r t i o n i s removed
pts [1 ]= np . dot (H1 , pts [ 1 ] ) # These po in t s used f o r remvoing a f f i n e D i s t o r t i o n
pts [1 ]= pts [ 1 ] / pts [ 1 ] [ 2 ]
pts [2 ]= np . dot (H1 , pts [ 2 ] )
pts [2 ]= pts [ 2 ] / pts [ 2 ] [ 2 ]
pts [3 ]= np . dot (H1 , pts [ 3 ] )
pts [3 ]= pts [ 3 ] / pts [ 3 ] [ 2 ]

Hv=Aff ineMatr ix ( pts , pts image1 )
output=Project ionImage (np . dot (np . l i n a l g . pinv (Hv) ,H1) , image1 )
cv2 . imwrite ( ’ 1 2stepA . jpg ’ , output )

td =[ ]
td . append ( [ 2 9 0 . 0 , 1 0 9 . 0 , 1 . 0 ] ) # Pixe l Coordinates f o r Mapping in the Image Plane
td . append ( [ 4 4 9 . 0 , 1 4 3 . 0 , 1 . 0 ] ) # Sqare Diagonal Lines
td . append ( [ 2 6 7 . 0 , 2 6 7 . 0 , 1 . 0 ] ) # Image 2 , SQUARE P,Q,R, S Input
td . append ( [ 4 2 9 . 0 , 2 9 4 . 0 , 1 . 0 ] )

pt=np . asar ray ( td )

pt [0 ]= np . dot (H2 , pt [ 0 ] )
pt [0 ]= pt [ 0 ] / pt [ 0 ] [ 2 ] # Finding the Points in image r e s u l t a f t e r 1 s tep i s app l i ed
pt [1 ]= np . dot (H2 , pt [ 1 ] ) # After the P r o j e c t i v e D i s t o r t i o n i s removed
pt [1 ]= pt [ 1 ] / pt [ 1 ] [ 2 ] # These po in t s used f o r removing a f f i n e D i s t o r t i o n
pt [2 ]= np . dot (H2 , pt [ 2 ] )
pt [2 ]= pt [ 2 ] / pt [ 2 ] [ 2 ]
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pt [3 ]= np . dot (H2 , pt [ 3 ] )
pt [3 ]= pt [ 3 ] / pt [ 3 ] [ 2 ]

Hu=Aff ineMatr ix ( pt , pts image2 )
output=Project ionImage (np . dot (np . l i n a l g . pinv (Hu) ,H2) , image2 )
cv2 . imwrite ( ’ 2 2stepA . jpg ’ , output )

5.3 Method 3

import numpy as np
import cv2
import math

# Importing the Neccessary L i b r a r i e s r equ i r ed

# One Step Method f o r Removing Af f i n e and P r o j e c t i v e D i s t o r t i o n

de f onestep ( arrays1 , ar rays2 ) :

l 1=np . c r o s s ( ar rays2 [ 0 ] , a r rays2 [ 1 ] ) # Choosing 5 s e t s o f orthogona l l i n e s
m1=np . c r o s s ( ar rays2 [ 1 ] , a r rays2 [ 3 ] )
l 1=l 1 /max( l 1 )
m1=m1/max(m1)

l 2=np . c r o s s ( ar rays2 [ 1 ] , a r rays2 [ 3 ] ) # For Removing P r o j e c t i v e d i s t o r t i o n
m2=np . c r o s s ( ar rays2 [ 3 ] , a r rays2 [ 2 ] )
l 2=l 2 /max( l 2 )
m2=m2/max(m2)

l 3=np . c r o s s ( ar rays2 [ 3 ] , a r rays2 [ 2 ] )
m3=np . c r o s s ( ar rays2 [ 2 ] , a r rays2 [ 0 ] )
l 3=l 3 /max( l 3 )
m3=m3/max(m3)

l 4=np . c r o s s ( ar rays2 [ 2 ] , a r rays2 [ 0 ] )
m4=np . c r o s s ( ar rays2 [ 0 ] , a r rays2 [ 1 ] )
l 4=l 4 /max( l 4 )
m4=m4/max(m4)

l 5=np . c r o s s ( ar rays1 [ 0 ] , a r rays1 [ 3 ] ) # For Removing Af f i n e d i s t o r t i o n
m5=np . c r o s s ( ar rays1 [ 1 ] , a r rays1 [ 2 ] ) # Diagonal Lines
l 5=l 5 /max( l 5 )
m5=m5/max(m5)

