
ECE 661: Computer Vision

Homework 10, Fall 2018

Arindam Bhanja Chowdhury

abhanjac@purdue.edu

1 Overview

This homework consists of two parts. Face recognition with PCA and LDA for dimensionality
reduction and the nearest-neighborhood rule for classification and Object detection with a cascaded
AdaBoost classifier.

2 Principle Component Analysis (PCA)

PCA is a very widely used dimensionality reduction technique. There are 630 images of faces in
the training set and 630 more in the testing set. These faces belong to 30 different people and so
there are 30 different classes. There are 21 images for each class. For performing PCA, first the
images are converted into gray scale and then from the size of 128x128, they are vectorized into
16384x1 size. First these vectorized images vi are normalized as follows:

xi =
vi
||vi||

The global mean of these N (N = 630) vectorized images xi is calculated as follows:

m =
1

N

i=N∑
i=1

xi

And the matrix X is formed as follows:

X = [x1 −m | x2 −m | x3 −m | ... | xN−1 −m | xN −m]16384×N

Instead of directly calculating the eigen vectors ti of the covariance matrix C = 1
NXX

T , the eigen
vectors ui of the matrix XTX is calculated. And then the eigen vectors ti are obtained from ui as
follows:

ti = Xui

Then the ti’s are normalized as follows:

wi =
ti
||ti||

These eigen vectors are now arranged in descending order of their corresponding eigen values.
Now, the eigen vectors w1 to wp corresponding to the p largest eigen values of the XXT matrix
are considered to create the W matrix as follows:

Wp = [w1 | w2 | w3 | ... | wp−1 | wp]16384×p

1

ECE 661 Fall 2018 Homework 10

Then all the training and the testing images are projected onto this lower p dimensional subspace
as follows to create the corresponding feature vector for that image yi:

yi = W T
p (xi −m)

Then the projected vector of the test image is classified using Nearest Neighbor classifier to predict
which class it belongs to.

3 Linear Discriminant Analysis (LDA)

The objective of LDA is to find the eigen vectors wj that maximizes the Fischer Discriminant
Function

J(wi) =
wTj SBwj

wTj SWwj

Where SB and SW are the between-class scatter and the within-class scatter. However in most
cases SW is singular, and hence the procedure of Yu and Yang’s algorithm is followed. First the
images are converted into gray scale and then from the size of 128x128, they are vectorized into
16384x1 size. First these vectorized images vi are normalized as follows:

xi =
vi
||vi||

The global mean of these N (N = 630) vectorized images xi is calculated as follows:

m =
1

N

i=N∑
i=1

xi

Then the class means of the individual classes (here there are 30 classes each for the face of a
different person) are calculated as follows:

mk =
1

||Ck||

i=||Ck||∑
i=1

xi

Where ||Ck|| is the number of training images in the kth class Ck. k = 1 to C. Then the mean
matrix is formed as follows:

M = [m1 −m | m2 −m | m3 −m | ... | mC−1 −m | mC −m]16384×C

Instead of directly calculating the eigen vectors ti of the matrix SB = 1
NMMT , the eigen vectors

ui of the matrix MTM is calculated. And then the eigen vectors ti are obtained from ui as follows:

ti = Xui

Then the ti’s are normalized as follows:

Vi =
ti
||ti||

Now form the matrix Y:
Y = [V1 | V2 | V3 | ... | VC−1 | VC]

Arindam Bhanja Chowdhury abhanjac@purdue.edu Page 2 of 11

ECE 661 Fall 2018 Homework 10

and calculate the DB which are the eigen values of the matrix SB. Now find the Z vectors as
follows:

Z = Y D
− 1

2
B

Now compute the eigen vectors of ZTSWZ = (ZTX)(ZTX)T where X is given by the following:

X = [x11−m1 | x12−m1 | x13−m1 | ... | x1k −m1 | ... | xC1 −mC | ... | xCk −mC]

Organize the eigen vectors U of ZTSWZ in ascending order and select the vectors corresponding
to the smallest p eigen values from U. U have to be normalized as well. Now these new set of Up
will be used to create the projection vectors:

Wp = ZUp

The Wp are also normalized and then the projections are done using the equation:

yi = W T
p (xi −m)

Then the projected vector of the test image is classified using Nearest Neighbor classifier to predict
which class it belongs to.

4 Procedure

• The training images are vectorized and the eigen vectors of the covariance matrix is computed.

• Then the PCA and LDA are used to create a lower dimensional representation for the faces
in the training set. These dimensions are varied from p=1 to p=15 to see how the detection
accuracy changes with the variation in p.

• All the training images are projected into the p dimensional subspace.

• The test images are also projected into the p dimensional subspace and then it is classified
using the training images by nearest neighbor method. Only 1 nearest neighbor is used for
this classification.

• Classification accuracy is calculated for the PCA and LDA and then the plots of the variation
of the accuracy with the changes in the number of dimensions p is shown on a diagram.

5 Results: PCA and LDA

The results of PCA and LDA shows that the LDA achieves 100% accuracy earlier than PCA at a
dimension of p = 5 whereas PCA takes p = 13 dimensions for reaching a 100%.

Arindam Bhanja Chowdhury abhanjac@purdue.edu Page 3 of 11

ECE 661 Fall 2018 Homework 10

Figure 1: PCA and LDA accuracy plot.

6 Object Detection with Cascaded Classifier using AdaBoost Al-
gorithm

The main concept of cascaded AdaBoost classifier is to design a cascade of classifiers, each of which
consists of multiple weak classifiers (based on simple features). By selecting the targeted false-
positive rate and the true detection rate of each strong classifier, the final combined classifier can
achieve a desirable low false-positive rate while keeping the true detection rate being acceptable.
The figure below shows the configuration of the cascaded AdaBoost classifier.

The data given in this homework consists of images of cars and other non-car images. So there
is only one class to detect. There are 2468 images for training. 1758 negative examples and 710
positive examples. There are 618 testing images. 440 negative examples and 178 positive examples.
Each image is ofthe size of 20×40 (H×W)

6.1 HAAR Features for AdaBoost Classifier

In AdaBoost algorithm, the features are generated by using the weak classifiers. These weak
classifiers are simply built by the thresholding of feature. In this homework, we generate the
Haar-like edge detectors which detects edge features. They have the following form:

Arindam Bhanja Chowdhury abhanjac@purdue.edu Page 4 of 11

ECE 661 Fall 2018 Homework 10

Figure 2: HAAR like feature detectors used to extract features from the image. The white part
indicates the 0 region and the black part indicates the 1 region

In mathematical representation, the horizontal filter and vertical filter is denoted as [0, 1] and
[1, 0].T , respectively. To reduce computation burden, similar horizontal filters of size 1×2, 1×4, ...,
1×40 are used for sliding over the whole image to generate features. Analogously similar vertical
filters of the size 2×2, 4×2, ..., 20×2 are slided over the whole image as well. The output of each of
this filters at each location of an image will give rise to a feature for that image. So there is a total
of 11,900 features that can be extracted from each 20×40 image. The feature calculation utilizes
the integral image, which reduces computation efforts as well.

While computing the sum of the region inside the rectangle, the top left, top right, bottom left
and bottom right vertices of the rectangle has to be provided. In the code that we have presented
here, the function that calculates this sum needs the top left and top right vertices that are just
outside the region of the rectangle and the bottom left and bottom right vertices should be inside
the rectangle itself. Now for getting the area of the rectangles whose top left and top right vertices
are outside the boundary of the image (which may happen for the 1st row and 1st column of the
image), the area is considered to be 0.

6.2 AdaBoost - Find Best Weak Classifier and Combine into a Strong Classifier

The procedure of finding the best weak classifier is described as follows.

• First the Haar features are extracted from all the images in the training set and the test set.
These are then stacked together and saved as separate files. The shape of the training set
array is 11900×2468 (number of features x number of examples) and that of the testing set
array is 11900×618. The labels for positive examples are 1 and that of negative examples are
0. They are also saved in arrays of size 2468 and 618.

• Now, for the training phase we only work with the training set feature array and label array.
The objective is to create a cascade of strong classifiers each of which is a combination of
several weak classifiers. We specify the maximum number of strong classifiers to be created
by Adaboost as S and the maximum number of weak classifiers to be combined to create a
cascade as T.

• Now, there are 11900 features available to us from each image. We can take any one of these
feature and apply a simple threshold to its value. Say we selected the feature f and a threshold
value as θ. So we can now use this feature to create a simple classifier h1 such which classifies
an image x as positive if its f value is >= θ or as negative if its f value is < θ. This kind of
classifier h1(x, f, θ) is called a weak classifier.

Arindam Bhanja Chowdhury abhanjac@purdue.edu Page 5 of 11

ECE 661 Fall 2018 Homework 10

• Now we want these weak classifiers to be at least good enough to classify 50% of the data
correctly or have at least have the power to classify 50% of the data correctly. Should it
happen that the decision threshold θ is giving an error rate of more than 50%, then we can
always flip the logic of the classifier. That is modify h1 into h2 such that h2 classifies an
image x as negative if its f value is >= θ or as positive if its f value is < θ.

• We will represent both h1 and h2 using the same name h, but they will have another parameter
called polarity (p) such that if p = 1, then the logic of h1 will be followed (image x as positive
if its f value is >= θ and negative otherwise) and if p = -1 then the logic of h2 will be
followed (image x as negative if f value is >= θ and positive otherwise). So the final h will
be represented as h(x, f, θ, p).

• Mathematically this can be represented as the follows: The tth weak classifier is defined as:

h(x, f, p, θ) = 0 (f(x) < θ, p = 1)

h(x, f, p, θ) = 1 (f(x) >= θ, p = 1)

h(x, f, p, θ) = 1 (f(x) < θ, p = −1)

h(x, f, p, θ) = 0 (f(x) >= θ, p = −1)

• Now if we take a feature f out of the 11900 features, then the possible value of this feature
is obtained from what is observed in the training set. That is it can have altogether 2468
possible values (each value obtained from one of the training sample image). Now each of
these values can be a potential threshold. But the best threshold will be the one for which
the error is the lowest, i.e. the number of misclassifications in the lowest.

• Now instead of considering the number of misclassified samples as a metric to judge the
quality of a threshold, all the values (all the 2468 values) of this feature are multiplied with
some weights. And the sum of the weights of these misclassified samples is considered as the
metric to judge the quality of a threshold.

• If the number of positive training example is M and the number of negative training example
is L, then the initial weight for each positive training image is made 1

2M and that of each
negative training image is made 1

2L . This is so that the total sum of all the total sum of
positive weights is 0.5 and total sum of negative weights is also 0.5. And thereby the total
weights of all the examples taken together is 1.

• Now we have to select a bunch of weak classifiers h, to create a strong classifier, and the
maximum number of weak classifier to create a cascade is already specified as T. So we start
a loop with a loop variable t such that t will run from 1 to T. At each iteration we will do
the following:

– Normalize the current weights using the formula wt,i =
wt,i∑
i wt,i

. The wt,i is basically the

weight corresponding to the ith training sample in the tth iteration.

