
ECE 661 (Fall 2016) - Computer Vision - HW 9

Debasmit Das

November 22, 2016

1 Objective

The goal of this homework is to estimate the intrinsic and extrinsic camera parameters using
Zhang’s calibration algorithm.

2 Corner Detection

For corner detection the following steps are carried out -

• The Canny edge detector is applied on the calibration pattern to find edges. The threshold
of 0.7 is used.

• Hough Transform was applied to construct hough lines such that the gap between uncon-
nected lines are filled.

• The intersection of these lines are the corner points. So these corner points are numbered
accordingly. The order was from top to bottom and from left to right.

3 Calibration

After the corners were detected, the next step is to find the homography between world
coordinates and image pixels. The corner coordinates are measured using the ruler where the
top left corner has coordinates of (0,0). H is found such that where xI = HxW for each image.
H was found using nullspace of matrix as in previous homeworks. The solution for nullspace
was found to be an eigenvector that corresponded to the smallest eigenvalues after using SVD.

After the homographies are found the Zhang’s algorithm is applied to find the intrinsic pa-
rameter K ∈ R3×3 and extrinsic parameters R, t. The assumption of the algorithm is that
the calibration pattern is on Z = 0 and pictures of calibration pattern are taken from different
viewpoints. It is based on the assumption that the image of the absolute conic are independent
of the viewpoint or relative pose of the camera. The image of the absolute conic is given by
w = K−TK−1.
We can get hT1 wh1 = hT2 wh2 and hT1 wh2 = 0 where w is the image of the absolute conic
and vectors hi are columns of homography matrix H. We can reshape matrix w into a vec-
tor b = (w11, w12, w22, w13, w23, w33) and define vij = (hi1hj1, hi1hj2 + hi2hj1, hi2hj2, hi3hj1 +
hi1hj3, hi3hj2 + hi2hj3, hi3hj3)T . We can derive vT12b = 0 and (v11 − v22)T b = 0. Since v would
consists only values of matrix H, we can stack the result using n instances in the data set. b
is the null-space solution and can be found using SVD as the eigen-vector corresponding to the
smallest eigenvalue.
Even though the image of the conic is found out, we still have to find the parameters of the

1

camera. The camera calibration matrix is found as the following K =

αx s x0
0 αy y0
0 0 1

. The

parameters can be found using the following equations:

x0 =
w12 − w13 − w11w23

w11w22 − w2
12

(1)

x0 = w33 −
w2

13 + x0(w12w13 − w11w23)

w11
(2)

αx =

√
λ

w11
(3)

αy =

√
λw11

w11w22 − w2
12

(4)

s = −w12α
2
xαy
λ

(5)

y0 =
sx0
αy
− w13α

2
x

λ
(6)

The intrinsic parameters would be the same for all images but we have to calculate the extrinsic
parameter separately for each image depending on the viewpoint. They are calculated for each
image separately.
R = [r1, r2, r3] and K−1[h1, h2, h3] = [r1, r2, t] From these, we get
r1 = εK−1h1
r2 = εK−1h2
r3 = r1 × r2
t = εK−1h3,
where ε = 1

‖K−1h1‖

4 Refining Calibration Parameters

Since, corner detection might not give exact location of corners we use Levenberg-Marquadt
(LM) algorithm to refine the results. The Matlab’s inbuilt function is used for LM. The cost

function for the optimization is as follows Cost =
∑
i

∑
j

∥∥xij −K[Ri|ti]xM,j

∥∥2, where xij is the

jth pixel of the image i that was estimated using corner detection algorithm, xM,j is the world
coordinate j, Ri,ti are extrinsic parameters from image i, and K is intrinsic parameters of the
camera. All the parameters of the camera are stacked into p = [K,R1, t1, R2...] vector and use
LM algorithm to refine these parameters.
Since the matrix R has 9 parameters, but the rotation has only 3 DoF. So we use polar co-

ordinates and transform matrix R into Rodriguez representation. w = φ
2sinφ

r32 − r23r13 − r31
r21 − r12

 and

φ = cos−1 trace(R)−1
2 . To transform back from Rodriguez, we use R = I+ sinφ

φ [W]x+ 1−cosφ
φ [W]2x,

where Wx =

 0 −wz wy
wz 0 −wx
−wy wx 0

.