ta =[ ]
tb =[ ] # From the Theory and Mathematical Equations f o r f i l l i n g up Matr ices

ta . append ( [ l 1 [ 0 ] ∗m1[ 0 ] , ( l 1 [ 0 ] ∗m1[1]+ l 1 [ 1 ] ∗m1[ 0 ] ) / 2 , l 1 [ 1 ] ∗m1[ 1 ] ,
( l 1 [ 0 ] ∗m1[2]+ l 1 [ 2 ] ∗m1[ 0 ] ) / 2 , ( l 1 [ 1 ] ∗m1[2]+ l 1 [ 2 ] ∗m1 [ 1 ] ) / 2 ] )
tb . append([− l 1 [ 2 ] ∗m1 [ 2 ] ] )

ta . append ( [ l 2 [ 0 ] ∗m2[ 0 ] , ( l 2 [ 0 ] ∗m2[1]+ l 2 [ 1 ] ∗m2[ 0 ] ) / 2 , l 2 [ 1 ] ∗m2[ 1 ] ,
( l 2 [ 0 ] ∗m2[2]+ l 2 [ 2 ] ∗m2[ 0 ] ) / 2 , ( l 2 [ 1 ] ∗m2[2]+ l 2 [ 2 ] ∗m2 [ 1 ] ) / 2 ] )
tb . append([− l 2 [ 2 ] ∗m2 [ 2 ] ] )

ta . append ( [ l 3 [ 0 ] ∗m3[ 0 ] , ( l 3 [ 0 ] ∗m3[1]+ l 3 [ 1 ] ∗m3[ 0 ] ) / 2 , l 3 [ 1 ] ∗m3[ 1 ] ,
( l 3 [ 0 ] ∗m3[2]+ l 3 [ 2 ] ∗m3[ 0 ] ) / 2 , ( l 3 [ 1 ] ∗m3[2]+ l 3 [ 2 ] ∗m3 [ 1 ] ) / 2 ] )
tb . append([− l 3 [ 2 ] ∗m3 [ 2 ] ] )

ta . append ( [ l 4 [ 0 ] ∗m4[ 0 ] , ( l 4 [ 0 ] ∗m4[1]+ l 4 [ 1 ] ∗m4[ 0 ] ) / 2 , l 4 [ 1 ] ∗m4[ 1 ] ,
( l 4 [ 0 ] ∗m4[2]+ l 4 [ 2 ] ∗m4[ 0 ] ) / 2 , ( l 4 [ 1 ] ∗m4[2]+ l 4 [ 2 ] ∗m4 [ 1 ] ) / 2 ] )
tb . append([− l 4 [ 2 ] ∗m4 [ 2 ] ] )

ta . append ( [ l 5 [ 0 ] ∗m5[ 0 ] , ( l 5 [ 0 ] ∗m5[1]+ l 5 [ 1 ] ∗m5[ 0 ] ) / 2 , l 5 [ 1 ] ∗m5[ 1 ] ,
( l 5 [ 0 ] ∗m5[2]+ l 5 [ 2 ] ∗m5[ 0 ] ) / 2 , ( l 5 [ 1 ] ∗m5[2]+ l 5 [ 2 ] ∗m5 [ 1 ] ) / 2 ] )
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tb . append([− l 5 [ 2 ] ∗m5 [ 2 ] ] )

A=np . asar ray ( ta )
b=np . asar ray ( tb )

tmp=np . dot (np . l i n a l g . pinv (A) , b) # Computing Matrix f o r C in f ’
tmp=tmp/np . max(tmp) # Normalize C o e f f i c i e n t s − Important

S=np . z e ro s ( ( 2 , 2 ) ) # Computing the S Matrix with r e f e r e n c e to Theory
S [ 0 ] [ 0 ] = tmp [ 0 ]
S [ 0 ] [ 1 ] = tmp [ 1 ] / 2
S [ 1 ] [ 0 ] = tmp [ 1 ] / 2
S [ 1 ] [ 1 ] = tmp [ 2 ]

u , s , vh=np . l i n a l g . svd (S) # SVD of the S Matrix

s1=np . diag ( s )