– Take a feature f from the set of 11900 features and choose a value of f as a threshold θ.
And for each θ do the following:

∗ Use this θ and compare it with the f values of all the 2468 training examples (or
x’s). This is equivalent to applying a simple weak classifier h(x, f, θ, p).

Arindam Bhanja Chowdhury abhanjac@purdue.edu Page 6 of 11

ECE 661 Fall 2018 Homework 10

∗ This comparison will yeild a true and a false (or a positive and a negative) label for
each of the training samples (x’s). This will serve as the classification result of the
weak classifier h(x, f, θ, p).

∗ Now we have two sets of classification results. One corresponding to the h(x, f, θ, p)
with p = 1 and another h(x, f, θ, p) with p = -1.

∗ In the classification result, many of the examples will be misclassified as well. Now
we have already assigned a weight corresponding to each of the training example.
So we take the sum of all the weights of all the misclassified training samples. This
sum will be called the weighted error ε. This error is calculated separately for both
the polarities.

∗ Now this is done by considering each of the values of f as a θ, one by one.

– Now each of the f’s out of the 11900 features available, are subjected to the same kind
of processing, one by one. And the combination of f, it’s corresponding θ and polarity
p, that yeilds the minimum value of ε is considered as the best weak classifier found in
the current iteration t. So this corresponding ht(x) = h(x, ft, θt, pt) is the best weak
classifier found in the iteration t which yeilds a minimum error εt.

– This above calculation of the minimum error can also be done much easily in the following
manner: For each feature, the feature values are sorted in ascending order first. And the
error for selecting the feature value of the current example as the threshold is calculated
as:

ε = min(S+ + (T− − S−), S− + (T+ − S+)) (1)

Where T+ is the total sum of weights corresponding to positive examples, T− is the
total sum of weights corresponding to negative examples, S+ is the sum of the weights
corresponding to positive examples whose value of the current feature is below the current
threshold value of the feature, and S− is the sum of the weights corresponding to the
negative examples whose value of the current feature is below the current threshold value
of the feature. The feature which gives us the minimum value for this error (e) is selected
as the best weak classifier.

– Now a parameter βt is calculated for each iteration t, such that βt = εt
1−εt . And another

parameter αt is calculated such that αt = log(1
βt

). This αt is the confidence factor for
this best weak classifier ht(x) = h(x, ft, θt, pt).

– This is because if the number of misclassification is high, then the sum of the weights of
the misclassified examples will also be high i.e. the weighted error εt will be high. So βt
will also be high and αt will be low (suppose εt = 0.1, then βt = 9, and αt will be some
small value). So this implies that when the amount of misclassification is more (which
indicates that the classifier h(x) is not good), the αt is also low. So a low α indicates a
bad h(x) classifier and a high α indicates a good h(x) classifier. Hence the α is basically
a confidence factor for the classifier h(x).

– Now, the weights are updated using the formula wt+1,i = wt,iβ
1−ei
t . wt+1,i will be the

weight of the training sample i for the next (t + 1)th iteration. Where ei = 0 if the ith

sample is correctly classified and ei = 1 if the ith sample is misclassified.

– This formula indicates that when the classification is wrong for the sample i i.e. ei =
1, wt+1,i = wt,i. That is, the weight is not updated for this training sample i. If ei
= 0, then weight for the sample i is updated. Now if ei = 0 and βt is low (i.e. the
classification was correct for sample i, and the εt was also low for h(x) which means h(x)

Arindam Bhanja Chowdhury abhanjac@purdue.edu Page 7 of 11

ECE 661 Fall 2018 Homework 10

is a good classifier), the weights are reduced by some amount. This is intuitively correct,
because if the classifier is already good and the classification is also correct, hence there
is no need to increase the weights too much. There is no need to put more emphasis
on this current example while selecting the next classifer as the current one is doing a
good enough job. However, if ei = 0 and βt is high (i.e. the classification was correct
for sample i, but the εt was high for h(x) which means h(x) is not a good classifier), the
weights are increased by some amount. This is intuitively correct as well, because if the
classifier is not good, the weights need to increase more, so that while selecting the next
weak classifier in the next iteration, this sample is emphasized more.

– Now each of the new best weak classifier found is then multiplied with its corresponding
αt value and then combined together to create the current version of the strong classifier
using the following formula.

C(x) = 1,
∑
t

αtht(x) >= threshold

C(x) = 0, otherwise

(2)

– After this the next iteration is perfomed.

– The loop will end either when t reaches its maximum value T, or if the stopping criterion
is reached. The stopping criterion is determined by the targeted false-positive rate and
the true detection rate for each strong classifier which is specified before the loop starts.
In this homework, the targeted true detection rate during training is 1, and the targeted
false-positive rate during training is 0.5.

It should be noted that the threshold for the strong classifier can be adjusted based
on our objective. Since we want our classifier to pass all the positive examples during
training, the threshold is set to the minimum value of

∑
t αtht(x) among the positive

examples. During testing this threshold is set to be 0.5×
∑

t αt.

• Now in this manner a set of best weak classifier is selected to create one strong classifier.

• This process is continued for at most S times to create atmost S number of cascades. After
the creation of one cascade, the overall true positive rate or the detection rate and the false
positive rate is calculated for the overall cascaded classifier, containing the cascades created
upto this current point. If it gets below the desired false positive rate and above the desired
detection rate (or true positive rate) of the overall cascaded classifier, then the cascade creation
process stops and no more cascade is created. So basically there are two sets of detection rates
(or true positive rates) and false positive rates involved. One is for the individual cascades
stages of strong classifier and the other is for the overall cascaded classifier.

• There is one more aspect to this training and creation of the cascades. After one strong
classifier stage is created, the negative training samples which are correctly classified by the
cascaded classifier built till now, are removed from the set of training samples. So only the
set of positive training samples and the misclassified negative training samples are used to
create the next cascade stage of strong classifier.

• So it may happen that the total number of negative training samples are all depleted after
creation of certain number of stages. In that case also the cascade creation process stops.

Arindam Bhanja Chowdhury abhanjac@purdue.edu Page 8 of 11

ECE 661 Fall 2018 Homework 10

6.3 AdaBoost - Performance Evaluation

The performance evaluation of AdaBoost is conducted using the false-positive rate (FP) and the
false-negative rate (FN):

FP =
Number of misclassified negative test images

total number of negative test images

FN =
Number of misclassified positive test images

total number of positive test images

(3)

In case of testing as well, the test samples that are classified as positive by a stage of the cascaded
classifier (which will include the false positives and the true positives) are sent into the next cascade
stage to be classified. Those test samples which are already predicted as negative by a certain strong
cascade stage are not tested in the later cascade stages.

Parameter Description Value

S Maximum number of cascades 10

T Maximum number of weak classifiers allowed in one cascade 100

Table 1: Parameter setting for the AdaBoost

7 Result: AdaBoost Training and Testing

7.1 Results of training phase

Cascade
Stage

No. of
Weak
Classifiers

No. of Pos-
itive samples
before - after

Detection
Rate

No. of Nega-
tive samples
before - after

False Pos-
itive Rate

1 10 710 - 710 100 % 1758 - 838 47.668 %

2 17 710 - 710 100 % 838 - 366 43.675 %

3 30 710 - 710 100 % 366 - 176 48.087 %

4 36 710 - 710 100 % 176 - 76 43.182 %

5 33 710 - 710 100 % 76 - 31 40.789 %

6 15 710 - 710 100 % 31 - 3 9.677 %

7 4 710 - 710 100 % 3 - 0 0.000 %

Table 2: Details of the stages of the cascaded classifier created by AdaBoost

Arindam Bhanja Chowdhury abhanjac@purdue.edu Page 9 of 11

ECE 661 Fall 2018 Homework 10

Figure 3: Plot of the False positive rate variation with the stages of the cascade during training.

7.2 Results of testing phase

Cascade
Stage

No. of Weak
Classifiers

False Positive
Rate (FP)

False Negative
Rate (FN)

1 10 0.089 0.152

2 17 0.018 0.202

3 30 0.014 0.236

4 36 0.005 0.281

5 33 0.002 0.320

6 15 0.002 0.365

7 4 0.002 0.365

Table 3: Details of the stages of the cascaded classifier created by AdaBoost

Arindam Bhanja Chowdhury abhanjac@purdue.edu Page 10 of 11

ECE 661 Fall 2018 Homework 10

Figure 4: Plot of the False positive rate and False negative rate variations with the stages of the
cascade during testing.

7.3 Observations

The classifier has been designed to achieve low false positive rates. So as the testing proceeds along
the deeper cascades which are more stronger classifiers, the overall false positive rate decreases.
There is an increase in the false negative rate as well, because in the attempt to reduce the number
of false positives, the strong classifiers also classify some of the positive examples as negative.

The classifier can be made stronger if more number of features were used. But that will also increase
the computation time and the overall training time.

Arindam Bhanja Chowdhury abhanjac@purdue.edu Page 11 of 11

12/5/18 hw10a_code.py 1

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/part1_face_detection/hw10a_code.py

#!/usr/bin/env	python

import	numpy	as	np,	cv2,	os,	time,	math,	copy,	matplotlib.pyplot	as	plt
from	scipy	import	signal,	optimize
from	sklearn.neighbors	import	KNeighborsClassifier

#===
#	ARINDAM	BHANJA	CHOWDHURY
#	abhanjac@purdue.edu
#	ECE	661	FALL	2018,	HW	10	Part	1.
#===

if	__name__	==	'__main__':
				
				#	TASK	1.1	Face	Recognition	using	PCA.
				
				#	Loading	the	images.

				trainFilepath	=	'./ECE661_2018_hw10_DB1/train'
				testFilepath	=	'./ECE661_2018_hw10_DB1/test'
				
				listOfTrainImgs	=	os.listdir(trainFilepath)
				listOfTestImgs	=	os.listdir(testFilepath)
				
				img1	=	cv2.imread(os.path.join(trainFilepath,	listOfTrainImgs[0]))
				imgH,	imgW,	_	=	img1.shape						#	Shape	is	128x128x3.
				
#---
				
				#	Creating	the	W	matrix	for	mapping	images.
				
				listOfImgs,	filepath,	dataName	=	listOfTrainImgs,	trainFilepath,	'train_face'
				
				nImgs	=	len(listOfImgs)
				arrOfLabels	=	[]
				
				#	All	the	vectorized	version	of	the	image	will	be	stored	in	this	array.
				for	idx,	i	in	enumerate(listOfImgs):
								#	Convert	to	single	channel	gray	image	and	then	vectorize.
								img	=	cv2.imread(os.path.join(filepath,	i))
								img	=	cv2.cvtColor(img,	cv2.COLOR_BGR2GRAY)
								imgVec	=	np.expand_dims(img.flatten(),	axis=1)					#	Vectorized	image	(16384x1).
								imgVec	=	imgVec	/	np.linalg.norm(imgVec)						#	Normalizing	the	vector.
								
								arrOfVecImgs	=	imgVec	if	idx	==	0	else	np.hstack((arrOfVecImgs,	imgVec))

								label	=	int(i[:2])
								arrOfLabels.append(label)

								print(f'Read	img	{idx+1}:	{i}')
				
				arrOfLabels	=	np.array(arrOfLabels)			#	Converting	the	list	into	array.
				
				meanVec	=	np.mean(arrOfVecImgs,	axis=1)
				meanVec	=	np.expand_dims(meanVec,	axis=1)					#	Mean	vector	is	now	16384x1.
				X	=	arrOfVecImgs	-	meanVec
				
				xTxMat	=	np.matmul(X.T,	X)
				L,	V	=	np.linalg.eigh(xTxMat)						#	Eigen	values	and	vectors	for	X.T*X.
				
