ECE 661 - Homework-7

Vishveswaran Jothi
vjothi @purdue.edu

10-30-2016

1 Theory and Implementation

1.1 Introduction

The given task is to perform Image Registration on two depth images. This assignment intro-
duces many plotting techniques along with technique that are used to create point clouds. Creating
point clouds are vital in 3D mapping. As many research activities in computer vision are in 3D.
This assignment will be a base for many 3D computation. The input for this assignment is obtained
from kinect 2 sensor.

1.2 Creating Point Cloud

The following algorithm gives a brief overview to generate a point cloud from a depth image.
Stepl: Get the path of the depth images and their names from the user. Also get the "K” and
threshold from the user.

Step2: Load the text file of the depth image in a python script. The values in the depth image file
is the distance from the sensor not the RGB values.

Step3: Save the images as color depth map using imshow and savefig modules in matplotlib pack-
age in python.

Step4: Create a point cloud for the given image map by using the below formula.

Pointcloud(u) = Depth(u) * K™ x u

where u is in homogenous coordinates (, %, 1)7, D(u) is the depth value of that coordinate and K
is given by intrinsic parameter of the camera.

ap S X
K=10 a, y
0 0 1

Note that in the given K matrix s=0.
StepS: The above obtained point cloud is a 3D point. The computed point cloud is plotted using
the algorithm explained in the plotting section.

1.3 Iterative Closest Point (ICP) - Algorithm

In this section, ICP is explained algorithmic manner, since theory is extensively covered in
class. But necessary mathematical equation will be provided to support the algorithm.
Step1: Find the point cloud of the given pair of image using above algorithm.
Step2: Now we need to find the correspondence of the two images.
Step3: To find the correspondence, First find the euclidean distance between all the 3D points in
both the images.
Euclidean= /(21 — 22)? + (y1 — y2)2 + (21 — 22)2 Step4: Choose the value in image 2 which
has smallest euclidean distance w.r.to image 1.
StepS: Also we should remove the many to one correspondence in the mapping function by check-
ing the index of the minimum euclidean with the list of previous indexes of image 2 which has a
domain in imagel.
Step6: After the correspondence, Find the Centroid of the correspondence by the given formula.

Image;centriod = ¥ (P})/N

where N is the total no.of correspondence, P/= each 3D point in the correspondence.
Step7: Similarly, Find the Centroid of Image2. Step8: Now compute the difference matrix for
both images using the given formula.

/ N
MImagel = P@ - Pcentroidl

Repeat the same for Image 2 as well.
Step9: Compute the correlation matrix (C) from difference matrix of both images, say M, M,.

C=MgxM]
If M, and M, are 3XN, but in my algorithm it is given as M, ;f * M, since they are considered as

NX3.
Step10: The Rotation matrix that relates the Imagel and image?2 is given by the SVD of C.

R=VxUT

where U is the orthogonal matrix formed by eigen vectors of AA” and the V is the orthonormal
matrix for med by eigen vectors of AT A

Step11: The Translation vector that relates the Imagel and Image? is obtained from the difference
of the centroid of Imagel with the product of Rotation matrix with centroid of Image?2.

transyec(T) = Plentroid — R * Q.entroid

Step12: The Homogenous transformation matrix is given by ...

R T

el
Step13: Now set transform the Image 2 point clouds with the H matrix.
Step14: Repeat the above procedure from Step 2 to Step 14 for the user specified iterations. But
set the point cloud of Image 2 as the transformed point cloud values obtained as the result of each
iteration.
Step15: Finally plot the resultant point clouds using the MatplotLib package using the algorithm
in the next section.

1.4 Plotting using MatplotLib

A brief explanation to use the matplotlib package which might act as a simple guidance for
plotting 3D plots.
Stepl: Get the parameter such as color for the marker from the user. Import matplotlib and
mpl_toolkits.mplot3d to plot in 3D space.
Step2: Create a figure with a figure size (say) 20X30 smaller or standard size will not be sufficient
to analyse the output.
Step3: Now create a 3D plot with axes set as *3D’
Step4: Pass the x,y,z axes values along with edgecolor, markersize, marker color in the scatter plot
module.
StepS: Repeat the same for all the points in both image.
Step6: Now to rotate the image so that to make it easy to visualize, use view_init module for that.
Note: Look for the comment part in the plotting code for sample demonstration.
Step7: Finally save it using savefig module.

