ECE661: Homework 10

Wan-Eih Huang
November 30, 2018

1 Face Recognition

1.1 Principal Components Analysis (PCA)

PCA tries to find a set of orthogonal directions with maximal variance for all
training data.

1.1.1 Estimate Covariance Matrix

If we are given an image set which consists of N images, then we can estimate
the covariance matrix C' of the image set by

C =XXT
where X = [Xo —m|X; —m]| - |[Xy_1 — m]

1 N-—1
- L 2.
m N i

=0

X; are the vectorized images. In addition, we need to normalize X to achieve
illumination invariant. That is, ???l =1

1.1.2 Find Feature Set

To reduce the dimensionality by PCA, the feature set is formed by the eigen-
vectors W; of C' corresponding to the K largest eigenvalues. We denotes it by
Wi = [Wo|Wi| - |[Wk_1].

However, eigendecomposition of C has very high computational complexity and
it also causes the numerical instability. Therefore, the computational trick is
doing eigendecomposition on X7 X. The derivations as follows.

XXTW = \W
XTXd = \d
XXTXWd = A\ XU
C(XW) = AM(XW)

Hence, the eigenvectors W is given by

W =Xu

Because this trick will not give us unity vectors, we need to normalize them
before projection.

1.1.3 Training and Testing

Then the feature values of a given image is the projection on the subspace span
by these eigenvectors. In other words, the feature values are given by

Y = WE(X —m)

Train a KNN model by the feature values of training dataset and test it by the
feature values of testing dataset.

1.2 Linear Discriminant Analysis (LDA)

LDA tries to find the directions with maximal discriminate between the classes.
That is, it wants to find the directions that can maximize the between-class
scatter and minimize the within-class scatter.

Between-class scatter is defined by

where m; is the class mean and m is the global mean. |C| is the number of
classes.
Within-class scatter is defined by

|C| |Cil

S = 7 2 o 2 %k~ (K=)"

where ?L is the k*" image in the i*" class and |C;| is the number of images in
the it class.
The Fisher discriminant function is defined by

ﬂW%:%&ﬁ%

1.2.1 Between-Class Scatter

Assume Sp = XgXg?. We play the same trick as that in PCA. Use eigen-
decomposition on XBTXB, then V = XgU contains the eigenvectors of Spg,
where U is the matrix of eigenvectors of XpTXg.

Then we can obtain Y by retaining only M eigenvectors corresponding to M
largest eigenvalues. Hence, Y7 SpY = Dg, where Dp is the diagonal matrix
with M largest eigenvalues.

1.2.2 Within-Class Scatter

Construct Z = YDBfé and apply eigendecomposition on Z” Sy, Z. Then the
eigenvectors for maximizing the discriminant function is given by

W=ZUdw

where Wy is the eigenvectors obtained from eigendecomposition of Z7 Sy, Z.
Retaining only K eigenvectors to form Wk

1.2.3 Training and Testing

The training and testing procedures are the same as what we did in PCA.

1.3 Performance Evaluation
of test images correctly classified
total # of test images

accuracy =

1.4 Result

Our result of PCA and LDA shown in Figure 1 and Table 1. Only when the
number of eigenvectors is 1 and 2, PCA performs better than LDA. However,
LDA converges faster than PCA. LDA achieves 100% when number of vectors
is 7, but PCA achieves it as number of vectors is 12.

10 -
0.8 4
o
[¥)
E 06 -
-
(¥
a2
0.4 4
—— PCA
0.2 1 —a— LDA

00 25 50 75 100 125 150 175 200
Number of Eigenvectors

Figure 1: The comparison of accuracy between PCA and LDA

Number of Eigenvectors | PCA Accuracy | LDA Accuracy
1 0.1777 0.1682
2 0.7698 0.6666
3 0.9269 0.9317
4 0.9809 0.9825
5 0.9841 0.9888
6 0.9873 0.9984
7 0.9952 1
8 0.9952 1
9 0.9984 1
10 0.9984 1
11 0.9984 1
12 1 1
13 1 1
14 1 1
15 1 1
16 1 1
17 1 1
18 1 1
19 1 1
20 1 1

Table 1: Accuracy of PCA and LDA w.r.t. number of eigenvectors.