				#	These	eigen	values	(and	corresponding	vectors)	are	not	sorted	from	highest
				#	to	lowest	values.	So	sorting	them	before	taking	the	largest	eigen	values.
				
				#	The	arrays	have	to	be	converted	to	lists	before	sorting.

12/5/18 hw10a_code.py 2

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/part1_face_detection/hw10a_code.py

				#	The	V	will	now	be	a	list	and	each	of	its	elements	should	be	a	sublist
				#	that	is	the	eigen	vector.
				#	But	if	we	dont	do	the	transpose,	then	the	V[0]	sublist	will	be	formed	of	
				#	the	row	elemets	of	V	array,	which	we	dont	want.	We	want	them	to	be	formed
				#	of	the	column	elements	of	V	array	and	hence	we	do	the	transpose	before	
				#	converting	into	a	list.

				L,	V	=	L.tolist(),	V.T.tolist()
				L,	V	=	zip(*sorted(zip(L,	V),	key=lambda	x:	x[0],	reverse=True))
				L,	V	=	np.array(L),	np.array(V).T
				
				W	=	np.matmul(X,	V)
				
				normW	=	np.linalg.norm(W,	axis=0)
				for	n	in	range(nImgs):						W[:,n]	/=	normW[n]

				#print(np.matmul(W.T,W))								#	Checking	for	orthonormality.
				
				filename	=	f'W_L_meanVec.npz'
				np.savez(filename,	W,	L,	meanVec)							#	Saving	the	W	matrix	and	L.
				print(f'File	{filename}	saved.')

				#	Saving	the	X	vectors	for	the	training	set.
				filename	=	f'X_&_labels_{dataName}.npz'
				np.savez(filename,	X,	arrOfLabels)						#	Saving	X	and	labels.
				print(f'File	{filename}	saved.')

#---

				#	Creating	the	feature	set	for	the	test	images.

				listOfImgs,	filepath,	dataName	=	listOfTestImgs,	testFilepath,	'test_face'

				nImgs	=	len(listOfImgs)
				arrOfLabels	=	[]

				for	idx,	i	in	enumerate(listOfImgs):
								#	Convert	to	single	channel	gray	image	and	then	vectorize.
								img	=	cv2.imread(os.path.join(filepath,	i))
								img	=	cv2.cvtColor(img,	cv2.COLOR_BGR2GRAY)
								imgVec	=	np.expand_dims(img.flatten(),	axis=1)					#	Vectorized	image	(16384x1).
								imgVec	=	imgVec	/	np.linalg.norm(imgVec)						#	Normalizing	the	vector.
								
								arrOfVecImgs	=	imgVec	if	idx	==	0	else	np.hstack((arrOfVecImgs,	imgVec))

								label	=	int(i[:2])
								arrOfLabels.append(label)

								print(f'Read	img	{idx+1}:	{i}')

				arrOfLabels	=	np.array(arrOfLabels)			#	Converting	the	list	into	array.

				X	=	arrOfVecImgs	-	meanVec
				
				#	Saving	the	X	vectors	for	the	training	set.
				filename	=	f'X_&_labels_{dataName}.npz'
				np.savez(filename,	X,	arrOfLabels)						#	Saving	X	and	labels.
				print(f'File	{filename}	saved.')

#---

				#	Nearest	Neighbor	Classification	for	PCA	method.

				#	Loading	train	features	and	labels.
				dataName	=	'train_face'

12/5/18 hw10a_code.py 3

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/part1_face_detection/hw10a_code.py

				npzFile	=	np.load(f'X_&_labels_{dataName}.npz')
				Xtrain,	labelsTrain	=	npzFile['arr_0'],	npzFile['arr_1']

				#	Loading	test	features	and	labels.
				dataName	=	'test_face'
				npzFile	=	np.load(f'X_&_labels_{dataName}.npz')
				Xtest,	labelsTest	=	npzFile['arr_0'],	npzFile['arr_1']

				#	Loading	W,	L	and	meanVec	values.
				npzFile	=	np.load(f'W_L_meanVec.npz')
				W,	L,	meanVec	=	npzFile['arr_0'],	npzFile['arr_1'],	npzFile['arr_2']

				#	Calculate	the	feature	vectors	for	different	p	values.
				#	p	is	the	number	of	eigen	vectors	to	be	considered	(size	of	the	dimension).
				accuracyList,	pList	=	[],	[]

				#	The	labelsTrain	have	to	be	a	list	for	using	it	for	the	KNN.
				labelsTrain	=	labelsTrain.tolist()
				nNeighbors	=	1
				
				for	p	in	range(1,	15):
								#	Since	p	is	the	number	of	dimensions,	so	it	should	start	from	1	and	not	0.
								Wp	=	W[:,	:p]
								
								#	Projecting	the	images	into	the	p-dimension	space.
								featuresTrain	=	np.matmul(Wp.T,	Xtrain)			#	These	are	train	features.
								featuresTest	=	np.matmul(Wp.T,	Xtest)			#	These	are	test	features.

								#	The	arrays	have	to	be	converted	to	lists	before	applying	kNN.
								#	The	Xtrain	will	now	be	a	list	and	each	of	its	elements	should	be	a	sublist
								#	that	is	the	image	vector	projected	on	the	p-dimension	subspace	or	in	other
								#	words	a	p-dimension	feature	vector	corresponding	to	an	image.
								
								#	But	if	we	dont	do	the	transpose,	then	the	Xtrain[0]	sublist	will	be	formed	
								#	of	row	elemets	of	Xtrain	array,	which	we	dont	want.	We	want	them	to	be	formed
								#	of	the	column	elements	of	Xtrain	array	and	hence	we	do	the	transpose	before	
								#	converting	into	a	list.
								featuresTrain	=	featuresTrain.T.tolist()

								KNN	=	KNeighborsClassifier(n_neighbors=nNeighbors)
								
								KNN.fit(featuresTrain,	labelsTrain)

								featuresTest	=	featuresTest.T.tolist()
								
								predLabel	=	KNN.predict(featuresTest)
								#print(KNN.predict_proba(Xtest))
								
								#	Now	matching	the	predLabelArr	with	the	labelsTest	to	find	which	of	the
								#	predictions	match.
								predLabelArr	=	np.array(predLabel)
								match	=	labelsTest	==	predLabelArr						#	Array	of	true	and	false.
								accuracy	=	np.mean(np.asarray(match,	dtype=int))	*	100
								accuracyList.append(accuracy)
								pList.append(p)
								print(f'Accuracy	with	p	=	{p}	and	{nNeighbors}	neighbors	in	KNN:	{accuracy}	%')
								
#===
								
				#	TASK	1.2	Face	Recognition	using	LDA.
				
				#	Loading	the	images.

				trainFilepath	=	'./ECE661_2018_hw10_DB1/train'
				testFilepath	=	'./ECE661_2018_hw10_DB1/test'

12/5/18 hw10a_code.py 4

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/part1_face_detection/hw10a_code.py

				
				listOfTrainImgs	=	os.listdir(trainFilepath)
				listOfTestImgs	=	os.listdir(testFilepath)
				
				img1	=	cv2.imread(os.path.join(trainFilepath,	listOfTrainImgs[0]))
				imgH,	imgW,	_	=	img1.shape						#	Shape	is	128x128x3.
				
#---

				#	Creating	the	Sw	matrix.
				
				listOfImgs,	filepath,	dataName	=	listOfTrainImgs,	trainFilepath,	'train_face'
								
				nImgs	=	len(listOfImgs)
				nClasses	=	30
				nImgsPerClass	=	21
				
				dictOfClassImgs	=	{}
				
				for	idx,	i	in	enumerate(listOfImgs):
								#	Convert	to	single	channel	gray	image	and	then	vectorize.
								img	=	cv2.imread(os.path.join(filepath,	i))
								img	=	cv2.cvtColor(img,	cv2.COLOR_BGR2GRAY)
								imgVec	=	np.expand_dims(img.flatten(),	axis=1)					#	Vectorized	image	(16384x1).
								imgVec	=	imgVec	/	np.linalg.norm(imgVec)						#	Normalizing	the	vector.
								
								label	=	int(i[:2])
								
								#	If	there	is	already	images	of	this	class	saved,	then	stack	this	current
								#	image	with	those.	Else	create	a	new	entry	for	this	class.
								if	label	in	dictOfClassImgs:
												dictOfClassImgs[label]	=	np.hstack((dictOfClassImgs[label],	imgVec))
								else:
												dictOfClassImgs[label]	=	imgVec
												
				#	Calculating	the	mean	images.
				dictOfMeanImgs	=	{	k:	np.expand_dims(np.mean(v,	axis=1),	axis=1)	\
																																								for	k,	v	in	dictOfClassImgs.items()	}
								
#---

				#	Now	taking	out	all	the	elements	from	the	dictionary	and	stacking	them	together.
				for	idx	in	range(nClasses):
								label	=	idx	+	1					#	Since	label	is	from	1	to	30	and	idx	is	from	0	to	29.
								
								#	Also	subtracting	the	meanImgs	from	the	stack	of	images	of	each	class.
								dictOfClassImgs[label]	-=	dictOfMeanImgs[label]
								
								arrOfVecImgs	=	dictOfClassImgs[label]	if	idx	==	0	\
																else	np.hstack((arrOfVecImgs,	dictOfClassImgs[label]))
								
								arrOfMeanImgs	=	dictOfMeanImgs[label]	if	idx	==	0	\
																else	np.hstack((arrOfMeanImgs,	dictOfMeanImgs[label]))
								
				globalMeanImg	=	np.mean(arrOfMeanImgs,	axis=1)
				globalMeanImg	=	np.expand_dims(globalMeanImg,	axis=1)

				#print(arrOfMeanImgs.shape,	globalMeanImg.shape,	arrOfVecImgs.shape)

#---

				M	=	arrOfMeanImgs	-	globalMeanImg
				
				mTmMat	=	np.matmul(M.T,	M)
				L,	V	=	np.linalg.eigh(mTmMat)						#	Eigen	values	and	vectors	for	M.T*M.

12/5/18 hw10a_code.py 5

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/part1_face_detection/hw10a_code.py

				
				#	These	eigen	values	(and	corresponding	vectors)	are	not	sorted	from	highest
				#	to	lowest	values.	So	sorting	them	before	taking	the	largest	eigen	values.
				
				#	The	arrays	have	to	be	converted	to	lists	before	sorting.
				#	The	V	will	now	be	a	list	and	each	of	its	elements	should	be	a	sublist
				#	that	is	the	eigen	vector.
				#	But	if	we	dont	do	the	transpose,	then	the	V[0]	sublist	will	be	formed	of	
				#	the	row	elemets	of	V	array,	which	we	dont	want.	We	want	them	to	be	formed
				#	of	the	column	elements	of	V	array	and	hence	we	do	the	transpose	before	
				#	converting	into	a	list.