1.5 Performance of ICP

The performance of ICP is compared with the result obtained from plotting the point cloud of
both images obtained from the point cloud algorithm.

1. Generally, The result with ICP will be better than without ICP. But in the given image we
cannot say that, since both images are already significantly close by.

2. Computation of ICP in python took more time say around 7 mins and plotting took around 8
mins for each pair of image (with and without ICP).

3. After twenty iterations of ICP most of the image is merged within each other, only few parts
which are not exactly matching could be seen apart.

4. To check the above phenomena, threshold with 0.01 is set and the result is obtained. Which
brought the two images closer, but not as exact as with the threshold 0.1, since this threshold
requires more iteration to converge.

5. Also to find the convergence, the no.of corresponding is printed after getting the correspon-
dence output from its function. It increases in a linear manner, if given enough iteration, it
will definitely converge.

6. Using Trial and Error method best iteration count was obtained as 19 for threshold 0.1 mts.
For a threshold of 0.01 mts, it is 24 iterations after that the no. of. matches decreases.

7. Potential drawbacks are computation power and computation time.

2 Output Images

2.1 For Given Leafless Tree Image:

400
350
300
250
200

150

100

50

0 100 200 300 400 500

Figure 1: Input Depth Imagel of Leafless Tree

400
350
300
250
200

150

100

0 100 200 300 400 500

Figure 2: Input Depth Image?2 of Leafless Tree

Figure 3: Point Cloud of Leafless Tree before ICP

Figure 4: Point Cloud of Leafless Tree after 20 iterations of ICP

Figure 5: Point Cloud of Leafless Tree after 20 iterations of ICP including the removal many to one
points

Figure 6: Point Cloud of Leafless Tree after 24 iterations of ICP including the removal many to one
points

Figure 7: Point Cloud of Leafless Tree after 20 iterations of ICP with threshold as 0.01

Figure 8: Point Cloud of Leafless Tree after 23 iterations of ICP with threshold as 0.01

3 Source Code

3.1 Main function

Author: Vishveswaran Jothi
mnnw

import numpy as np

import matplotlib.pyplot as mpl
import pcl

import icpl

10

import time

#from mpl_toolkits.mplot3d import Axes3D
G
Input from the user to Load the txtfiles
FHHHHHHHHAFH A H A A A S A S AR F AR H S

path_prompt = "Enter the full path for the text files:"
img_name_prompt = "Enter the text file name with file extension:"
max_iter_prompt = "Enter the max iteration for matching the

point clouds"
k_prompt="Enter the intrinsic parameter matrix"
threshold_prompt = "Enter the Threshold for matching correspondence"

pathl=raw_input (">"+path_prompt)
img_namel=raw_input (">"+img_name_prompt)
max_iter=raw_input (">"+max_iter_prompt)
path2=raw_input (">"+path_prompt)
img_nameZ2=raw_input (">"+img_name_prompt)
print k_prompt
K=np.zeros((3,3),dtype="1int")
for loop in range(3):
for loopl in range(3):

K[loop, loopl]l=int (raw_input ("> Enter the element"

+[loop, loopl]+": ™))
threshold=int (raw_input (">"+threshold_prompt))

igdssstdsasdsdsdadadasasatatataadadaandddi

igdgdgddadds AR AR AR A EEEEEEEEE SRS S
Sample input from user

S

path="/home/vishwa/661/HW7/HW7DepthIms"
img_namel="depthImagelForHW.txt"

img_name2="depthImage2ForHW.txt"

max_iter=40

K=np.array([[365,0,256],[0,365,212]1,[0,0,111)

threshold=0.1

HHAFHHH AR A A A AR A AR H AR AR

Algorithm starts here

FHHHHHH A AR HHAH A AR S HHAH A HHHHHH

d_imagel=np.loadtxt (path+"/"+img_namel)

d_image2=np.loadtxt (path+"/"+img_name?2)
img_namel=img_namel.split (' .”) [0]
img_name2=img_nameZ.split (" .") [0]