2 Object Detection with Cascaded AdaBoost Clas-
sification

In this homework, we are going to use Viola and Jones algorithm to construct
an object detector which cascades multiple strong classifiers built by AdaBoost
algorithm.

2.1 Feature Extraction

The one of the advantages of AdaBoost is that we do not need to define very
strong features to make the classification result better. It aggregates the weak
classifiers to form a strong classifier. To achieve this, we need to have a large
number of features. However, they can be simple. So, in this homework we
adopt Haar filter with different size and orientations to extract many features
for training AdaBoost classifier.

For horizontal direction, we use 1 x 2, 1 x4, ---, 1 x40. And 2x2,4x2, -,
20 x 2 for vertical direction. Therefore, the total number of features is 11900.
Note that the size of the images in database is 20 x 40. Moreover, we use method
of integral image to reduce computational cost.

2.2 Training
2.2.1 Construct A Strong Classifier

Step 1: Initialize the weights of the samples with equal distribution. That is,

1 1

o and 2 for negative and positive samples respectively, where m and [are
m

the total number of negative and positive samples respectively.

Step 2: Normalize the weights and construct an ordered list of all the training
samples w.r.t. each feature. Then we can find the minimum error based on the
following equation.

e=min(ST + (T~ —S87), S + (I't — St))

T+ is the total sum of positive sample weights, and 7~ is the total sum of
negative sample weights. S is the sum of positive sample weights below current
sample. Similarly, S~ is the sum of negative sample weights below the current
sample.

Once we found the minimum error ¢;, we can define the best weak classifier
he(x) = h(z, fi,pt, 0¢) for current iteration ¢. f; is the feature, p; is the polarity,
and 6; is the threshold value that minimize the error.

Step 3: Update the weights for the next iteration by

1—e;
Wiy1, = WPy

where e; = 0 if sample z; is classified correctly; otherwise, e; = 1. 3; = 1?@'
Step 4: Last, check whether the aggregated weak classifiers achieves criteria.
That is, the true detection rate is 1 and the false positive rate is 0.5. If it is not,
then we go back to Step 2 for finding next classifier.

The final strong classifier is
T
1 h > threshold
Clz) = ;at +(z) > thresho
0 otherwise

where oy = logi. To achieve true detection rate is 1, we set threshold is the
minimum value of positive samples only in training process.

2.2.2 Cascade Strong Classifiers

Step 1: Construct a strong classifier by AdaBoost as we described in last
section.

Step 2: Check whether the accumulated false positive rate is zero. If it is not,
then we only select the misclassified negative samples with all positive samples
to the next run (Step 1).

2.3 Testing
Step 1: Classify samples by a single strong classifier.

1 if pf(z) < pb
h))) 0 =
@ f.p,9) {0 otherwise

Step 2: Choose next strong classifier until the data processed by all the strong

classifiers which are cascaded as our object detector.

2.4 Performance Evaluation
False positive rate:

PP # of misclassified negative test images

of negative test images
False negative rate:

PN — # of misclassified positive test images

of positive test images

2.5 Result
Training Result:

Stage | # of Weak | # of Negative | # of Misclassified Stage
Classifiers Images Negative Images | FP Rate
1 8 1758 791 0.4499
2 16 791 336 0.4248
3 21 336 140 0.4167
4 21 140 67 0.4786
5 19 67 31 0.4627
6 11 31 14 0.4516
7 10 14 4 0.2857
8 5 4 0 0
Table 2: The false positive rate of each stage.
14
0.8 -
0.6 -
.
m
(=
0.4 4
02 -
I}.l:l T T L} T T L} T T

1 2 3 4 5 B 7 8
Number of cascade stage

Figure 2: The accumulated false positive rate of each stage in train dataset.

Testing Result: The false positive rate decreases as the number of cascade
stage increases. The final false positive rate is 0.0022. In addition, the false
negative rate increases as the number of cascade stage increases. And the final
false negative rate is 0.3932.

14a

=8 False Positive Rate
—i— False Negative Rate
05 -

0.6 -

Rate

04 -

0.2 -

D.U.‘\F_ - = = = = =

Number of cascade stage

Figure 3: The accumulated false positive rate and false negative rate of each
stage in test dataset.