				L,	V	=	L.tolist(),	V.T.tolist()
				L,	V	=	zip(*sorted(zip(L,	V),	key=lambda	x:	x[0],	reverse=True))
				L,	V	=	np.array(L),	np.array(V).T
				
				Vb	=	np.matmul(M,	V)
				
				normVb	=	np.linalg.norm(Vb,	axis=0)
				for	n	in	range(nClasses):						Vb[:,n]	/=	normVb[n]
				
				#	There	will	be	nClasses	no.	of	eigen	values.	But	the	total	no.	of	independent
				#	eigen	vectors	is	only	nClasses	-	1	theoritically.	Hence	there	will	be	one
				#	eigen	value	that	will	be	very	close	to	0.	So	when	arranged	in	descending	
				#	order,	the	last	eigen	value	is	the	one	that	is	almost	0.	So	only	the	first
				#	non-negligible	ones	are	retained.	The	corresponding	eigen	vector	is	also	
				#	ignored.
				Db,	Y	=	np.diag(L[:-1]),	Vb[:,	:-1]

				Db1	=	np.linalg.inv(np.sqrt(Db))				#	This	inverse	will	exist	as	the	near
				#	zero	eigen	values	of	Db	are	already	ignored.
				
				Z	=	np.matmul(Y,	Db1)
				
#---

				#	Z.T*Sw*Z	=	Z.T*(X.T*X)*Z	=	(Z.T*X)*(Z.T*X).T.	Where	X	is	the	zero	mean	
				#	array	of	all	image	vectors.
				X	=	arrOfVecImgs
				
				ZTX	=	np.matmul(Z.T,	X)							#	This	is	29x630	in	shape.	Small	enough.	So	
				#	finding	its	eigen	vectors	and	vectors	of	ZTX*ZTX.T	directly,	as	that	will
				#	be	of	shape	29x29	(not	using	the	same	trick	as	done	earlier	in	finding	the
				#	eigen	values	of	X*X.T	using	the	X.T*X	instead).
				
				ztxztxTmat	=	np.matmul(ZTX,	ZTX.T)
				
				#	Eigen	values	of	a	real	symmetric	matrix	should	be	real.	But	due	to	some
				#	internal	calcluations	np.linalg.eig	was	giving	complex	eigen	values	for	
				#	ztxTztxMat	even	though	it	is	a	symmetric	matrix.	Hence	the	function	
				#	np.linalg.eigh	is	used	which	is	specifically	designed	to	find	the	eigen	
				#	values	of	symmetric	matrix,	and	it	is	giving	proper	real	eigen	values.
				L,	U	=	np.linalg.eigh(ztxztxTmat)
				
				#	These	eigen	values	(and	corresponding	vectors)	are	not	sorted	from	LOWEST
				#	to	HIGHEST	values.	So	sorting	them	before	taking	the	SMALLEST	eigen	values.
				
				#	The	arrays	have	to	be	converted	to	lists	before	sorting.
				#	The	U	will	now	be	a	list	and	each	of	its	elements	should	be	a	sublist
				#	that	is	the	eigen	vector.
				#	But	if	we	dont	do	the	transpose,	then	the	U[0]	sublist	will	be	formed	of	
				#	the	row	elemets	of	U	array,	which	we	dont	want.	We	want	them	to	be	formed
				#	of	the	column	elements	of	U	array	and	hence	we	do	the	transpose	before	
				#	converting	into	a	list.
				

12/5/18 hw10a_code.py 6

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/part1_face_detection/hw10a_code.py

				L,	U	=	L.tolist(),	U.T.tolist()
				L,	U	=	zip(*sorted(zip(L,	U),	key=lambda	x:	x[0]))
				L,	U	=	np.array(L),	np.array(U).T
				
				normU	=	np.linalg.norm(U,	axis=0)
				for	n	in	range(U.shape[1]):						U[:,n]	/=	normU[n]
				
				#print(Z.shape,	U.shape)
				
				W	=	np.matmul(Z,	U)
				
				normW	=	np.linalg.norm(W,	axis=0)
				for	n	in	range(W.shape[1]):						W[:,n]	/=	normW[n]
				
				##print(np.matmul(W.T,W))								#	Checking	for	orthonormality.
				
				filename	=	f'W_LDA.npz'
				np.savez(filename,	W)							#	Saving	the	W	matrix	and	L.
				print(f'File	{filename}	saved.')
										
#---
				
				#	The	SAME	train	and	test	image	vectors	will	be	used	for	LDA	as	used	for	PCA.

#---

				#	Nearest	Neighbor	Classification	for	LDA	method.

				#	Loading	train	features	and	labels.
				dataName	=	'train_face'
				npzFile	=	np.load(f'X_&_labels_{dataName}.npz')
				Xtrain,	labelsTrain	=	npzFile['arr_0'],	npzFile['arr_1']

				#	Loading	test	features	and	labels.
				dataName	=	'test_face'
				npzFile	=	np.load(f'X_&_labels_{dataName}.npz')
				Xtest,	labelsTest	=	npzFile['arr_0'],	npzFile['arr_1']

				#	Loading	W	values.
				npzFile	=	np.load(f'W_LDA.npz')
				W	=	npzFile['arr_0']

				#	Calculate	the	feature	vectors	for	different	p	values.
				#	p	is	the	number	of	eigen	vectors	to	be	considered	(size	of	the	dimension).
				accuracyListLDA,	pListLDA	=	[],	[]

				#	The	labelsTrain	have	to	be	a	list	for	using	it	for	the	KNN.
				labelsTrain	=	labelsTrain.tolist()
				nNeighbors	=	1
				
				for	p	in	range(1,	15):
								#	Since	p	is	the	number	of	dimensions,	so	it	should	start	from	1	and	not	0.
								Wp	=	W[:,	:p]
								
								#	Projecting	the	images	into	the	p-dimension	space.
								featuresTrain	=	np.matmul(Wp.T,	Xtrain)			#	These	are	train	features.
								featuresTest	=	np.matmul(Wp.T,	Xtest)			#	These	are	test	features.

								#	The	arrays	have	to	be	converted	to	lists	before	applying	kNN.
								#	The	Xtrain	will	now	be	a	list	and	each	of	its	elements	should	be	a	sublist
								#	that	is	the	image	vector	projected	on	the	p-dimension	subspace	or	in	other
								#	words	a	p-dimension	feature	vector	corresponding	to	an	image.
								
								#	But	if	we	dont	do	the	transpose,	then	the	Xtrain[0]	sublist	will	be	formed	
								#	of	row	elemets	of	Xtrain	array,	which	we	dont	want.	We	want	them	to	be	formed

12/5/18 hw10a_code.py 7

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/part1_face_detection/hw10a_code.py

								#	of	the	column	elements	of	Xtrain	array	and	hence	we	do	the	transpose	before	
								#	converting	into	a	list.
								featuresTrain	=	featuresTrain.T.tolist()

								KNN	=	KNeighborsClassifier(n_neighbors=nNeighbors)
								
								KNN.fit(featuresTrain,	labelsTrain)

								featuresTest	=	featuresTest.T.tolist()
								
								predLabel	=	KNN.predict(featuresTest)
								#print(KNN.predict_proba(Xtest))
								
								#	Now	matching	the	predLabelArr	with	the	labelsTest	to	find	which	of	the
								#	predictions	match.
								predLabelArr	=	np.array(predLabel)
								match	=	labelsTest	==	predLabelArr						#	Array	of	true	and	false.
								accuracy	=	np.mean(np.asarray(match,	dtype=int))	*	100
								accuracyListLDA.append(accuracy)
								pListLDA.append(p)
								print(f'Accuracy	with	p	=	{p}	and	{nNeighbors}	neighbors	in	KNN:	{accuracy}	%')
								
#---

				#	Plotting	the	accuracy	vs	p	values.
				fig1	=	plt.figure(1)
				fig1.gca().cla()
				plt.plot(pList,	accuracyList,	'b',	label='PCA')
				plt.plot(pList,	accuracyList,	'.b')
				plt.plot(pListLDA,	accuracyListLDA,	'r',	label='LDA')
				plt.plot(pListLDA,	accuracyListLDA,	'.r')
				plt.xlabel('p	(number	of	dimensions)')
				plt.ylabel('Accuracy')
				plt.grid()
				plt.legend(loc=4)
				plt.title('Accuracy	of	PCA	and	LDA	with	variation	in	p	(k=1	in	KNN)')
				fig1.savefig('plot_of_accuracy_vs_p_for_face_classification.png')
				plt.show()

#===

12/5/18 hw10b_code.py 1

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/hw10b_code.py

#!/usr/bin/env	python

import	numpy	as	np,	cv2,	os,	time,	math,	copy,	matplotlib.pyplot	as	plt,	json
from	scipy	import	signal,	optimize
from	sklearn.neighbors	import	KNeighborsClassifier

#===
#	ARINDAM	BHANJA	CHOWDHURY
#	abhanjac@purdue.edu
#	ECE	661	FALL	2018,	HW	10	Part	2.
#===

#===
#	FUNCTIONS	CREATED	IN	HW10b.
#===

def	createIntegralImg(img):
				'''
				This	function	takes	in	a	gray	image	and	creates	an	integral	representation	of	
				the	same	image	and	returns	it.	But	the	input	image	has	to	be	grayscale.
				'''
				imgH,	imgW	=	img.shape
				
				#	The	values	in	the	integral	images	can	go	beyond	255.	Hence	this	image	should
				#	not	be	of	np.uint8.	Otherwise	there	will	be	value	overflow.
				intImg	=	np.zeros((imgH,	imgW))
				
				for	y	in	range(1,	imgH+1):
								for	x	in	range(1,	imgW+1):
												intImg[y-1,	x-1]	=	np.sum(img[:y,	:x])
				
				return	intImg

#===

def	sumOfRect(intImg,	tlc,	brc):
				'''
				This	function	takes	in	an	integral	image	and	also	the	top	left	corner	(tlc)	
				and	bottom	right	corner	(brc)	coordinates	of	a	rectangle	and	returns	the	
				sum	of	the	pixels	inside	that	rectangle.	The	tlc	and	brc	should	be	in	the	
				form	of	tuple	(x,y)	or	list	[x,y].