#cv2.imwrite (' disp_’+img_namel.split (’.”) [0]1+'.Jpg’,255+xd_imagel)
#cv2.imwrite (Y disp_’ +img_name2.split (’.”) [0]1+' .Jpg’,255+xd_image?2)

11

fcreate as a depth color image for Image 1

mpl.figure ()

mpl.imshow (d_imagel, origin="upper’,extent=[0, d_imagel.shape[l]
, 0, d_imagel.shape[0]])

mpl.colorbar ()

Save the colored depth image
mpl.savefig (' op_1’+img_namel+’ . Jjpg’)

#mpl.close ()

#create as a depth color image for Image 2

mpl.figure ()

mpl.imshow (d_image2,origin="upper’,extent=[0, d_image2.shapel[l]
, 0, d_image2.shape[0]])

mpl.colorbar ()

Save the colored depth image
mpl.savefig(’op_1’+img_name2+’ .jpg’)

mpl.show ()

#mpl.close ()

ifdat s E AR AR AR AL EREEEEEEEEEEEEEEEEEEEE SR
Plot before ICP function

FHAH A HHH SRS H A A AR A H AR H AR
creating the point clouds
point_cloud_imgl=pcl.p_cloud(d_imagel, K)
point_cloud_img2=pcl.p_cloud(d_image2, K)

img_name="_before_TICP"

print "The output is saved in point_cloud"+img_name+". jpg"
pcl.display (point_cloud_imgl,point_cloud_img2,’'b’,’g’, img_name)
print " Running ICP algorithm..."

FHHH A AR H A A AR H AR H AR S

ICP function

E RS E AR R AR R R R R L EEE R EEEE R
#time.sleep (5)
pt_cl_2_trans=icpl.icp_alg(point_cloud_imgl,point_cloud_img2,
max_iter,threshold)

print " Plotting the result of ICP algorithm..."

it R LRk
Plot after ICP function

FHA AR AR ASARAA

img_name="_after ICP_T_0.1_varl9"
print "The output is saved in point_cloud"+img_name+". jpg"
pcl.display (point_cloud_imgl,pt_cl_2_trans,’b’,’r’,img_name)

12

3.2 pc.py (Code for Finding point Cloud and Plotting)

Author: Vishveswaran Jothi

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as mpl
igssssa s sa s EEa AR EEEEEEEE
Point cloud function starts here
iddatssa s s AR EAARAAEEEEEEEEEEEEEEEEE
def p_cloud(d_image,K) :

Inverting K so as P (U)=D(u)*K"-1xU

K_inv=np.linalg.inv (K)

point_cloud=1[]

finding point clouds

for loopl in range(d_image.shape[0]) :
for loop2 in range (d_image.shape[l]) :
p_cl_tmp=d_image[loopl, loop2]* (np.dot (K_inv,
[loop2,loopl,1]1))
if p_cl_tmp[0]!=0 or p_cl_tmp[l]'=0 or p_cl_tmp[2]!=0:
point_cloud.append (p_cl_tmp)

return np.asarray (point_cloud)

s E R Rk
Point cloud function ends here
S E st LR Rk

FHEHHHF A A A H A HEHAH AR AR AR H S
Display the scatter plot of Images

S

def display(p_cll,p_cl2,colorl,color2, img_name) :
fig = mpl.figure(figsize=(20,20))
ax = fig.add_subplot (111, projection=’3d’)
for loop in range(len(p_cll)):
ax.scatter(p_cll[loop,0],p_cll[loop,1],p_cll[loop,2],s=9,
c=colorl, edgecolor=colorl)
#print loop

for loop in range(len(p_cl2)):
ax.scatter (p_cl2[loop,0],p_cl2[loop,1],p_cl2[loop,2],s=9,
c=color2,edgecolor=color?)
The below commented section can be un commented to get
rotated figure plot to compare with input
#for angle in range (0, 360):

13

fax.view_init (270, angle)
mpl.savefig(’point_cloud’ +img_name+’ . jpg’)
#mpl.show ()
mpl.close ()
return
FHEHHHHH AR H A AR A AR F AR A SRS S
Display the scatter plot of Images
FHEHHHFAH A A H A A HEH ARSI S A RHH S