D=np . s q r t ( s1 )
K=np . dot (np . dot (u ,D) , u . t ranspose ( ) ) # Computing Matrix A

tmp1=np . array ( [ tmp [ 3 ] / 2 , tmp [ 4 ] / 2 ] )

v=np . dot (np . l i n a l g . pinv (K) , tmp1) # Computing Vector V

H=np . z e ro s ( ( 3 , 3 ) )
H[ 2 ] [ 2 ] = 1
H[ 0 ] [ 0 ] =K[ 0 ] [ 0 ] # Computing Matrix H
H[ 0 ] [ 1 ] =K[ 0 ] [ 1 ]
H[ 1 ] [ 0 ] =K[ 1 ] [ 0 ]
H[ 1 ] [ 1 ] =K[ 1 ] [ 1 ]
H[ 2 ] [ 0 ] = v [ 0 ]
H[ 2 ] [ 1 ] = v [ 1 ]

r e turn H

def WeightedAverageRGBPixelValue ( pt , img ) : # Applying the Weighted Average Method

x1=i n t (math . f l o o r ( pt [ 0 ] ) )
x2=i n t (math . c e i l ( pt [ 0 ] ) ) # Used in Weighted Average P ixe l Computation
y1=i n t (math . f l o o r ( pt [ 1 ] ) )
y2=i n t (math . c e i l ( pt [ 1 ] ) )

Wp=1/np . l i n a l g . norm(np . array ( [ pt [0]−x1 , pt [1]−y1 ] ) )
Wq=1/np . l i n a l g . norm(np . array ( [ pt [0]−x1 , pt [1]−y2 ] ) ) # Weights
Wr=1/np . l i n a l g . norm(np . array ( [ pt [0]−x2 , pt [1]−y1 ] ) )
Ws=1/np . l i n a l g . norm(np . array ( [ pt [0]−x2 , pt [1]−y2 ] ) )

p i x e l v a l u e = (Wp∗ img [ y1 ] [ x1 ] + Wq∗ img [ y2 ] [ x1 ] + Wr∗ img [ y1 ] [ x2 ] + Ws∗ img [ y2 ] [ x2 ] )
/(Wp+Wq+Wr+Ws)

return p i x e l v a l u e # Return P ixe l Value

de f Project ionImage (H, wor ld plane img ) :

ImgP=np . asar ray ( [ 0 . 0 , 0 . 0 , 1 . 0 ] ) # Image Plane Coordinates
ImgQ=np . asar ray ( [ f l o a t (np . shape ( wor ld plane img ) [ 1 ] ) − 1 . 0 , 0 . 0 , 1 . 0 ] )
ImgR=np . asar ray ( [ 0 . 0 , f l o a t (np . shape ( wor ld plane img ) [ 0 ] ) − 1 . 0 , 1 . 0 ] )
ImgS=np . asar ray ( [ f l o a t (np . shape ( wor ld plane img ) [ 1 ] −1 . 0 ) ,
f l o a t (np . shape ( wor ld plane img ) [ 0 ] ) − 1 . 0 , 1 . 0 ] )

WorldA=np . dot (H, ImgP)
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WorldA=WorldA/WorldA [ 2 ] # Computing World Coordinates from Image Plane
WorldB=np . dot (H, ImgQ) # Using the Homography Matrix H
WorldB=WorldB/WorldB [ 2 ] # Finding corner po in t s in image and mapping to Real World
WorldC=np . dot (H, ImgR)
WorldC=WorldC/WorldC [ 2 ]
WorldD=np . dot (H, ImgS)
WorldD=WorldD/WorldD [ 2 ]

# Image Boundaries
xmin = i n t (math . f l o o r ( min ( [ WorldA [ 0 ] , WorldB [ 0 ] , WorldC [ 0 ] , WorldD [ 0 ] ] ) ) )
xmax = i n t (math . c e i l (max ( [ WorldA [ 0 ] , WorldB [ 0 ] , WorldC [ 0 ] , WorldD [ 0 ] ] ) ) )
ymin = i n t (math . f l o o r ( min ( [ WorldA [ 1 ] , WorldB [ 1 ] , WorldC [ 1 ] , WorldD [ 1 ] ] ) ) )
ymax = i n t (math . c e i l (max ( [ WorldA [ 1 ] , WorldB [ 1 ] , WorldC [ 1 ] , WorldD [ 1 ] ] ) ) )

yLength=ymax−ymin # Computing the Shape/ S i z e o f the output images
xLength=xmax−xmin