Stage | # of Weak Classifiers | FP Rate | FN Rate
1 8 0.0863 0.1348
2 16 0.0159 0.1910
3 21 0.0068 0.2303
4 21 0.0045 0.2696
5 19 0.0022 0.2977
6 11 0.0022 0.3539
7 10 0.0022 0.3876
8 5 0.0022 0.3932

Table 3: The accumulated false positive rate and false negative rate of each
stage in test dataset.

True Positive Rate

14

0.8 -

0.6 -

04 -

0.2 -

0.0

0.02 0.04 0.06
False Positive Rate

Figure 4: The ROC curve of test dataset.

3 Source Code
3.1 Part 1: PCA

#!/usr/bin/env python3

—*x— coding: utf—8 —x—

Created on Tue Nov 20 21:53:01 2018

PCA+knn for face recognition

@author: wehuang

»”»»

import os

import numpy as np

import cv2

from sklearn.neighbors import KNeighborsClassifier

nClasses = 30
nSamples 21

def loadData (mypath):
files = os.listdir (mypath)
files.sort ()
imgVec = []
for i in range(len(files)):
img = c¢v2.imread (mypath+files [i])
gray = cv2.cvtColor (img, cv2.COLORBGR2GRAY)
imgVec.append (gray .reshape ((1,—1)))
imgVec = np.asarray (imgVec) .reshape ((len(files),—1))
imgVec = imgVec. transpose ()
imgVec = imgVec/np. linalg .norm(imgVec, axis=0)
meanG = np.mean(imgVec, axis=1)
imgVecNorm = imgVec—meanG [: , None]

return imgVecNorm

mypath = "ECE661_2018_hw10_-DB1/train/’
imgVecNorm = loadData(mypath)

mypath_t = "ECE661_2018_hw10_-DB1/test/’
imgVecNorm_t = loadData (mypath_t)

labels = []
for ¢ in range(nClasses):
tmp = np.ones((nSamples, 1))
labels.extend (tmp[:,0]*(c+1))
labels = np.asarray(labels)

#PCA

d, u = np.linalg.eig(imgVecNorm. transpose () .dot (imgVecNorm))#
630630

idx = np.argsort(—1x%d)

u=ul:,idx]

w = imgVecNorm . dot (u)

w = w/np.linalg .norm(w, axis=0)

score = |[]

¢ = np.zeros ((len(labels), 1))

for K in range(30):
subSpace = w[: ,:K+1]
feature_train = np.dot(subSpace.transpose (), imgVecNorm)
feature_test = np.dot(subSpace.transpose (), imgVecNorm-_t)
HKNN
classifier = KNeighborsClassifier (n_neighbors=1)
classifier.fit (feature_train.transpose(), labels) #/

nSamples, nFeatures]

pred = classifier .predict(feature_test.transpose())
c[pred = labels] =1
score += [np.sum(c)/len(labels)]

3.2 Part 1: LDA

#!/usr/bin/env python3

—x— coding: utf—8 —x—

Created on Wed Nov 21 13:10:12 2018

LDA+knn for face recognition

@author: wehuang

import os

import numpy as np

import cv2

from sklearn.neighbors import KNeighborsClassifier

nClasses = 30
nSamples = 21

def loadData(mypath):

files = os.listdir (mypath)

files .sort ()

imgVec = []

for i in range(len(files)):
img = cv2.imread (mypath+files [i])
gray = cv2.cvtColor (img, cv2.COLORBGR2GRAY)
imgVec.append (gray .reshape((1,—1)))

imgVec = np.asarray (imgVec) .reshape ((len(files),—1))

imgVec = imgVec.transpose ()
imgVec = imgVec/np.linalg .norm(imgVec, axis=0)
meanG = np.mean(imgVec, axis=1)

return imgVec, meanG

mypath = 'ECE661.2018_hw10_-DB1/train/’
imgVec, meanG = loadData (mypath)

mypath -t = "ECE661.2018_hw10.-DB1/test/’
imgVec_t, meanG_t = loadData(mypath_t)

labels = []

