
ECE661: Homework 8

Fall 2016
Vinoth Venkatesan

venkat26@purdue.edu

November 7, 2016

Task 1.

Problem description : Implement the Local Binary Pattern (LBP) algorithm for tex-
ture characterization of images for the given classes of training images to obtain the texture
histograms. Provide labels to histograms of pictures in the same class.

Solution :

The texture characterization of images can be done using various methods like GLCM
(Gray Level Co-occurence Matrix) and LBP (Local Binary Pattern). The implementation
of LBP is explained below:

• Finding coordinates and intensities of neighboring points:

The neighbors of the pixel under construction is calculated using the change in distance
along two orthogonal axis as:

(∆u,∆v) =

(
Rcos(

2πp

P
), Rsin(

2πp

P
)

)
p = 0, 1, 2, .., 7

Here, the neighbors are found in a unit circle around the center pixel. The number of
points is set by setting the value of P = 8. After finding the position of these pixels,
we need to find the intensity of these point locations.

– If these points coincide with an existing pixel value, then the intensity of that
pixel value is set to that point.

– If the point does not coincide with any pixel, we can use an interpolation tech-
nique. Here, a weighted mean of the intensity values of the four surrounding
pixels was used to find the value of the current pixel as follows (here the weights
are the inverse of the euclidean distances from the point):

Ii =
I1iw1 + I2iw2 + I3iw3 + I4iw4

w1 + w2 + w3 + w4

1

• Representing the intensities using a minimum value pattern

In order to get the binary pattern which will act as a representation of these values,
we use the following logic:

– If the intensity value is greater than or equal to the value at the center, we give
it a label 1

– If the value is lesser, we give it a label 0.

This way, we get the binary pattern for the each pixel in the image. Now, in order to
make the algorithm robust enough to reject in-plane rotations, we rotate the obtained
binary pattern one bit at a time and keep doing it until we get the maximum number
of zeros in the most significant bit (MSB) positions. This can done as follows:

– We rotate the pattern one bit at a time and find the unsigned integer value
corresponding to that pattern.

– We use the pattern which has the least integer value and this pattern will represent
the local texture of the pixel.

• Encoding the binary pattern values:

After we have acquired the binary pattern, we encode or represent these texture pat-
terns based on the number of runs of 1’s and 0’s as follows:

– If there are exactly two runs, a run of 0’s followed by 1’s, represent the pattern
by the number of 1’s in the second run.

– If the pattern has all 0’s, then represent it with 0.

– If the pattern has all 1’s, represent it with the value P(= 8).

– If the pattern has more than two runs, encode it with the value of P.

Once we have encoded the pixel, we update the histogram for the image which has
8-bins (equal to the value of P). This histogram then represents the image and will be
used to compare with the test images to determine the label for the test image.

The LBP algorithm is implemented for all the training images in the four classes and
each of these histograms are associated with a label depending on the class they belong to.

Task 2.

Problem description : Using the NN-Classifier, we find the label or the class that each
of the test images belong to.

Solution :

The NN-Classifier uses the euclidean distance measure to classify the test images. The
flow is explained as follows:

2

• For each of the test images, find the histogram texture for each of them using the LBP
algorithm.

• Using Euclidean distance metric (2 - norm), we find the k -nearest neighbors by finding
the metric value with each of the histograms of the training images. Here, the value of
k was set to 5.

• We assign the corresponding label of the training image to the test image and hence we
end up with k -labels. Out of these, we choose the label which occurs the most number
of times and assign it to the test image.

Task 3.

Problem description : Based on the results obtained using the k -nearest neighbor
algorithm, we build the confusion matrix to study the performance of the algorithm.

Solution :

The confusion matrix is built based on the classifications done for the test images. Hence,
there are four rows and four columns (since we have four classes). The rows correspond to
the actual labels and the columns correspond to the predicted labels. The confusion matrix
obtained for the implementation is shown below:

Car Building Mountain Tree
Car 3 2 0 0

Building 0 4 1 0
Mountain 0 1 4 0

Tree 1 1 0 3

The accuracy of the algorithm was calculated to be 70%. The metric that was used is as
follows:

Accuracy =
Correct Classifications

Total Number of Classifications

3

Observations on performance of the ICP algorithm:

• The image recognition algorithm developed based on LBP and the NN-Classifier per-
formed comparatively well given the accuracy of 70%.