# Applying Pro j e c t i on from Image to World

s rc img=np . z e r o s ( ( yLength , xLength , 3 ) )
Hn=np . l i n a l g . pinv (H)
Hn=Hn/Hn [ 2 ] [ 2 ]

f o r i in range (0 , yLength ) :
f o r j in range (0 , xLength ) :

tmp=np . array ( [ j+xmin , i+ymin , 1 . 0 ] )
xp=np . array (np . dot (Hn, tmp ) ) # F i t t i n g the Image to World
xp=xp/xp [ 2 ]
i f ( ( xp [0 ]>0) and ( xp [0]<wor ld plane img . shape [1 ]−1)
and ( xp [1 ]>0) and ( xp [1]<wor ld plane img . shape [ 0 ] −1 ) ) :

s r c img [ i ] [ j ]=WeightedAverageRGBPixelValue (xp , wor ld plane img )

# Returning Output Image
output img = src img
return output img

image1=cv2 . imread ( ” 1 . jpg ”) # Reading Image Input
image2=cv2 . imread ( ” 2 . jpg ”)

t1 =[ ]
t2 =[ ]

t1 . append ( [ 1 0 4 . 0 , 2 3 8 . 0 , 1 . 0 ] )
t1 . append ( [ 1 6 3 . 0 , 2 5 4 . 0 , 1 . 0 ] ) # Pixe l Coordinates f o r Mapping in the Image Plane
t1 . append ( [ 9 3 . 0 , 3 1 3 . 0 , 1 . 0 ] ) # Rectangular Perpend icua l r Lines
t1 . append ( [ 1 5 4 . 0 , 3 3 0 . 0 , 1 . 0 ] ) # Image 1 Input P,Q,R, S

pts image1=np . asar ray ( t1 )

t2 . append ( [ 2 9 0 . 0 , 1 0 9 . 0 , 1 . 0 ] )
t2 . append ( [ 4 4 9 . 0 , 1 4 3 . 0 , 1 . 0 ] ) # Pixe l Coordinates f o r Mapping in the Image Plane
t2 . append ( [ 2 5 4 . 0 , 3 6 7 . 0 , 1 . 0 ] ) # Rectangular Perpend icua l r Lines
t2 . append ( [ 4 1 7 . 0 , 3 8 3 . 0 , 1 . 0 ] ) # Image 2 Input P,Q,R, S

pts image2=np . asar ray ( t2 )

tc =[ ]
tc . append ( [ 1 0 4 . 0 , 2 3 8 . 0 , 1 . 0 ] ) # Pixe l Coordinates f o r Mapping in the Image Plane
tc . append ( [ 1 6 3 . 0 , 2 5 4 . 0 , 1 . 0 ] ) # Sqare Diagonal Lines
tc . append ( [ 9 3 . 0 , 3 1 3 . 0 , 1 . 0 ] ) # Image 1 Square Input P,Q,R, S
tc . append ( [ 1 5 4 . 0 , 3 3 0 . 0 , 1 . 0 ] )
pts=np . asar ray ( tc )
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td =[ ]
td . append ( [ 2 9 0 . 0 , 1 0 9 . 0 , 1 . 0 ] ) # Pixe l Coordinates f o r Mapping in the Image Plane
td . append ( [ 4 4 9 . 0 , 1 4 3 . 0 , 1 . 0 ] ) # Sqare Diagonal Lines
td . append ( [ 2 6 7 . 0 , 2 6 7 . 0 , 1 . 0 ] ) # Image 2 Square Input P,Q,R, S
td . append ( [ 4 2 9 . 0 , 2 9 4 . 0 , 1 . 0 ] )

pt=np . asar ray ( td )

H1=onestep ( pts , pts image1 ) # Computing H Matrix
output=Project ionImage (np . l i n a l g . pinv (H1) , image1 )
# Finding the Output p r o j e c t i o n onto World Plane
cv2 . imwrite ( ’ 1 1 s t ep . jpg ’ , output )

H2=onestep ( pt , pts image2 )
output=Project ionImage (np . l i n a l g . pinv (H2) , image2 )
cv2 . imwrite ( ’ 2 1 s t ep . jpg ’ , output )

THE END
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