10

for ¢ in range(nClasses):
tmp = np.ones((nSamples, 1))
labels.extend (tmp[: ,0]*(c+1))

labels = np.asarray(labels)
HLDA
meanl = np.zeros ((imgVec.shape[0],nClasses))#class mean

imgVecDiff = np.zeros(imgVec.shape)#diff btw sample and its
class mean (within—class)
for ¢ in range(nClasses):

meanl [:,c] = np.mean(imgVec[:,c*nSamples:(c+1)*nSamples],
axis=1)
imgVecDiff [:, cxnSamples: (c+1)xnSamples] = imgVec|[:,cx

nSamples: (c+1)*xnSamples]—meanl[: , c,None]

meanB = meanl — meanG[: ,None|;#diff btw class mean and global
mean (between—class)

#compute between—class scatter

#SB = meanB. dot (meanB. transpose ())

d, u = np.linalg.eig(meanB. transpose () .dot (meanB))#30z30

idx = np.argsort(—1xd)

d = d[idx]

u=ul:,idx]

V = meanB. dot (u)#eigenvectors of SB

DB = np.eye(nClasses)*(d*x(—0.5))

Z = V.dot (DB)#16384x30

#compute within—class scatter

#SW = imgVecDiff.dot(imgVecDiff.transpose())

X = np.dot (Z.transpose (), imgVecDiff)#30x630

dw, uw = np.linalg.eig (X.dot(X.transpose()))#30z30

idx = np.argsort (dw)

uw = uw|:, idx]

score = |[]
¢ = np.zeros ((len(labels), 1))
for K in range(30):
subSpace = Z.dot (uw[: ,:K+4+1])#16384z(K+1)

subSpace = subSpace/np.linalg.norm(subSpace, axis=0)

feature_train = np.dot(subSpace.transpose (), imgVec—meanG
[:,None])

feature_test = np.dot(subSpace.transpose (), imgVec_t—
meanG_t [: , None])

HKNN

classifier = KNeighborsClassifier (n_neighbors=1)

classifier.fit (feature_train.transpose(), labels) #/
nSamples, nFeatures]

pred = classifier .predict(feature_test.transpose())

c¢[pred = labels] =1

score += [np.sum(c)/len(labels)]

3.3 Part 2: Feature Extraction

#!/usr/bin/env python3
—x— coding: utf—8 —x—

11

999

Created on Mon Nov 26 21:05:21 2018
Generate features for the images
@Qauthor: wehuang

»»y

import os

import numpy as np

import cv2

import pickle

def boxSum(ptA, ptB, ptC, ptD, imglntegral):
A = imglntegral [np.int (ptA[0]) |[np.int (ptA[1])]
B = imglntegral [np.int (ptB[0]) |[np.int (ptB[1])]
C = imglIntegral [np.int (ptC[0]) J[np.int (ptC[1])]
D = imglntegral [np.int (ptD[0]) J[np.int (ptD[1])]

return D-B-C+A

def computeFeature(mypath):
files = os.listdir (mypath)
files .sort ()

img = cv2.imread (mypath+files [0])

imgAll = np.zeros ((img.shape[0], img.shape[l], len(files))
)

for i in range(len(files)):
img = cv2.imread (mypath+files [i])

imgAll[:,:,i] = cv2.cvtColor (img, cv2.COLORBGR2GRAY)
#compute integral image
imgIntegral = np.cumsum(np.cumsum (imgAll, axis=1), axis=0)
imgIntegral = np.concatenate ((np.zeros ((img.shape[0],1,len

(files))), imglntegral), axis=1)
imglntegral = np.concatenate ((np.zeros ((1,img.shape[1]+1,
len(files))), imglIntegral), axis=0)

features = []
for n in range(np.int (img.shape[1l]/2)) :#number of filters
filtSize = (n+1)x2
for j in range(img.shape[0]) :#vertical
for i in range(img.shape[l]+1—filtSize):#
horizontal
boxSum0 = boxSum ([j,i], [j,i+filtSize /2], [j

+1,i], [j+1,i+filtSize /2], imglntegral)
boxSuml = boxSum ([j,i+filtSize /2], [j,i+
filtSize], [j+1,i+filtSize /2], [j+1,i+

filtSize], imglntegral)
features .append ((boxSuml—boxSum0) . reshape

((1,=1)))

for n in range(np.int (img.shape[0]/2)) :#number of filters
filtSize = (n+1)*2
for j in range(img.shape[0]+1—filtSize) :#vertical
for i in range(img.shape[l]+1—2):#horizontal