• However, there were some wrong classifications and this could due to a lot reasons like:

– The number of nearest neighbors which we considered were too small. This is a
crucial one because it was observed that in a lot of cases, there were equal number
of wrong neighbors and correct neighbors it is difficult to automate the decision
making process in these cases. Hence, increasing the number k might result in a
better performance.

– The resolution of the pictures in both the training and test images were small and
this could have resulted in wrong classifications.

– The encoding algorithm which we used seems to be biased towards the last con-
dition (where there are more than two runs) which was apparent from the his-
tograms. If we use a better encoding technique, then we might get better results.

4

Results:

Figure 1: LBP histogram for a car image

Figure 2: LBP histogram for a building image

5

Figure 3: LBP histogram for a mountain image

Figure 4: LBP histogram for a tree image

6

Source Code(Main):

1 clear all

2 close all

3 clc

4

5 for i = 1:20

6

7 % Load i-th image in the training set

8 str = sprintf(’01_car (%d).jpg’, i);

9 A = imread(str);

10 % Convert to grayscale

11 A = rgb2gray(A);

12 % Call to LBP_texture to get the texture histogram

13 histogram_car(i,:) = LBP_texture(A);

14

15 str = sprintf(’01 _building (%d).jpg’, i);

16 A = imread(str);

17 A = rgb2gray(A);

18 histogram_building(i,:) = LBP_texture(A);

19

20 str = sprintf(’01 _mountain (%d).jpg’, i);

21 A = imread(str);

22 A = rgb2gray(A);

23 histogram_mountain(i,:) = LBP_texture(A);

24

25 str = sprintf(’01 _tree (%d).jpg’, i);

26 A = imread(str);

27 A = rgb2gray(A);

28 histogram_tree(i,:) = LBP_texture(A);

29

30 end

31

32 % Saving the training results

33 save(’training_results_LBP ’);

LBP texture

1

2 function histogram = LBP_texture(A)

3

4 R = 1; % Radius for examination

5 P = 8; % Number of sampled

6 histogram = zeros (1,8);

7

8 for i = 2:size(A,1) -1

9 for j = 2:size(A,2) - 1

10

7

11 % Pixel coordinates of the neighbours

12 neighbours = [i + R*(cos ((2*pi *(0:7))/P)); j + R*(sin ((2*pi

*(0:7))/P))];

13 intensity = zeros (1,8);

14

15 % Finding ther intensity of the neighbouring pixels

16 for k = 1:size(neighbours ,2)

17 if (mod(k,2))

18 % When the point coincides with a pixel coordinate

19 if(A(round(neighbours (1,k)),round(neighbours (2,k)))

>= A(i,j))

20 intensity(k) = 1;

21 else

22 intensity(k) = 0;

23 end

24 else

25 % Performing weighted mean to find the intensity

26 if (weighted_mean(neighbours (2,k),neighbours (1,k),A)

>= A(i,j))

27 intensity(k) = 1;

28 else

29 intensity(k) = 0;

30 end

31 end

32 end

33

34 % Initializations

35 final_num = intensity;

36 bin_num = intensity;

37 final_decimal = num2str(intensity);

38 final_decimal(isspace(final_decimal)) = ’’;

39 final_decimal = bin2dec(final_decimal);

40

41 % Loop to find the minimum value pattern

42 for k = 1:8

43 % Rotating one bit at a time

44 bin_num = circshift(bin_num ,1,2);

45 str_x = num2str(bin_num);

46 str_x(isspace(str_x)) = ’’;

47 bin_num = bin2dec(str_x);

48

49 % Finding the minimum value

50 if bin_num < final_decimal

51 final_decimal = bin_num;

52 final_num = de2bi(bin_num ,8,’left -msb’);

53 end

54

8

55 bin_num = de2bi(bin_num ,8,’left -msb’);

56 end

57

58 % Initialize runs to zero

59 runs = 0;

60

61 % Loop to find the number of runs

62 for k = 1:7

63 if final_num(k + 1) ~= final_num(k)

64 runs = runs + 1;

65 end

66 end

67

68 % Updating the histogram vector based on the number of runs

69 if ((runs == 0) && (final_num (1) == 1)) || runs > 1

70 histogram (8) = histogram (8) + 1;

71 elseif (runs == 0) && (final_num (1) == 0)

72 histogram (1) = histogram (1) + 1;

73 else

74 temp = nnz(final_num == 1);

75 histogram(temp) = histogram(temp) + 1;

76 end

77

78 end

79 end

80

81

82 end

main testing.m

1 clear all

2 close all

3 clc

4

5 % Load the training results

6 load training_results_LBP

7 histogram_all = cat(1,histogram_car ,histogram_building ,

histogram_mountain ,histogram_tree);