2

5 Conditioning Rotation Matrix

In every step, we need to make sure that the rotation matrix R is orthonormal. We need
to find the best orthonormal match to the given matrix Q. we have to minimize ‖R−Q‖2F ,
where ‖.‖F is the Frobenius norm. The solution to the problem is found by carrying out SVD.
[U,D, V] = SV D(Q) and we set R equal to UV T .

6 Incorporating Radial Distortion

We have assumed to have a pin-hole camera model. But the pin-hole camera model breaks
down for shorter focal-length. A radial distortion is introduced for which we need to compensate
for. The projected pixel x̂ = K[R|t]xW need to be modified to take care of the radial distortion.

x̂rad = x̂+ (x̂− x0)[k1r
2 + k2r

4] (7)

ŷrad = ŷ + (ŷ − y0)[k1r
2 + k2r

4] (8)

where k1, k2 are parameters for radial distortion and r2 = (x− x̂0)2 + (y − ŷ0)2.

7 Results

For Provided Dataset

Intrinsic parameters

Intrinsic parameters before LM

K =

728.827 1.563 318.89
0 727.18 238.28
0 0 1

 (9)

Intrinsic parameters after LM, without radial distortion

K =

943.53 1.77 319.8
0 942.89 235.3
0 0 1

 (10)

Intrinsic parameters after LM, with radial distortion

K =

944.01 1.6889 318.42
0 944.1279 232.16
0 0 1

 (11)

k1 = −0.2054, k2 = 1.0150

3

Output Images for detecting Corners

Figure 1: Canny Edge Detection Output for Pic 28 of Dataset

4

Figure 2: Hough Lines for Pic 28 of Dataset

5

Figure 3: Corners for Pic 28 of Dataset

6

Figure 4: Canny Edge Detection Output for Pic 40 of Dataset

7

Figure 5: Hough Lines for Pic 40 of Dataset

8

Figure 6: Corners for Pic 40 of Dataset

9

Images for extrinsic parameters

Figure 7: Extrinsic Parameters for Pic 20 of dataset

[R|t] =

 0.8247 −0.0048 0.6539 −50.2311
0.0483 0.997 −0.0742 −105.9935
−0.6522 0.0885 0.8223 724.1905

10

Figure 8: Extrinsic Parameters for Pic 23 of dataset

[R|t] =

0.9876 −0.1681 −0.2285 −62.511
0.1618 0.9946 −0.0948 −121.9222
0.2331 0.0830 0.9906 549.3707

11

Figure 9: Extrinsic Parameters for Pic 27 of dataset

[R|t] =

 0.9781 0.0332 0.2752 −95.9517
−0.1002 0.9443 0.4279 −102.5573
−0.2584 −0.4382 0.9250 604.1141

12

Figure 10: Extrinsic Parameters for Pic 38 of dataset

[R|t] =

 0.9360 −0.1031 0.4744 −68.63
0.1134 0.9964 −0.0263 −119.7376
−0.4721 0.0541 0.9387 767.2623

Output Images for Re-projection and also showing benefit of LM

We select Pic 28 of the dataset as the ’Fixed image’
Green markers are the ground truth and red markers are the projected ones

13

Figure 11: Re-projecting Pic 21 to 28 before LM (Error Mean = 1.372, Error Variance = 1.343)

14

Figure 12: Re-projecting Pic 21 to 28 after LM(Error Mean = 0.8854, Error Variance = 0.8161)

15

Figure 13: Re-projecting Pic 23 to 28 before LM (Error Mean = 1.9952, Error Variance =
1.5766)

16

Figure 14: Re-projecting Pic 23 to 28 after LM (Error Mean = 0.9454, Error Variance = 0.6729)

17

Figure 15: Re-projecting Pic 26 to 28 before LM (Error Mean = 1.0139, Error Variance =
0.5687)

18

Figure 16: Re-projecting Pic 26 to 28 after LM (Error Mean = 0.6711, Error Variance = 0.3209)

For Created Dataset

Intrinsic parameters

Intrinsic parameters before LM

K =

1218.8 −0.2 366.6
0 1215.4 682.5
0 0 1

 (12)

Intrinsic parameters after LM, without radial distortion

K =

1545.5 −6.4 368.3
0 1542.2 670.2
0 0 1

 (13)