12

boxSum0 = boxSum ([j,i], [j,i+2],

[j+filtSize

/2,i1], [j+filtSize/2,i+2], imglntegral)
boxSuml = boxSum ([j+filtSize /2,i], [j+filtSize
/2,i+2], [j+tiltSize ,i], [j+filtSize ,i+2],

imglntegral)

features .append ((boxSumO—boxSuml) . reshape

((1,=1)))

return np.asarray (features).reshape ((len(features),—1))

mypath = "ECE661_2018_hw10_-DB2/test /positive/’
features = computeFeature (mypath)

file = open(’test_pos’, ’wb’)

pickle .dump(features , file)

file . close ()

mypath = "ECE661_2018_hw10_.DB2/test /negative/’
features = computeFeature (mypath)

file = open(’test_neg’, ’wb’)

pickle .dump(features , file)

file . close ()

3.4 Part 2: AdaBoost Training

#!/usr/bin/env python3

—*x— coding: utf—8 —x—

Created on Tue Nov 27 19:29:11 2018
AdaBoost training

@author: wehuang

»»»

import numpy as np

import pickle

from cascadeWeak import cascadeWeak
import matplotlib.pyplot as plt

file = open(’train_pos’, ’rb’)
train_pos = pickle.load(file)
file . close ()

file = open(’train_neg’, ’rb’)
train_.neg = pickle.load(file)
file . close ()

nPos = train_pos.shape[1]

nNeg = train_neg.shape[1]

nNegOrg = nNeg

FP = []

print (’Initial #_.of_negative_samples:.’ ,nNeg)

feature = np.concatenate ((train_pos, train_neg), axis=1)

classifier = []
for s in range(10):
print (’Stage.’, s+1)
casWeak = cascadeWeak (feature , nPos, nNeg)

13

classifier .append (casWeak)
if (len(casWeak.idx) = nPos):
break

nNeg = len (casWeak.idx)—nPos

print ('#_.of_negative_samples: .’ ,nNeg)
feature_-tmp = feature [:,casWeak.idx]
feature = feature_tmp

FP.append (nNeg/nNegOrg)
3.5 Part 2: Cascade Weak Classifiers

#!/usr/bin/env python3

—*x— coding: utf—8 —x—

Created on Wed Nov 28 14:54:46 2018

Cascade weak classifiers—>strong classifier
Q@Qauthor: wehuang

909

import numpy as np

class sClassifier ():
idx = []
nWeak = 0
ht = []

def cascadeWeak (feature , nPos, nNeg):
#Step 1: initialize weights
weights = np.concatenate ((np.ones ((1,nPos))*0.5/nPos, np.
ones ((1,nNeg))=*0.5/nNeg), axis=1)
labels = np.concatenate ((np.ones((1,nPos)), np.zeros((1,
nNeg))), axis=1)

casWeak = sClassifier ()

alpha = []

h= []

ht =]

for t in range(25):
#Step 2: find the best weak classifier
#—normalize weights
weights = weights/np.sum(weights)
#—construct an ordered list of all samples w.r.t.

each feature

weightsSort = np. tile (weights, (len(feature),l))
labelsSort = np. tile (labels, (len(feature), 1))
idx = np.argsort (feature, axis=1)
row = np.arange(len(feature)).reshape((—1,1))
weightsSort = weightsSort [row, idx]
labelsSort = labelsSort [row, idx]
#—cumulative sum of weights
TposW = np.sum(weights [:,:nPos])
TnegW = np.sum(weights [:,nPos:])
SposW = np.cumsum (weightsSortxlabelsSort , axis=1)
SnegW = np.cumsum (weightsSort , axis=1)—SposW

14

#—two types error

err = np.zeros ((feature.shape[0], feature.shape[1l],2))
err [:,:,0] = SposW+TnegW—SnegW

err [:,:,1] = SnegW+TposW—SposW

min_idx = np.unravel_index (np.argmin(err), err.shape)
minErr = err [min_idx]