				A------B
				|						|
				C------D

				'''
				tlx,	tly,	brx,	bry	=	tlc[0]	-	1,	tlc[1]	-	1,	brc[0],	brc[1]

				#	If	the	index	is	outside	the	array	boundaries	then	the	value	of	
				#	that	region	is	0.
				D	=	intImg[bry,	brx]	if	bry	>	-1	and	brx	>	-1	else	0
				B	=	intImg[tly,	brx]	if	tly	>	-1	and	brx	>	-1	else	0
				C	=	intImg[bry,	tlx]	if	bry	>	-1	and	tlx	>	-1	else	0
				A	=	intImg[tly,	tlx]	if	tly	>	-1	and	tlx	>	-1	else	0

				s	=	D	-	C	-	B	+	A
				
				return	s

#===

def	type1HAARkernels(img):
				'''

12/5/18 hw10b_code.py 2

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/hw10b_code.py

				This	function	takes	in	the	most	elementary	horizontal	HAAR	kernel	of	type	
				[0,1],	[0,0,1,1],	[0,0,0,1,1,1]	etc.	The	image	is	given	as	input	to	
				find	how	much	should	be	the	maximum	width	of	the	kernels.	It	returns	all	
				the	possible	kernels	in	a	listOfKernels.
				'''
				imgH,	imgW	=	img.shape
				
				listOfKernels	=	[]
				for	w	in	range(1,	int(imgW/2)+1):
								zero,	one	=	np.zeros((1,w)),	np.ones((1,w))
								kernel	=	np.hstack((zero,	one))
								listOfKernels.append(kernel)
								
				return	listOfKernels

#===

def	type2HAARkernels(img):
				'''
				This	function	takes	in	the	most	elementary	horizontal	HAAR	kernel	of	type	
				[[1,1],[0,0]]	(2x2),	[[1,1],[1,1],[0,0],[0,0]]	(4x2),	
				[[1,1],[1,1],[1,1],[0,0],[0,0],[0,0]]	(6x2)	etc.	The	image	is	given	as	input	
				to	find	how	much	should	be	the	maximum	height	of	the	kernels.	It	returns	all	
				the	possible	kernels	in	a	listOfKernels.
				'''
				imgH,	imgW	=	img.shape
				
				listOfKernels	=	[]
				for	h	in	range(1,	int(imgH/2)+1):
								one,	zero	=	np.ones((h,2)),	np.zeros((h,2))
								kernel	=	np.vstack((one,	zero))
								listOfKernels.append(kernel)
								
				return	listOfKernels

#===

def	computeFeatureType1(intImg,	listOfType1Kernels):
				'''
				This	function	takes	in	the	integral	image	and	listOfKernels	of	type	1	and	
				calculates	the	haar	features	of	type	1	using	the	integral	image.	
				The	features	are	returned	as	an	array.

				A---B---E							A----B----E					A-----B-----E
				|	0	|	1	|							|	00	|	11	|					|	000	|	111	|
				C---D---F							C----D----F					C-----D-----F
				
							1x2														1x4														1x6
				
				'''
				imgH,	imgW	=	intImg.shape
				
				listOfS	=	[]
				for	k	in	listOfType1Kernels:
								kh,	kw	=	k.shape
								
								for	r	in	range(-1,	imgH-kh):
												for	c	in	range(-1,	imgW-kw):
																#	Corners	of	the	1	region	and	the	0	region	in	the	kernel.
																tlx0,	tly0,	brx0,	bry0	=	c,	r,	c	+	int(kw/2),	r	+	kh
																tlx1,	tly1,	brx1,	bry1	=	c	+	int(kw/2),	r,	c	+	kw,	r	+	kh
																
																#	If	the	index	is	outside	the	array	boundaries	then	the	value	of	
																#	that	region	is	0.
																A	=	intImg[tly0,	tlx0]	if	tly0	>	-1	and	tlx0	>	-1	else	0

12/5/18 hw10b_code.py 3

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/hw10b_code.py

																B	=	intImg[tly1,	tlx1]	if	tly1	>	-1	and	tlx1	>	-1	else	0
																C	=	intImg[bry0,	tlx0]	if	bry0	>	-1	and	tlx0	>	-1	else	0
																D	=	intImg[bry0,	brx0]	if	bry0	>	-1	and	brx0	>	-1	else	0
																E	=	intImg[tly1,	brx1]	if	tly1	>	-1	and	brx1	>	-1	else	0
																F	=	intImg[bry1,	brx1]	if	bry1	>	-1	and	brx1	>	-1	else	0
																
																s	=	F	-	2*D	+	2*B	-	E	+	C	-	A
																
																listOfS.append(s)
																
				return	listOfS

#===

def	computeFeatureType2(intImg,	listOfType2Kernels):
				'''
				This	function	takes	in	the	integral	image	and	listOfKernels	of	type	2	and	
				calculates	the	haar	features	of	type	2	using	the	integral	image.	
				The	features	are	returned	as	an	array.
				
				A----B							A----B					A----B
				|	11	|							|	11	|					|	11	|
				C----D							|	11	|					|	11	|
				|	00	|							C----D					|	11	|
				E----F							|	00	|					C----D
																	|	00	|					|	00	|
					2x2									E----F					|	00	|
																												|	00	|
																		4x2							E----F
																												
																													6x2
				
				'''
				imgH,	imgW	=	intImg.shape
				
				listOfS	=	[]
				for	k	in	listOfType2Kernels:
								kh,	kw	=	k.shape
								
								for	r	in	range(-1,	imgH-kh):
												for	c	in	range(-1,	imgW-kw):
																#	Corners	of	the	1	region	and	the	0	region	in	the	kernel.
																tlx1,	tly1,	brx1,	bry1	=	c,	r,	c	+	kw,	r	+	int(kh/2)
																tlx0,	tly0,	brx0,	bry0	=	c,	r	+	int(kh/2),	c	+	kw,	r	+	kh
																
																#	If	the	index	is	outside	the	array	boundaries	then	the	value	of	
																#	that	region	is	0.
																A	=	intImg[tly1,	tlx1]	if	tly1	>	-1	and	tlx1	>	-1	else	0
																B	=	intImg[tly1,	brx1]	if	tly1	>	-1	and	brx1	>	-1	else	0
																C	=	intImg[tly0,	tlx0]	if	tly0	>	-1	and	tlx0	>	-1	else	0
																D	=	intImg[bry1,	brx1]	if	bry1	>	-1	and	brx1	>	-1	else	0
																E	=	intImg[bry0,	tlx0]	if	bry0	>	-1	and	tlx0	>	-1	else	0
																F	=	intImg[bry0,	brx0]	if	bry0	>	-1	and	brx0	>	-1	else	0
																
																s	=	2*D	-	2*C	-	B	+	A	-	F	+	E
																
																listOfS.append(s)
																
				return	listOfS

#===

def	findBestWeakClassifier(arrOfTrainFeatures=None,	arrOfTrainLabels=None,	\
																												arrOfNormWeights=None,	nPosEx=None):
				'''

12/5/18 hw10b_code.py 4

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/hw10b_code.py

				This	function	takes	in	the	positive	and	negative	training	features	and	labels
				and	normalized	weights	and	then	returns	the	best	possible	weak	feature	among	
				all	the	available	features,	that	gives	the	lowest	misclassification	rate.
				It	also	returns	the	number	of	mismatches	and	the	classification	result	for
				this	best	weak	classifier.
				'''
				if	arrOfTrainFeatures	is	None	or	arrOfTrainLabels	is	None	or	arrOfNormWeights	\
							is	None	or	nPosEx	is	None:
								print('\nERROR:	arrOfTrainFeatures	or	arrOfTrainLabels	or	arrOfNormWeights	'\
															'or	nPosEx	not	provided.	Aborting.\n')

#---
				
				nFeatures,	nSamples	=	arrOfTrainFeatures.shape
				nNegEx	=	nSamples	-	nPosEx

				#	Converting	to	int	because	afterwards	predicted	labels	will	be	compared	with	
				#	these	using	'=='	or	'!='	operations	(which	are	not	good	for	using	on	floats).
				arrOfTrainLabels	=	np.asarray(arrOfTrainLabels,	dtype=int)
								
				#	Initializing	some	variables	which	will	be	updated	in	the	loop.
				bestWeakClassifier	=	[]
				bestClassifResult	=	np.zeros(nSamples)
				bestArrOfMisMatch	=	np.zeros(nSamples,	dtype=int)					#	Mismatch	array.
				bestErr	=	math.inf

#---

				#	Total	sum	of	positive	example	weights	(located	at	the	beginning	of	the	array).
				Tp	=	np.sum(arrOfNormWeights[:	nPosEx])
				#	Total	sum	of	negative	example	weights	(located	after	positive	example	weights).
				Tn	=	np.sum(arrOfNormWeights[nPosEx	:])

#---
				
				for	i	in	range(nFeatures):
				#for	i	in	range(1):
								#	Scanning	each	feature	of	the	set	of	11900	features.
								featuresOfAll	=	arrOfTrainFeatures[i].tolist()
								sampleIdx	=	list(range(nSamples))
								trueLabels	=	arrOfTrainLabels.tolist()								
								normWeightArr	=	arrOfNormWeights.tolist()

								#	Number	of	possible	values	of	this	current	feature.
								#	This	will	be	same	as	the	number	of	training	samples,	as	each	of	the	
								#	training	sample	provides	one	possible	value	of	this	feature.
								
								#	Sorting	the	values	of	the	current	featuresOfAll.
								featuresOfAll,	sampleIdx,	trueLabels,	normWeightArr	=	zip(*sorted(zip(\
																												featuresOfAll,	sampleIdx,	trueLabels,	normWeightArr),	\
																																																								key=lambda	x:	x[0]))

								#	Converting	back	to	arrays.
								featuresOfAll	=	np.array(featuresOfAll)
								sampleIdx	=	np.array(sampleIdx)
								trueLabels	=	np.array(trueLabels)
								normWeightArr	=	np.array(normWeightArr)
								
#---
								
								#	Sum	of	positive	example	weights,	whose	value	for	the	current	feature	
								#	(the	feature	i)	is	below	the	threshold	value	of	this	feature	(i.e.	
								#	jth	element	of	the	sorted	featuresOfAll	array	where	j	=	0	to	nSamples-1).
								Sp	=	np.cumsum(normWeightArr	*	trueLabels)
								Sn	=	np.cumsum(normWeightArr)	-	Sp

12/5/18 hw10b_code.py 5

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/hw10b_code.py

								
								err1	=	Sp	+	(Tn	-	Sn)
								err2	=	Sn	+	(Tp	-	Sp)
								
								#	Array	containing	the	min	value	of	err1	and	err2	arrays.
								minErr	=	np.minimum(err1,	err2)
								
								#	The	minimum	value	of	this	minErr	will	give	the	best	possible	error	rate.
								#	The	index	of	this	minimum	error	is	extracted.
								minErrIdx	=	np.argmin(minErr)
								
								if	err1[minErrIdx]	<=	err2[minErrIdx]:
												polarity	=	1

												#	Classification	results	using	current	threshold.
												#	For	polarity	1,	all	the	samples	which	have	feature	value	below
												#	the	threshold	are	classified	as	0.	Rest	are	1.
												classifResult	=	arrOfTrainFeatures[i]	>=	featuresOfAll[minErrIdx]
												classifResult	=	np.asarray(classifResult,	dtype=int)

												arrOfMisMatch	=	np.asarray(classifResult	!=	arrOfTrainLabels,	dtype=int)
												nMisMatch	=	int(np.sum(arrOfMisMatch))

												triple	=	[i,	featuresOfAll[minErrIdx],	polarity,	err1[minErrIdx],	nMisMatch]
												
								else:
												polarity	=	-1

												#	Classification	results	using	current	threshold.
												#	For	polarity	-1,	all	the	samples	which	have	feature	value	below
												#	the	threshold	are	classified	as	1.	Rest	are	0.
												classifResult	=	arrOfTrainFeatures[i]	<	featuresOfAll[minErrIdx]
												classifResult	=	np.asarray(classifResult,	dtype=int)

												arrOfMisMatch	=	np.asarray(classifResult	!=	arrOfTrainLabels,	dtype=int)
												nMisMatch	=	int(np.sum(arrOfMisMatch))

												triple	=	[i,	featuresOfAll[minErrIdx],	polarity,	err2[minErrIdx],	nMisMatch]
												
#---

								#	Chosing	the	feature	as	the	current	best	feature	if	its
								#	misclassification	rate	is	less	than	the	current	minimum.
								#	And	also	updating	the	bestErr.
								if	minErr[minErrIdx]	<	bestErr:
												bestWeakClassifier	=	triple
												bestClassifResult	=	classifResult
												bestArrOfMisMatch	=	arrOfMisMatch
												
												bestErr	=	minErr[minErrIdx]				#	Updating	bestErr	for	next	iteration.