Intrinsic parameters after LM, with radial distortion

K =

1524.7 −3.9 359.4
0 1525.9 624.2
0 0 1

 (14)

k1 = 0.2549, k2 = −0.9438

19

Output Images for detecting Corners

Figure 17: Canny Edge Detection Output for Pic 1 of Dataset

20

Figure 18: Hough Lines for Pic 1 of Dataset

21

Figure 19: Corners for Pic 1 of Dataset

22

Figure 20: Canny Edge Detection Output for Pic 20 of Dataset23

Figure 21: Hough Lines for Pic 20 of Dataset

24

Figure 22: Corners for Pic 20 of Dataset

25

Images for extrinsic parameters

Figure 23: Extrinsic Parameters for Pic 2 of dataset

26

[R|t] =

 0.7362 0.3656 −0.6280 −56.654
−0.4685 0.8974 −0.0485 −143.325

0.555 0.297 0.8087 911.3086

27

Figure 24: Extrinsic Parameters for Pic 3 of dataset

28

[R|t] =

 0.9156 0.1145 −0.5065 −150.69
−0.0604 0.9887 −0.1828 −217.90
−0.5157 0.1547 0.9091 954.1858

29

Figure 25: Extrinsic Parameters for Pic 7 of dataset

30

[R|t] =

 0.9649 0.3711 0.0854 −133.34
−0.3593 0.9548 −0.2389 −145.31
−0.1261 −0.2202 0.9845 887.25

31

Figure 26: Extrinsic Parameters for Pic 10 of dataset

32

[R|t] =

 0.9614 0.369 0.1388 −144.5634
−0.3823 0.952 0.2155 −218.36
−0.0964 −0.2375 0.9838 881.4249

Output Images for Re-projection and also showing benefit of LM

We select Pic 4 of the dataset as the ’Fixed image’
Green markers are the ground truth and red markers are the projected ones

33

Figure 27: Re-projecting Pic 5 to 4 before LM (Error Mean = 1.1188, Error Variance = 0.6939)34

Figure 28: Re-projecting Pic 5 to 4 after LM(Error Mean = 0.9068, Error Variance = 0.5328)35

Figure 29: Re-projecting Pic 6 to 4 before LM (Error Mean = 1.2367, Error Variance = 0.9524)36

Figure 30: Re-projecting Pic 6 to 4 after LM (Error Mean = 0.9821, Error Variance = 0.8287)37

Figure 31: Re-projecting Pic 9 to 4 before LM (Error Mean = 1.3117, Error Variance = 0.8542)38

Figure 32: Re-projecting Pic 9 to 4 after LM (Error Mean = 1.1053, Error Variance = 0.6374)39

Code

The script is in MATLAB 2016a and is self-explanatory

Script for Finding Corners

function [corner] = findCorners(filename)

gr_truth=imread(filename);

gr_truth_gray = rgb2gray(gr_truth);

gr_truth_edge = edge(gr_truth_gray,’canny’,0.7);%for provided dataset 0.8

figure

imshow(gr_truth_edge)

[H, T, R] = hough(gr_truth_edge,’RhoResolution’,0.5); %for provided dataset 0.5

P = houghpeaks(H,18,’Threshold’,15); %for our and provided dataset 18 and 15

%There will be 18 lines

lines = houghlines(gr_truth_edge,T,R,P,’FillGap’,150,’MinLength’,70);

%for our and provided dataset 150 and 70

line_param = zeros(length(lines),2); %slope, y-intersect,

%Initializing the horizontal and vertical

hor = []; ver = [];

for k = 1:length(lines)

xypt = [lines(k).point1; lines(k).point2];

%find the equation of the line y = mx + b

line_param(k,1) = (xypt(1,2)-xypt(2,2))/(xypt(1,1)-xypt(2,1));

% plot_line(lines,k,size(gr_truth_edge));

if(abs(line_param(k,1))>1)

ver = [ver k];

else

hor = [hor k];

end

if(abs(line_param(k,1)) == inf)

line_param(k,2) = inf;

else

line_param(k,2) = xypt(1,2) - line_param(k,1)*xypt(1,1);

end

end

%Initializing the list for the corners

corner = [];

for i = 1:length(lines)

n_c{i} = [];

end

%This is used to get rid of the extra lines

lines_hor = lines(hor);

ehor = zeros(1,length(hor));

for i= 1:length(lines_hor)

for j = i+1:length(lines_hor)

[pt]= intsect(lines_hor(i), lines_hor(j));