#—define the best weak classifier
fi = min_idx [0]
sortldx = idx[fi ,:]

pred_tmp = np.zeros ((feature.shape[1l],1))
pred = np.zeros ((feature.shape[1],1))
if min_idx[2] = O0:
p = -1
pred_tmp [min_idx [1]+1:] =1
else:
p=1
pred_tmp [: min_idx[1]+1] = 1
pred [sortldx] = pred_tmp
featureSort = feature[fi ,:]
featureSort = featureSort [sortldx]
if min_idx[1] = O0:
theta = featureSort[0] —0.01
elif min_idx[1] = -1:
theta = featureSort[—1]40.01
else:
theta = np.mean(featureSort [min_idx[1] —1:min_idx
[1]+1])

#Step 3: update weights for mnext run

beta = minErr/(1—minErr)

alpha.append(np.log(1/beta))

h.append(pred.transpose())

ht.append ([fi, theta, p, np.log(l/beta)])

weights = weights*(betaxx(1—np.abs(labels—pred.
transpose())))

#Step 4: check if it meets criteria? (strong
classifier)
s = np.dot(np.asarray (h).transpose(), np.asarray (alpha

)

th = np.min(s [:nPos])
s_pred = np.zeros(s.shape)
s_pred [s>=th] =1

print (np.sum(s_pred [nPos:]) /nNeg)
if (np.sum(s_pred[nPos:])/nNeg < 0.5):

break
#output the strong classifier
updateldx = []
updateldx.extend (np.arange(nPos))
misNegldx = [nPos+x for x in range(nNeg) if s_pred [nPos+x]
— 1]

updateldx .extend (misNegldx)
casWeak.idx = np.asarray (updateldx)
casWeak .nWeak = t+1

15

casWeak.ht = ht

return casWeak

3.6 Part 2: AdaBoost Testing

#!/usr/bin/env python3

—x— coding: utf—8 —*—

Created on Wed Nov 28 16:49:21 2018
AdaBoost testing

@author: wehuang

»n»

import numpy as np

import pickle

import matplotlib.pyplot as plt

file = open(’test_pos’, 'rb’)
test_pos = pickle.load (file)
file . close ()

file = open(’test_neg’, ’rb’)
test_neg = pickle.load(file)
file . close ()

file = open(’classifier’, ’'rb’)
classifier = pickle.load(file)
file . close ()

nPosOrg = test_pos.shape[1]

nNegOrg = test_neg.shape[1]

print (’Total_positive_samples:.’ ,nPosOrg)
print (’Total_negative_samples:.’ ,nNegOrg)
nPos = test_pos.shape[1]

nNeg = test_neg.shape[1]

posSample = test_pos

negSample = test_neg

nMisPos = 0

nCorNeg = 0

FN = []

FP =[]

for s in range(len(classifier)):
print (’Stage:_.’ ,s+1)

print ('#_.of_positive_.samples:.’ ,nPos)
print ('#.of_negative_samples: .’ ,nNeg)
ht = np.asarray(classifier [s].ht)

fi = ht[:,0].astype(int)

theta = ht[:,1]

p = ht[:,2]

alpha = ht[:,3]

pred_th = 0.5%np.sum(alpha)

#classify

16

feature = np.concatenate ((posSample, negSample), axis=1)
predWeak = np.zeros ((len(ht), feature.shape[1l]))
feature_tmp = feature [fi ,:]

tmpWeak = (pxtheta)[:,None]—p[:,None]xfeature_tmp
predWeak [tmpWeak>=0] = 1

predStrong = np.zeros ((feature.shape[1l],1))
tmpStrong = np.dot (predWeak. transpose () ,alpha)
predStrong [tmpStrong>=pred_th] = 1

#compute FN and FP

posCorldx = [x for x in range(nPos) if predStrong[x] = 1]
negErrldx = [x for x in range(nNeg) if predStrong|[x+nPos]
print ('#_.of_correct_positive_samples:.’ ,len(posCorldx))

print ('#_.of_error._negative_samples:.’ ,len(negErrldx))
#update false megative

nMisPos += (nPos—len (posCorldx))

FN. append (nMisPos/nPosOrg)

#update false positive

nCorNeg += (nNeg—len (negErrldx))

FP.append ((nNegOrg—nCorNeg) /nNegOrg)

posSample = posSample [: , posCorldx]
negSample = negSample [: , negErrldx]
nPos = len(posCorldx)
nNeg = len(negErrldx)

17