								#print(i+1,	nMisMatch)

#---
		
				return	bestWeakClassifier,	bestClassifResult,	bestArrOfMisMatch

#===

def	createCascade(arrOfTrainFeatures=None,	arrOfTrainLabels=None,	nPosEx=None,	\
																			s=None,	acceptableFPRforOneCascade=None,	\
																			acceptableTPRforOneCascade=None,	T=None,	cascadeDict=None):
				'''
				This	function	takes	in	the	training	features	and	labels	and	also	the	values
				for	the	acceptable	thresholds	for	detection	rate	(true	positive	rate)	and	

12/5/18 hw10b_code.py 6

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/hw10b_code.py

				false	positive	rate	and	also	T	(which	is	the	maximum	number	of	best	weak	
				classifiers	to	be	used	for	creating	one	cascade)	and	the	cascade	id	(s),	and	
				creates	a	cascade.
				It	returns	the	new	set	of	training	samples	to	be	used	for	the	creating	the	
				next	cascade,	along	with	the	dictionary	that	has	the	details	of	all	the	
				cascades	created	till	now.
				'''
				if	arrOfTrainFeatures	is	None	or	arrOfTrainLabels	is	None	or	nPosEx	is	None	or	\
							s	is	None	or	acceptableFPRforOneCascade	is	None	or	\
							acceptableTPRforOneCascade	is	None	or	T	is	None:
								print('\nERROR:	arrOfTrainFeatures	or	arrOfTrainLabels	or	nPosEx=None	or	'	\
															's	or	acceptableFPRforOneCascade	or	acceptableTPRforOneCascade	or	T	'\
															'or	cascadeDict	not	provided.	Aborting.\n')

#---

				nFeatures,	nSamples	=	arrOfTrainFeatures.shape
				nNegEx	=	nSamples	-	nPosEx

				#	Initialize	the	positive	and	negative	example	weights.
				arrOfWeightsPos	=	np.ones(nPosEx)	/	(2	*	nPosEx)
				arrOfWeightsNeg	=	np.ones(nNegEx)	/	(2	*	nNegEx)

				#	Creating	a	combined	array	of	weights.
				arrOfNormWeights	=	np.hstack((arrOfWeightsPos,	arrOfWeightsNeg))	/	1.0
				#	Sum	of	all	weights	is	1.0.	Dividing	by	this	sum	to	normalize	the	weight	array.
				#	The	1/2	here	is	to	make	the	total	sum	of	all	weights	to	be	equal	to	1.	Sum	of	
				#	positive	examples	weights	will	be	0.5	and	negative	example	weights	is	also	0.5.

				listOfAlphas	=	[]
				hxList	=	[]						#	List	of	classification	results	of	best	weak	classifiers.
				bestWeakClassifList	=	[]				#	List	of	best	weak	classifiers	that	will	form	the	cascade.
				listOfTpr	=	[]
				listOfFpr	=	[]
				
#---

				for	t	in	range(T):
								
								startTime	=	time.time()
																
								#	Creating	normalized	weights.
								arrOfNormWeights	=	arrOfNormWeights	/	np.sum(arrOfNormWeights)

								#	Finding	the	best	weak	classifier.
								bestWeakClassifier,	bestClassifResult,	bestArrOfMisMatch	=	\
																findBestWeakClassifier(arrOfTrainFeatures,	arrOfTrainLabels,	\
																																								arrOfNormWeights,	nPosEx)
								
								print(f'Selected	best	weak	classifier	{t+1}:	Triple:	{bestWeakClassifier},	'	\
															f'Time	taken:	{time.time()	-	startTime	:	0.3f}	sec.')

#---

								#	Storing	the	bestWeakClassifier	in	the	list.
								bestWeakClassifList.append(bestWeakClassifier)

								#	Calculating	the	parameters.
								epsilon	=	bestWeakClassifier[3]
								
								beta	=	epsilon	/	(1	-	epsilon	+	0.000000001)
								#print(f'beta:	{beta}')
								
								alpha	=	math.log(1	/	(beta	+	0.000000001))
								#	The	0.000000001	is	to	prevent	division	by	0.

12/5/18 hw10b_code.py 7

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/hw10b_code.py

								
								#	Updating	the	weights	for	the	next	iteration.
								arrOfNormWeights	=	arrOfNormWeights	*	np.power(beta,	1	-	bestArrOfMisMatch)
				
#---

								#	Calculating	the	strong	cascade	classifier	output.
								listOfAlphas.append(alpha)
								hxList.append(bestClassifResult)
								
								#	We	have	to	implement	the	product	alpha	*	bestClassifResult	for	each	of	the	
								#	best	classifier	that	was	found	out.	Then	all	those	have	to	be	added	together
								#	to	create	a	new	vector	of	size	(2468,	same	as	the	number	of	samples).
								#	This	new	vector	should	be	compared	with	the	threshold	of	the	sum	of	alphas.
								#	So	we	create	an	array	of	alpha	and	another	matrix	of	the	classification	
								#	results	of	all	the	best	weak	classifiers	found	out	till	now.
								arrOfAlphas	=	np.array([listOfAlphas]).T				#	Converting	to	array	(T	x	1).
								hxArr	=	np.array(hxList).T						#	Converting	to	array	(2468	x	T).
								
								Cxtemp	=	np.matmul(hxArr,	arrOfAlphas)
								
								#	Since	we	want	the	true	positive	rate	or	the	detection	rate	to	be	1,	i.e.
								#	all	the	positive	examples	should	be	correctly	detected,	so	the	threshold
								#	for	comparing	the	output	(of	this	current	version	of	the	cascade	classifier)
								#	is	made	such	that	all	the	positive	examples	are	classified	as	1	
								#	which	is	result	in	a	true	positive	rate	or	detection	rate	to	be	1.
								#	Now	the	alphas	corresponding	to	the	positive	examples	are	present	in	the	
								#	beginning	nPosEx	no.	of	elements	of	the	arrOfAlphas.	Hence	the	lowest	
								#	value	among	these	first	nPosEx	is	used	as	a	threshold.
								thresholdAlpha	=	np.min(Cxtemp[:	nPosEx])
								#thresholdAlpha	=	np.sum(arrOfAlphas)	*	0.5
								
								#	Output	of	current	version	of	cascade	classifier	with	t	no.	of	weak	classifiers.
								Cx	=	Cxtemp	>=	thresholdAlpha
								Cx	=	np.asarray(Cx,	dtype=int)

								#print(Cx.shape)
								#print(thresholdAlpha,	np.argmin(Cxtemp[:	nPosEx]))
				
#---
				
								#	Calculate	the	False	Positive	and	False	Negative	rates	for	the	current
								#	cascade	classifier	with	t	no.	of	weak	classifiers.
								
								#	No.	of	misclassified	-ve	images	divided	by	total	no.	of	-ve	images.
								fpr	=	np.sum(Cx[nPosEx	:])	/	nNegEx

								#	No.	of	correctly	classified	+ve	images	divided	by	total	no.	of	+ve	images.
								tpr	=	np.sum(Cx[:	nPosEx])	/	nPosEx
								#	This	is	the	same	as	the	detection	rate.

								#	No.	of	misclassified	+ve	images	divided	by	total	no.	of	+ve	images.
								fnr	=	1	-	tpr

								#	No.	of	correctly	classified	-ve	images	divided	by	total	no.	of	-ve	images.
								tnr	=	1	-	fpr

								listOfTpr.append(tpr)
								listOfFpr.append(fpr)
								
								print(f'tpr:	{tpr},	fpr:	{fpr}')
								
								#	Break	if	tpr	and	fpr	have	reached	their	acceptable	thresholds.
								if	tpr	>=	acceptableTPRforOneCascade	and	fpr	<=	acceptableFPRforOneCascade:
												break

12/5/18 hw10b_code.py 8

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/hw10b_code.py

								
#---

				#	Now	once	the	set	of	best	weak	classifiers	in	the	cascade	has	made	the	
				#	detection	rate	(tpr)	and	the	fpr	reach	the	respective	acceptable	threshold,
				#	it	can	be	said	that	the	cascade	is	formed.
				#	Now	the	negative	examples	which	are	rightly	classified	as	negative	by	this
				#	cascade	will	be	removed	from	the	list	of	samples	and	the	rest	of	the	samples
				#	will	be	used	to	create	the	next	cascade.
				
				newArrOfTrainFeatures	=	arrOfTrainFeatures[:,	:	nPosEx]
				
				for	i	in	range(nNegEx):
								negIdx	=	i	+	nPosEx					#	Pointing	to	negative	example	index.
								
								if	Cx[negIdx]	>	0:
												#	Only	appending	the	misclassified	negative	examples	to	the	new	arrays.
												misclassifiedNegEx	=	arrOfTrainFeatures[:,	negIdx]
												misclassifiedNegEx	=	np.expand_dims(misclassifiedNegEx,	axis=1)
												newArrOfTrainFeatures	=	np.hstack((newArrOfTrainFeatures,	\
																																																	misclassifiedNegEx))
				
				#	Number	of	negative	examples	correctly	classified.
				#	This	is	the	same	as	the	number	by	which	the	negative	example	set	is	reduced
				#	by	this	current	cascade.
				nRemainingNegEx	=	newArrOfTrainFeatures.shape[1]	-	nPosEx
				nNegExReduced	=	nNegEx	-	nRemainingNegEx
				
				#	Creating	the	new	array	of	training	labels.
				newArrOfTrainLabels	=	np.ones(nPosEx	+	nRemainingNegEx)
				newArrOfTrainLabels[nPosEx	:]	=	0

#---

				#	Recording	the	details	in	the	cascade	dictionary.
				newCascadeDict	=	copy.deepcopy(cascadeDict)
								
				newCascadeDict[s]	=	{	'nWeakClassifiers':	t+1,	'tpr':	tpr,	'fpr':	fpr,	\
																												'nNegExReduced':	nNegExReduced,	\
																												'nRemainingNegEx':	nRemainingNegEx,	\
																												'listOfAlphas':	listOfAlphas,	\
																												'bestWeakClassifList':	bestWeakClassifList	
																										}
								