40

if(pt(1)>1 && pt(1)<size(gr_truth,2) && pt(2)>1 && pt(2)<size(gr_truth,1))

ehor(i) =ehor(i)+ 1;

ehor(j) = ehor(j)+1;

end

end

end

lines_ver = lines(ver);

ever = zeros(1,length(ver));

for i= 1:length(lines_ver)

for j = i+1:length(lines_ver)

[pt]= intsect(lines_ver(i), lines_ver(j));

if(pt(1)>1 && pt(1)<size(gr_truth,2) && pt(2)>1 && pt(2)<size(gr_truth,1))

ever(i) = ever(i) +1;

ever(j) = ever(j) +1;

end

end

end

%Sorting the line according to indices

[ever ind1] = sort(ever,’ascend’);

[ever ind2] = sort(ehor,’ascend’);

lines = lines([hor(ind2(1:10)) ver(ind1(1:8))]);

%plot the lines

figure

imshow(gr_truth_gray)

for k = 1:length(lines)

ptxy = [lines(k).point1; lines(k).point2];

%find the equation of the line y = mx + b

%find slope m

line_param(k,1) = (ptxy(1,2)-ptxy(2,2))/(ptxy(1,1)-ptxy(2,1));

if(abs(line_param(k,1)) == inf)

line_param(k,2) = inf;

hold on

y = 1:size(gr_truth,1);

x = ptxy(1,1)*ones(1,length(y));

plot(x,y,’Color’,’green’)

else

line_param(k,2) = ptxy(1,2) - line_param(k,1)*ptxy(1,1);

f = @(x) line_param(k,1)*x + line_param(k,2);

x = 1:size(gr_truth,2);

y = uint64(f(x));

hold on

plot(x,y,’Color’,’green’);

end

end

%***

%find the corners

for i= 1:length(lines)

for j = i+1:length(lines)

[pt]= intsect(lines(i), lines(j));

if(pt(1)>1 && pt(1)<size(gr_truth,2) && pt(2)>1 && pt(2)<size(gr_truth,1))

41

corner = [corner; pt];

% hold on

% plot(pt(1),pt(2),’r*’)

n_c{i} = [n_c{i} size(corner,1)];

n_c{j} = [n_c{j} size(corner,1)];

end

end

end

%label the corners same way

hor = [];

ver = [];

for i = 1:length(lines)

if(length(n_c{i}) ==8)

hor = [hor i];

else

ver = [ver i];

end

end

xs = zeros(length(ver),1);

for i = 1:length(ver)

%sort corners according to smallest x

ind = n_c{ver(i)}; %these are corners that are on that line

xs(i) = min(corner(ind,1)); %this is the smallest y for that vertical line

end

[d ind] = sort(xs,’ascend’); %sort vertical lines according to the smalles x

ver = ver(ind); %vertical lines are sorted

labels = zeros(80,1);

cnt = 0;

ys = zeros(10,1); %for each vertical line sort

for i = 1:length(ver)

ind = n_c{ver(i)}; %these are corners that are on that line

ys = corner(ind,2);

[d sind] = sort(ys,’ascend’);

for j = 1:length(sind) %1 to 10

cnt =cnt + 1;

labels(cnt) = ind(sind(j));

end

end

corner = corner(labels,:);

% This script is for labelling the corners

for i = 1:length(labels)

hold on

text(corner(i,1),corner(i,2),int2str(i),’Color’,’r’);

end

end

Script for Finding Intersection of Lines

function [point]=intsect(l1, l2)

% This function is used to find the intersection of 2 lines

42

pt1 = [l1.point1 1];

pt2 = [l1.point2 1];

lA = cross(pt1,pt2); % Getting the first line

pt1 = [l2.point1 1];

pt2 = [l2.point2 1];

lB = cross(pt1,pt2); % getting the second line

point = cross(lA,lB); % getting the intersectiion of the two lines

point = double([point(1)/point(3) point(2)/point(3)]); % Converting to

% Homogeneous coordinates

end

Script for finding the least squares solution

function [A] = findA(xW,yW,xIM,yIM)

A = [];

for i = 1:length(xW)

B = [xW(i) yW(i) 1 0 0 0 -xW(i)*xIM(i) -yW(i)*xIM(i) -xIM(i);

0 0 0 xW(i) yW(i) 1 -xW(i)*yIM(i) -yW(i)*yIM(i) -yIM(i)];

A = [A; B];

end

end

Script for defining objective function for LM algorithm

function err = dgeom(p,xW,xIM,rad_dist,nimg)