3.3 icp.py (Code for ICP algorithm)

Author: Vishveswaran Jothi

import numpy as np

EE R R

ICP algorithm starts here

HHAHHH S S S
def icp_alg(p_cll,p_cl2,max_iter,threshold):

for iter in range (max_iter):
Printing the iteration count
print iter
Finding the correspondence with euclidean distance
p_cll_d,p_cl2_d= Corres(p_cll,p_cl2,threshold)

if p_clz2_d==[]:

print "No matches were found"

return p_cl2_d
Now calculate the centroid for each image
N=len (p_cll_d)
print p_cll_d.shape,p_cl2_d.shape
Finding centroid
p_centroid=np.array([sum(p_cll_df[:,0]),sum(p_cll_df[:,1]),
sum (p_cll_df[:,2])])/(N)
g_centroid=np.array([sum(p_cl2_d[:,0]),sum(p_cl2_df[:,1]),
sum(p_cl2_d[:,2]1)1)/(N)
print p_centroid, g centroid

Now calculate resulting point clouds

Mp=np.subtract (p_cll_d,p_centroid)
Mg=np.subtract (p_cl2_d, g _centroid)

C=np.dot (Mg.T, Mp)

to find the rotation and translation between the images
U,sig,Vt=np.linalg.svd(C)

Rot_mat_tmp=np.dot (U, Vt)

14

Rot_mat=Rot_mat_tmp.T

obtain the translation by P_centroid-Rxg_centroid

trans_vec=p_centroid-np.dot (Rot_mat, g centroid)

tfm_mat=np.zeros((4,4),dtype='float’)

tfm mat[0:3,0:3]=Rot_mat

tfm mat[0:3,3]=trans_vec

tfm mat[3,3]=1

print tfm mat

finding new Q w.r.to transformation matrix ’"tfm_mat’

o=1[]

for loop in range(len(p_cl2)):
tmp=np.dot (tfm_mat, [p_cl2[loop,0],p_cl2[loop,1l],p_cl2[loop,?2],.
p_cl2_tmp=tmp[0:3]/float (tmp[3])
Q.append(p_cl2_tmp)

p_cl2=np.asarray (Q)

Final Q (i.e) transformed point cloud 2 is given by
Q_trans=p_cl2
return Q_trans

FHEHHHHH A A F A A A A RS F A F SRS HH

ICP algorithm ends here

FHAHHHHH A HH A A AR A AR H RS RS

FHAHHEHEH AR H A AR AR S
Finding correspondence starts here
FHEHAHHH A H A A HA AR A AR AR HH

def Corres(p_1l,p_2,threshold):

corres_p=1]

corres_qg=1]1

#p_cl2_dummy

p_cl2_dummy=p_2

#idx=None

dummy_mat=np.zeros ((p_1l.shape[0],6))
count=0

idx_list=[]

for loopl in range(len(p_1)):

diff sg=(np.subtract(p_l[loopl,:],p_cl2_dummy[:, :])*x%2)
euc=np.sqrt(diff_sqgl[:,0]+diff _sql[:,1]+diff_sql:,2])
idx=np.argmin (euc)

min_val=np.min (euc)

#print idx
if idx in idx_1list:

15

continue
if threshold>min_val:
List cannot be used in python since it uses late binding
#corres_p.append(p_1[loopl, :1)
#corres_qg.append(p_2[idx, :1)
dummy_mat [count, :]=(p_1[loopl,0],p_1[loopl,1],p_1[loopl,2],p_2
count+=1
idx_list.append (idx)
else:
continue
idx_list=np.asarray(idx_1list)
for loop in range(len (dummy_mat)) :
if dummy_mat [loop,0]!'=0 or dummy_mat[loop,1]!=0 or dummy_mat[loop, .
corres_p.append (dummy_mat [loop,0:3])
corres_g.append (dummy_mat [loop, 3:6])

print "after finding correspondence"
return np.asarray(corres_p),np.asarray (corres_q)

FHAHHHHEH AR H AR A H S
Finding correspondence ends here
FHEHAHHH AR H AR A ARSI SEHHSSHHHH

This is the end of the document.

16