#---

				return	newCascadeDict,	newArrOfTrainFeatures,	newArrOfTrainLabels

#===

def	testWithCascade(arrOfTestFeatures=None,	cascade=None):
				'''
				This	function	takes	in	a	set	of	test	features	and	a	cascade
				and	with	which	the	features	will	be	classified	and	sends	out	the	result.
				'''
				
				#	Accessing	the	parameters.
				T	=	cascade['nWeakClassifiers']
				tpr,	fpr	=	cascade['tpr'],	cascade['fpr']
				nNegExReduced	=	cascade['nNegExReduced']
				nRemainingNegEx	=	cascade['nRemainingNegEx']
				listOfAlphas	=	cascade['listOfAlphas']
				bestWeakClassifList	=	cascade['bestWeakClassifList']

				#print(len(listOfAlphas))

12/5/18 hw10b_code.py 9

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/hw10b_code.py

				nFeatures,	nSamples	=	arrOfTestFeatures.shape
				
				hxList	=	[]

#---

				for	t	in	range(T):
								#	Accessing	the	parameters	of	the	weak	classifiers.
								featureId	=	bestWeakClassifList[t][0]
								thresh	=	bestWeakClassifList[t][1]
								polarity	=	bestWeakClassifList[t][2]
								
								#	Evaluating	the	output	of	current	weak	classifier.
								featuresOfAll	=	arrOfTestFeatures[featureId]
								if	polarity	==	1:
												classifResult	=	np.asarray(featuresOfAll	>=	thresh,	dtype=int)
								else:
												classifResult	=	np.asarray(featuresOfAll	<	thresh,	dtype=int)
												
								#	Storing	the	result	in	a	list.	This	combined	list	of	all	results	will	
								#	be	used	to	get	the	final	output	of	this	overall	cascade.
								hxList.append(classifResult)
								
#---

				#	Now	combining	the	results	from	all	the	weak	classifiers	to	get	the	final	
				#	result	of	this	cascade	classifier.
				arrOfAlphas	=	np.array([listOfAlphas]).T				#	Converting	to	array	(T	x	1).
				hxArr	=	np.array(hxList).T						#	Converting	to	array	(618	x	T).
				
				Cxtemp	=	np.matmul(hxArr,	arrOfAlphas)

				thresholdAlpha	=	np.sum(arrOfAlphas)	*	0.5
				
				#	Output	of	current	version	of	cascade	classifier	with	T	no.	of	weak	classifiers.
				Cx	=	Cxtemp	>=	thresholdAlpha
				Cx	=	np.asarray(Cx,	dtype=int)

				#print(arrOfAlphas.shape,	hxArr.shape,	Cx.shape,	thresholdAlpha)

				return	Cx

#===

if	__name__	==	'__main__':
				
				#	TASK	1.1	Object	detection	using	AdaBoost	based	cascaded	classifier.
				
				#	Loading	the	images.

				trainFilepathPos	=	'./ECE661_2018_hw10_DB2/train/positive'
				trainFilepathNeg	=	'./ECE661_2018_hw10_DB2/train/negative'
				testFilepathPos	=	'./ECE661_2018_hw10_DB2/test/positive'
				testFilepathNeg	=	'./ECE661_2018_hw10_DB2/test/negative'
				
				listOfTrainImgsPos	=	os.listdir(trainFilepathPos)
				listOfTrainImgsNeg	=	os.listdir(trainFilepathNeg)
				listOfTestImgsPos	=	os.listdir(testFilepathPos)
				listOfTestImgsNeg	=	os.listdir(testFilepathNeg)
				
#---

				#	Creating	the	features	for	the	train	positive	samples
				#	and	then	saving	them	to	a	file.

12/5/18 hw10b_code.py 10

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/hw10b_code.py

				
				nImgs	=	len(listOfTrainImgsPos)
				for	idx,	i	in	enumerate(listOfTrainImgsPos):
								img	=	cv2.imread(os.path.join(trainFilepathPos,	i))
								imgH,	imgW,	_	=	img.shape						#	Shape	is	20x40x3.
								img	=	cv2.cvtColor(img,	cv2.COLOR_BGR2GRAY)
								
								intImg	=	createIntegralImg(img)
								
								listOfType1Kernels	=	type1HAARkernels(img)
								listOfType2Kernels	=	type2HAARkernels(img)
								
								listOfS1	=	computeFeatureType1(intImg,	listOfType1Kernels)
								listOfS2	=	computeFeatureType2(intImg,	listOfType2Kernels)
								
								arrOfS	=	np.array(listOfS1	+	listOfS2)
								arrOfS	=	np.expand_dims(arrOfS,	axis=1)			#	Size	now	is	11900x1.
								
								arrOfTrainFeaturesPos	=	arrOfS	if	idx	==	0	else	\
																																				np.hstack((arrOfTrainFeaturesPos,	arrOfS))
																																
								print(f'Read	img	{idx+1}/{nImgs}:	{i}')
				
				arrOfTrainLabelsPos	=	np.ones((len(listOfTrainImgsPos)))
				
				#	Saving	the	array	in	a	file.
				filename	=	'train_features_pos.npz'
				np.savez(filename,	arrOfTrainFeaturesPos,	arrOfTrainLabelsPos)
				print(f'File	{filename}	saved.')
				
#---

				#	Creating	the	features	for	the	train	negative	samples
				#	and	then	saving	them	to	a	file.
				nImgs	=	len(listOfTrainImgsNeg)				
				for	idx,	i	in	enumerate(listOfTrainImgsNeg):
								img	=	cv2.imread(os.path.join(trainFilepathNeg,	i))
								imgH,	imgW,	_	=	img.shape						#	Shape	is	20x40x3.
								img	=	cv2.cvtColor(img,	cv2.COLOR_BGR2GRAY)
								
								intImg	=	createIntegralImg(img)
								
								listOfType1Kernels	=	type1HAARkernels(img)
								listOfType2Kernels	=	type2HAARkernels(img)
								
								listOfS1	=	computeFeatureType1(intImg,	listOfType1Kernels)
								listOfS2	=	computeFeatureType2(intImg,	listOfType2Kernels)
								
								arrOfS	=	np.array(listOfS1	+	listOfS2)
								arrOfS	=	np.expand_dims(arrOfS,	axis=1)			#	Size	now	is	11900x1.
								
								arrOfTrainFeaturesNeg	=	arrOfS	if	idx	==	0	else	\
																																				np.hstack((arrOfTrainFeaturesNeg,	arrOfS))
																																
								print(f'Read	img	{idx+1}/{nImgs}:	{i}')
				
				arrOfTrainLabelsNeg	=	np.zeros((len(listOfTrainImgsNeg)))
				#arrOfTrainLabelsNeg	=	np.ones((len(listOfTrainImgsNeg)))	*	-1
				
				#	Saving	the	array	in	a	file.
				filename	=	'train_features_neg.npz'
				np.savez(filename,	arrOfTrainFeaturesNeg,	arrOfTrainLabelsNeg)
				print(f'File	{filename}	saved.')
				
#---

12/5/18 hw10b_code.py 11

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/hw10b_code.py

				#	Creating	the	features	for	test	positive	samples
				#	and	then	saving	them	to	a	file.				
				nImgs	=	len(listOfTestImgsPos)
				for	idx,	i	in	enumerate(listOfTestImgsPos):
								img	=	cv2.imread(os.path.join(testFilepathPos,	i))
								imgH,	imgW,	_	=	img.shape						#	Shape	is	20x40x3.
								img	=	cv2.cvtColor(img,	cv2.COLOR_BGR2GRAY)
								
								intImg	=	createIntegralImg(img)
								
								listOfType1Kernels	=	type1HAARkernels(img)
								listOfType2Kernels	=	type2HAARkernels(img)
								
								listOfS1	=	computeFeatureType1(intImg,	listOfType1Kernels)
								listOfS2	=	computeFeatureType2(intImg,	listOfType2Kernels)
								
								arrOfS	=	np.array(listOfS1	+	listOfS2)
								arrOfS	=	np.expand_dims(arrOfS,	axis=1)			#	Size	now	is	11900x1.
								
								arrOfTestFeaturesPos	=	arrOfS	if	idx	==	0	else	\
																																				np.hstack((arrOfTestFeaturesPos,	arrOfS))
																																
								print(f'Read	img	{idx+1}/{nImgs}:	{i}')
				
				arrOfTestLabelsPos	=	np.ones((len(listOfTestImgsPos)))
				
				#	Saving	the	array	in	a	file.
				filename	=	'test_features_pos.npz'
				np.savez(filename,	arrOfTestFeaturesPos,	arrOfTestLabelsPos)
				print(f'File	{filename}	saved.')
				
#---

				#	Creating	the	features	for	the	test	negative	samples
				#	and	then	saving	them	to	a	file.
				nImgs	=	len(listOfTestImgsNeg)
				for	idx,	i	in	enumerate(listOfTestImgsNeg):
								img	=	cv2.imread(os.path.join(testFilepathNeg,	i))
								imgH,	imgW,	_	=	img.shape						#	Shape	is	20x40x3.
								img	=	cv2.cvtColor(img,	cv2.COLOR_BGR2GRAY)
								
								intImg	=	createIntegralImg(img)
								
								listOfType1Kernels	=	type1HAARkernels(img)
								listOfType2Kernels	=	type2HAARkernels(img)
								
								listOfS1	=	computeFeatureType1(intImg,	listOfType1Kernels)
								listOfS2	=	computeFeatureType2(intImg,	listOfType2Kernels)
								
								arrOfS	=	np.array(listOfS1	+	listOfS2)
								arrOfS	=	np.expand_dims(arrOfS,	axis=1)			#	Size	now	is	11900x1.
								
								arrOfTestFeaturesNeg	=	arrOfS	if	idx	==	0	else	\
																																				np.hstack((arrOfTestFeaturesNeg,	arrOfS))
																																
								print(f'Read	img	{idx+1}/{nImgs}:	{i}')
				
				arrOfTestLabelsNeg	=	np.zeros((len(listOfTestImgsNeg)))
				#arrOfTestLabelsNeg	=	np.ones((len(listOfTestImgsNeg)))	*	-1
				
				#	Saving	the	array	in	a	file.
				filename	=	'test_features_neg.npz'
				np.savez(filename,	arrOfTestFeaturesNeg,	arrOfTestLabelsNeg)
				print(f'File	{filename}	saved.')