% p is the set of parameters for LM algorithm

ax = p(1);

s = p(2);

x0 = p(3);

ay = p(4);

y0 = p(5);

K = [ax s x0; 0 ay y0; 0 0 1]; % The intrinsic calibration matrix

if(rad_dist == 1)

k1 = p(6);

k2 = p(7); % These are the parameters of radial distortion

K1 = [ax 0 x0; 0 ay y0; 0 0 1];

cnt = 7;

else

cnt = 5;

end

xproj = zeros(1,nimg*160);

n1=1;

for k = 1:nimg

% Converting to the R,t using Rodriguez formula

w = p(cnt+1:cnt+3);

t = p(cnt+4:cnt+6)’;

cnt = cnt + 6;

wx = [0 -w(3) w(2); w(3) 0 -w(1); -w(2) w(1) 0];

phi = norm(w);

R = eye(3)+sin(phi)/phi*wx + (1-cos(phi))/phi*wx^2;

n2=1;

for i = 1:80

43

% Projection for all the corner points onto the fixed image.

x = K*[R t]*[xW(n2:n2+1) 0 1]’;

xproj(n1:n1+1) = [x(1)/x(3) x(2)/x(3)];

if(rad_dist == 1)

xp = [xproj(n1:n1+1) 1];

xw = inv(K1)*xp’;

r2 = xw(1)^2 + xw(2)^2;

xp1 = xw(1) + xw(1)*(k1*r2+k2*r2^2);

xp2 = xw(2) + xw(2)*(k1*r2+k2*r2^2);

x = K1*[xp1 xp2 1]’;

xproj(n1:n1+1) = [x(1)/x(3) x(2)/x(3)];

end

n1 = n1+2;

n2 = n2+2;

end

end

err = xIM - xproj;

end

Main Script

close all; warning off;

%Now we have to initialize the world co-ordinates measured with ruler

xW=zeros(80,2)

for j=1:8

for i=1:10

xW((j-1)*10+i,:)=[(j-1)*25 (i-1)*25];

end

end

nimg=20; % The number of images used

rad_dist=1; % This is the indicator of whether radial distortion is used.

HAll=[];V=[];xIM=[];

for k =1:20

filename = strcat(’Dataset2/Pic_’,int2str(k),’.jpg’);

%the coordinates of the corners in the image

[imcoord] = findCorners(filename);

xIM{k} = imcoord;

%solve Ah = 0, and find A for the homography

A = findA(xW(:,1),xW(:,2),double(imcoord(:,1)),double(imcoord(:,2)));

[U,D,T] = svd(A);

h = T(:,9);

H = [h(1:3)’; h(4:6)’; h(7:9)’];

HAll{k} = H;

%V matrix for calculating the intrinsic parameters

i=1;j=2;

v12 = [H(1,i)*H(1,j), H(1,i)*H(2,j)+H(2,i)*H(1,j), H(2,i)*H(2,j), H(3,i)*H(1,j)+H(1,i)*H(3,j) ,H(3,i)*H(2,j)+H(2,i)*H(3,j),H(3,i)*H(3,j)];

i=1;j=1;

v11 = [H(1,i)*H(1,j), H(1,i)*H(2,j)+H(2,i)*H(1,j), H(2,i)*H(2,j), H(3,i)*H(1,j)+H(1,i)*H(3,j) ,H(3,i)*H(2,j)+H(2,i)*H(3,j),H(3,i)*H(3,j)];

i=2;j=2;

v22 = [H(1,i)*H(1,j), H(1,i)*H(2,j)+H(2,i)*H(1,j), H(2,i)*H(2,j), H(3,i)*H(1,j)+H(1,i)*H(3,j) ,H(3,i)*H(2,j)+H(2,i)*H(3,j),H(3,i)*H(3,j)];

44

V = [V;v12;(v11-v22)];

end

[U,D,T] = svd(V);

b = T(:,6); %B11 B12 B22 B13 B23 B33

%intrinsic parameters

y0 = (b(2)*b(4)-b(1)*b(5))/(b(1)*b(3)-b(2)^2);

lambda = b(6)-(b(4)^2+y0*(b(2)*b(4)-b(1)*b(5)))/b(1);

ax = sqrt(lambda/b(1));

ay = sqrt(lambda*b(1)/(b(1)*b(3)-b(2)^2));

s = -b(2)*ax^2*ay/lambda;

x0 = s*y0/ay-b(4)*ax^2/lambda;