8

9 for i = 1:5

10

11 % Loading the i-th test image

12 str = sprintf(’car_%d.jpg’, i);

13 A = imread(str);

14 % Convert to grayscale

15 A = rgb2gray(A);

16 % Finding the histogram of the test image

9

17 histogram_car_test(i,:) = LBP_texture(A);

18 % Classification based on the NN -Classifier

19 label_test_car(i) = NN_classifier(histogram_car_test(i,:),

histogram_all);

20

21 str = sprintf(’building_%d.jpg’, i);

22 A = imread(str);

23 A = rgb2gray(A);

24 histogram_building_test(i,:) = LBP_texture(A);

25 label_test_building(i) = NN_classifier(histogram_building_test(i

,:),histogram_all);

26

27 str = sprintf(’mountain_%d.jpg’, i);

28 A = imread(str);

29 A = rgb2gray(A);

30 histogram_mountain_test(i,:) = LBP_texture(A);

31 label_test_mountain(i) = NN_classifier(histogram_mountain_test(i

,:),histogram_all);

32

33 str = sprintf(’tree_%d.jpg’, i);

34 A = imread(str);

35 A = rgb2gray(A);

36 histogram_tree_test(i,:) = LBP_texture(A);

37 label_test_tree(i) = NN_classifier(histogram_tree_test(i,:),

histogram_all);

38

39 end

40

41 % Confusion matrix development

42 confusion_matrix = [nnz(label_test_car == 1) nnz(label_test_car

== 2) nnz(label_test_car == 3) nnz(label_test_car == 4)

43 nnz(label_test_building == 1) nnz(label_test_building == 2)

nnz(label_test_building == 3) nnz(label_test_building

== 4)

44 nnz(label_test_mountain == 1) nnz(label_test_mountain == 2)

nnz(label_test_mountain == 3) nnz(label_test_mountain

== 4)

45 nnz(label_test_tree == 1) nnz(label_test_tree == 2) nnz(

label_test_tree == 3) nnz(label_test_tree == 4)];

46

47 % Accuracy = correct_classifications/total_number_of_classifications

48 Accuracy = trace(confusion_matrix)/sum(sum(confusion_matrix));

NN classifier.m

1 function label = NN_classifier(histogram_test , histogram_all)

2

3 % Initialize the distance matrix

10

4 euclidean_dist = zeros(1,size(histogram_all ,1));

5

6 % Finding the euclidean distance

7 for i = 1:size(histogram_all ,1)

8 euclidean_dist(i) = norm(histogram_test - histogram_all(i,:));

9 end

10

11 % Finding the k-nearest neighbours (for 5 neighbours)

12 [minimum , indices] = sort(euclidean_dist);

13 labels = zeros (1,5);

14

15 for i = 1:5

16 if indices(i) <= 20

17 labels(i) = 1;

18 elseif indices(i) <= 40

19 labels(i) = 2;

20 elseif indices(i) <= 60

21 labels(i) = 3;

22 else

23 labels(i) = 4;

24 end

25 end

26

27 % Finding the label for the test image

28 temp = [nnz(labels == 1) nnz(labels == 2) nnz(labels == 3) nnz(

labels == 4)];

29 % label that appears the most

30 [maximum , label] = max(temp);

31

32 end

weighted mean.m

1 function X = weighted_mean(x,y,B)

2

3 % Finding the surrounding pixels

4 x1 = floor(x);

5 x2 = ceil(x);

6 y1 = floor(y);

7 y2 = ceil(y);

8

9 % Finding the weights (euclidean distance)

10 dist1 = norm([x - x1 , y - y1]);

11 dist2 = norm([x - x2 , y - y1]);

12 dist3 = norm([x - x1 , y - y2]);

13 dist4 = norm([x - x2 , y - y2]);

14

15 y_act1 = size(B,1) - y1 + 1;

11

16 y_act2 = size(B,1) - y2 + 1;

17 x_act1 = x1;

18 x_act2 = x2;

19

20 % Calculating the intensity value using weighted mean

21 X = (B(y_act1 ,x_act1 ,:)./dist1 + B(y_act1 ,x_act2 ,:)./dist2 + B(

y_act2 ,x_act1 ,:)./ dist3 + B(y_act2 ,x_act2 ,:)./ dist4)...

22 ./(1/ dist1 + 1/dist2 + 1/dist3 + 1/dist4);

23

24 end

12