12/5/18 hw10b_code.py 12

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/hw10b_code.py

				
#===

				#	TRAINING	THE	ADABOOST	CLASSIFIER.

				#	Loading	the	train	and	test	positive	and	negative	features	and	labels.
				filename	=	'train_features_pos.npz'
				npzFile	=	np.load(filename)
				arrOfTrainFeaturesPos,	arrOfTrainLabelsPos	=	npzFile['arr_0'],	npzFile['arr_1']
				#print(arrOfTrainFeaturesPos.shape,	arrOfTrainLabelsPos.shape)
				
				filename	=	'train_features_neg.npz'
				npzFile	=	np.load(filename)
				arrOfTrainFeaturesNeg,	arrOfTrainLabelsNeg	=	npzFile['arr_0'],	npzFile['arr_1']
				#print(arrOfTrainFeaturesNeg.shape,	arrOfTrainLabelsNeg.shape)
				
				nPosEx,	nNegEx	=	arrOfTrainLabelsPos.shape[0],	arrOfTrainLabelsNeg.shape[0]
				nFeatures,	nSamples	=	arrOfTrainFeaturesPos.shape[0],	nPosEx	+	nNegEx

#---

				arrOfTrainFeatures	=	np.hstack((arrOfTrainFeaturesPos,	arrOfTrainFeaturesNeg))
				arrOfTrainLabels	=	np.hstack((arrOfTrainLabelsPos,	arrOfTrainLabelsNeg))
				
				T	=	100			#	Max	number	of	weak	classifiers	to	be	used	for	creating	1	strong	cascade.
				S	=	10			#	Max	number	of	strong	cascades	to	be	built.
				targetFPR	=	0.000001				#	Target	false	positive	rate.
				targetTPR	=	1			#	Target	true	positive	rate	(detection	rate).
				FPR	=	1
				TPR	=	0
				FPRlist,	TPRlist,	cascadeStageIdx	=	[],	[],	[]
				
				#	This	is	the	threshold	for	accepting	the	false	+ve	rate	for	a	cascade.
				acceptableFPRforOneCascade	=	0.5
				#	This	is	the	threshold	for	accepting	the	true	+ve	rate	or	the	detection	rate
				#	for	a	cascade.	
				acceptableTPRforOneCascade	=	1
				
				#	Dictionary	to	hold	the	details	of	the	cascade.
				cascadeDict	=	{}
				
				loopStartTime	=	time.time()

				for	s	in	range(1,	S+1):			#	Cascades	are	named	as	1,2,3...	(not	as	0,1,2..).
								#	Creating	one	cascade.
								newCascadeDict,	newArrOfTrainFeatures,	newArrOfTrainLabels	=	\
																createCascade(arrOfTrainFeatures,	arrOfTrainLabels,	nPosEx,	s,	\
																			acceptableFPRforOneCascade,	acceptableTPRforOneCascade,	T,	\
																							cascadeDict)
								
#---

								cascadeDict	=	copy.deepcopy(newCascadeDict)			#	Updating	the	cascadeDict.
								
								#	Updating	the	feature	and	label	array	for	the	next	iteration.
								#	The	features	of	negative	examples	which	are	rightly	classified	as	negative	
								#	by	this	cascade	are	removed	from	the	feature	array	and	the	rest	of	the	
								#	samples	are	used	to	create	the	new	array	of	features.	This	will	be	used	
								#	to	create	and	train	the	next	cascade.

								arrOfTrainFeatures	=	copy.deepcopy(newArrOfTrainFeatures)
								arrOfTrainLabels	=	copy.deepcopy(newArrOfTrainLabels)
								
								#print(arrOfTrainFeatures.shape,	arrOfTrainLabels.shape)
								

12/5/18 hw10b_code.py 13

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/hw10b_code.py

								nRemainingNegEx	=	cascadeDict[s]['nRemainingNegEx']
								nNegExReduced	=	cascadeDict[s]['nNegExReduced']
								tpr,	fpr	=	cascadeDict[s]['tpr'],	cascadeDict[s]['fpr']
								
								print(f'\nCascade	{s}	created:	Number	of	negative	examples	reduced	from	'	\
															f'{nRemainingNegEx	+	nNegExReduced}	to	{nRemainingNegEx}.	Reduction	by	'	\
															f'{nRemainingNegEx	*	100	/	(nRemainingNegEx	+	nNegExReduced)	:	0.3f}	%.\n')

								TPR	*=	tpr						#	Updating	the	true	positive	(detection)	rate.
								FPR	*=	fpr						#	Updating	the	false	positive	rate.
								
								FPRlist.append(FPR)
								TPRlist.append(TPR)
								cascadeStageIdx.append(s)
								
								if	(TPR	>=	targetTPR	and	FPR	<=	targetFPR)	or	nRemainingNegEx	==	0:			break
								#	break	if	the	target	false	positive	rate	and	true	positive	(detection)	
								#	rates	are	achieved	or	there	are	no	more	misclassified	negative	examples.
								
#---

				#	Now	save	the	cascadeDict	in	a	json	file.
				with	open('cascadeDict.json',	'w')	as	infoFile:
								json.dump(cascadeDict,	infoFile,	indent=4,	separators=(',',	':	'))

				print(f'\nTotal	training	time:	{time.time()	-	loopStartTime	:	0.3f}	sec.\n')

#---

				#	Plotting	the	variation	of	the	False	positive	rate	with	the	cascade	stages.
				fig1	=	plt.figure(1)
				fig1.gca().cla()
				plt.plot(cascadeStageIdx,	FPRlist,	'r',	label='FPR')
				plt.plot(cascadeStageIdx,	FPRlist,	'.r')
				plt.grid()
				plt.legend(loc=1)
				plt.xlabel('cascade	stages')
				plt.ylabel('False	positive	rate')
				plt.title('Variation	of	false	positive	rate	with	cascade	stages')
				fig1.savefig('plot_of_FPR_vs_nStages_training.png')
				plt.show()
				
#===
				
				#	TESTING	THE	ADABOOST	CLASSIFIER.
				
				filename	=	'test_features_pos.npz'
				npzFile	=	np.load(filename)
				arrOfTestFeaturesPos,	arrOfTestLabelsPos	=	npzFile['arr_0'],	npzFile['arr_1']
				#print(arrOfTestFeaturesPos.shape,	arrOfTestLabelsPos.shape)
				
				filename	=	'test_features_neg.npz'
				npzFile	=	np.load(filename)
				arrOfTestFeaturesNeg,	arrOfTestLabelsNeg	=	npzFile['arr_0'],	npzFile['arr_1']
				#print(arrOfTestFeaturesNeg.shape,	arrOfTestLabelsNeg.shape)

				nTestPosEx,	nTestNegEx	=	arrOfTestLabelsPos.shape[0],	arrOfTestLabelsNeg.shape[0]
				
#---

				#	Load	the	classifier	from	the	saved	dictionary.
				with	open('cascadeDict.json',	'r')	as	infoFile:
								cascadeDict	=	json.load(infoFile)
				
				nStages	=	len(cascadeDict)

12/5/18 hw10b_code.py 14

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/hw10b_code.py

				
				#	Lists	to	store	the	false	positive	and	false	negative	rates	on	the	test	set.
				testFPRlist,	testFNRlist	=	[],	[]
				
				#	Initializing	the	number	of	false	positives	and	the	number	of	false	negative
				#	examples	nFP	and	nFN.	These	will	be	updated	at	every	stage.
				nFP,	nFN	=	0,	0

				arrOfTestFeatures	=	np.hstack((arrOfTestFeaturesPos,	arrOfTestFeaturesNeg))

				nPosEx,	nNegEx	=	nTestPosEx,	nTestNegEx					#	Initialize	nPosEx	and	nNegEx.
				
#---

				for	idx,	(k,	cascade)	in	enumerate(cascadeDict.items()):
								#	Testing	and	extracting	the	prediction	result	of	the	current	cascade.																
								Cx	=	testWithCascade(arrOfTestFeatures,	cascade)
								
								#	Remove	the	samples	which	are	classified	as	negative	by	current	cascade
								#	to	create	the	new	array	which	will	be	tested	using	the	next	cascade.
								#	Only	samples	classified	as	positive	are	considered	for	testing	
								#	on	the	next	stage.	Combining	these	samples	to	create	a	new	array.
								#	This	will	include	the	true	positive	examples	and	false	positive	examples.
								
								nTPex	=	0
								for	i	in	range(nPosEx):
												if	Cx[i,	0]	==	1:			#	Correctly	classified	positive	example.
																example	=	arrOfTestFeatures[:,	i]
																example	=	np.expand_dims(example,	axis=1)
																newArrOfTestFeatures	=	np.hstack((newArrOfTestFeatures,	example))	\
																																																					if	i	>	0	else	example
																nTPex	+=	1

								#	No.	of	false	negatives	is	same	as	the	difference	of	the	current	no.	of	
								#	true	positive	samples	from	the	initial	no.	of	positive	samples.
								nFN	+=	(nPosEx	-	nTPex)
								
								nFPex	=	0
								for	i	in	range(nNegEx):
												label	=	nPosEx	+	i						#	Pointing	to	negative	example	index.
												if	Cx[label,	0]	==	1:			#	Negative	example	classified	falsely	as	positive.
																example	=	arrOfTestFeatures[:,	label]
																example	=	np.expand_dims(example,	axis=1)
																newArrOfTestFeatures	=	np.hstack((newArrOfTestFeatures,	example))
																
																nFPex	+=	1
								
								nFP	=	nFPex
								
#---

								testFPRlist.append(nFP	/	nTestNegEx)
								testFNRlist.append(nFN	/	nTestPosEx)
								
								print(f'FPR	for	cascade	{k}	during	testing:	{testFPRlist[-1]	:	0.3f}')
								print(f'FNR	for	cascade	{k}	during	testing:	{testFNRlist[-1]	:	0.3f}')
																
								#	Updating	the	counts	of	positive	and	negative	examples	and	also	the	array
								#	of	features	for	the	next	cascade.
								nPosEx,	nNegEx	=	nTPex,	nFPex
								arrOfTestFeatures	=	copy.deepcopy(newArrOfTestFeatures)
								
								if	nPosEx	==	0:					break			#	break	if	there	are	no	more	positive	examples.
								#	This	is	just	for	fail	safe	for	the	case	when	all	examples	are	classified
								#	as	negetive.

12/5/18 hw10b_code.py 15

file:///media/arindam/E_Drive/PhD_Arindam/courses/2018/sem_9_aug_dec_2018/ECE_661_Computer_Vision/homeworks/hw10/hw10b_code.py

								
#---
				
				cascadeStageIdx	=	list(cascadeDict)
				
				#	Plotting	the	variation	of	the	False	positive	rate	with	the	cascade	stages.
				fig2	=	plt.figure(2)
				fig2.gca().cla()
				plt.plot(cascadeStageIdx,	testFPRlist,	'r',	label='FPR')
				plt.plot(cascadeStageIdx,	testFPRlist,	'.r')
				plt.plot(cascadeStageIdx,	testFNRlist,	'b',	label='FNR')
				plt.plot(cascadeStageIdx,	testFNRlist,	'.b')
				plt.grid()
				plt.legend(loc=2)
				plt.xlabel('cascade	stages')
				plt.ylabel('False	positive	and	False	negative	rates')
				plt.title('Variation	of	false	positive	and	false	negative	rates	with	cascade	stages')
				fig2.savefig('plot_of_FPR_and_FNR_vs_nStages_testing.png')
				plt.show()

	Overview
	Principle Component Analysis (PCA)
	Linear Discriminant Analysis (LDA)
	Procedure
	Results: PCA and LDA
	Object Detection with Cascaded Classifier using AdaBoost Algorithm
	HAAR Features for AdaBoost Classifier
	AdaBoost - Find Best Weak Classifier and Combine into a Strong Classifier
	AdaBoost - Performance Evaluation

	Result: AdaBoost Training and Testing
	Results of training phase
	Results of testing phase
	Observations