K = [ax s x0; 0 ay y0; 0 0 1];

p = zeros(1,5+6*nimg);

p(1:5) = [ax s x0 ay y0];

if(rad_dist)

p = zeros(1,7+6*nimg);

p(1:5) = [ax s x0 ay y0];

p(6:7) = [0 0];

cnt = 7;

else

p = zeros(1,5+6*nimg);

p(1:5) = [ax s x0 ay y0];

cnt = 5;

end

ydata=[];

K_inv = inv(K);

R_b4LM = [];

R_LM = [];

t_b4LM = [];

t_LM = [];

%This is for intrinsic parameters R,t

%The R is also converted to Rodriguez formula

%for w and theta

for k = 1:nimg

H = HAll{k};

t = K_inv*H(:,3);

mag = norm(K_inv*H(:,1));

if(t(3)<0)

mag = -mag;

end

r1 = K_inv*H(:,1)/mag;

r2 = K_inv*H(:,2)/mag;

r3 = cross(r1,r2);

R = [r1 r2 r3];

t = t/mag;

[U,D,V] = svd(R);

R = U*V’;

R_b4LM{k}=R;

45

t_b4LM{k}=t;

% Rodriguez formula used here

phi = acos((trace(R)-1)/2);

w = phi/(2*sin(phi))*([R(3,2)-R(2,3) R(1,3)-R(3,1) R(2,1)-R(1,2)])’;

p(cnt+1:cnt+3) = w;

p(cnt+4:cnt+6) = t;

cnt = cnt + 6;

y=xIM{k};

y=y’;

ydata=[ydata y(:)’];

end

x = xW’;

xdata = x(:)’;

% LM algorithm is carried out for refinement

options = optimoptions(’lsqcurvefit’,’Algorithm’,’levenberg-marquardt’);

p1 = lsqnonlin(@dgeom,p,[],[],options,xdata,ydata,rad_dist,nimg);

% Finding the intrinsic calibration matrix

ax = p1(1);

s = p1(2);

x0 = p1(3);

ay = p1(4);

y0 = p1(5);

K1 = [ax s x0; 0 ay y0; 0 0 1];

if(rad_dist)

k1 = p1(6);

k2 = p1(7); % Finding the radial distortion parameters

cnt = 7;

else

cnt = 5;

end

%Converting back to R and t for extrinsic parameters after LM

for k = 1:nimg

w = p1(cnt+1:cnt+3);

t_LM{k} = p1(cnt+4:cnt+6)’;

cnt = cnt + 6;

wx = [0 -w(3) w(2); w(3) 0 -w(1); -w(2) w(1) 0];

phi = norm(w);

R_LM{k} = eye(3)+sin(phi)/phi*wx + (1-cos(phi))/phi*wx^2;

end

Script for Reprojection

function [] = reproj(R,t,K,xW,k)

% R is the list of Calibrated rotation matrices

% t is the list of calibrated translation vectors

% K is the intrinsic camera calibration matrix

% xW is the list of corner world coordinates

% k is the index of the projected image

46

%fixed image is image 4 for our dataset

filename = strcat(’Dataset2/Pic_’,int2str(4),’.jpg’);

img = rgb2gray(imread(filename));

Pfix = K*[R{4}(:,1:2) t{4}]; %This is the Homography for the fixed image

xtrue = xW{4};

P = K*[R{k}(:,1:2) t{k}];%This is the Homography for the projected image

x0 = K(1,3);

y0 = K(2,3); % These are the co-ordinates of the principal point

xi = xW{k};

xi = [xi ones(size(xi,1),1)];

xyz = inv(P)*xi’;

xest = (Pfix*xyz)’;

figure

imshow(img)

%Now plotting the reprojections

for i = 1:80

xest(i,:) = xest(i,:) / xest(i,3);

hold on

plot(uint64(xtrue(i,1)),uint64(xtrue(i,2)),’g.’,’MarkerSize’,12);

hold on

plot(uint64(xest(i,1)),uint64(xest(i,2)),’r.’,’MarkerSize’,12);

end

xest = xest(:,1:2);

hold off

mean(abs(xtrue(:)-xest(:))); %Plotting the mean of error

var(abs(xtrue(:)-xest(:))); %Plotting the variance of error

end

47

