
ECE 661 (Fall 2016) - Computer Vision - HW 7

Debasmit Das

November 1, 2016

1 Depth Image to Point Cloud

For 3D registration such as the ICP, we need to to convert the depth image into point cloud.
The depth image consists of a 2D map such that the value of the pixel at that 2D map is the
depth (or distance from the sensor) of the part of the object in the pixel. The point cloud on
the other hand is a collection of 3D points such that these 3D points represent the surface of an
object.

The conversion of depth image to a 3-D point cloud representation is very easy. Let u =
(x, y, 1) be the homogeneous representation of an image pixel coordinate (x, y). Let D(u) be the
depth value at u (obtained from the depth image), and K be the intrinsic camera matrix of the
Kinect 2 sensor. Then, the corresponding 3-D point P(u) or the (xp, yp, zp) coordinates of the
point in the point cloud corresponding to u is given by

P(u) = (xp, yp, zp) = D(u)K−1u (1)

This is done for both of the depth images given in the assignment

2 Iterative Closest Point Algorithm (ICP)

Let P, Q be the point clouds for the same object from 2 different view-points. The point
clouds are in their own reference frame. The goal is to give a euclidean transformation [R, t] to
Q so that it exists in P’s frame of reference. The goal of ICP is to find this transformation. The
steps of ICP are the following -

• The first step in ICP is to solve the correspondence problem between the 2 point clouds P
and Q. Here we find points in P that have the least euclidean distance to points in Q. A
threshold (δ) is selected such that pairs of points having euclidean distance greater than δ
is rejected. We choose δ = 0.1

As a result, we will have point clouds of reduced dimensions P′ and Q′ that have dimensions
3×N , where N is the total number of legal correspondence pairs. The points are arranged
in the point clouds P′ and Q′ such that the ith point in P′ corresponds to the ith point in
Q′.

• The next step is to estimate the rotation and translation matrices which transform the
point cloud Q to the frame of reference of P.

For that we need to first calculate the centroid of the two point clouds. Therefore,

Pc =
∑N

i
P′(i)
N and Qc =

∑N
i

Q′(i)
N . After this, the centroids are subtracted from the

corresponding point cloud and to form resulting point clouds MP and MQ which are cal-
culated as follows - MP = {P′(i) − Pc} and MQ = {Q′(i) − Qc} for i = 1, 2...N . The
dimensions of MP and MQ equal 3×N . After that correlation matrix C is computed such

1



that C = MQMP
T . C should be 3 × 3 matrix. The rotation matrix R can be estimated

by using the SVD Singular value Decmposition (SVD) on C yielding C = UΣV T . The
matrix R is given by R = V UT . The translation t is defined as the difference between Pc

and rotated Qc: t = Pc −RQc.

• Here, we form the transformation matrix T using R and t found in the previous step and
apply the transformation to Q. The transformed Q is give by Qtrans = TQ.

T =

[
R tT

0 1

]
(2)

The point cloud Q is transformed using the transformation matrix T . We should make
sure that the homogeneous co-ordinates are converted to physical points.

• The above steps are iterated for the original point cloud P and Qtrans until the maximum
no. of iterations. The maximum no. of iterations for our case is M = 20.

3 Observations

Since the Point Clouds are very close we just need very few iterations and very low threshold
to register the 2 point clouds

4 Experimental Results

The following parameters are set -
δ = 0.1
M = 20

2



4.1 Depth Images

Figure 1: Depth Image for the reference P

3



Figure 2: Depth Image for the target Q

4.2 Point Clouds

Figure 3: Point Cloud before ICP (Blue - Reference (P) Red - Target (Q))

4



Figure 4: Point Cloud after ICP (20 iterations) (Blue - Reference (P) Red - Target (Q))

Code

The script is in MATLAB and is self-explanatory

ICP Script

function Qt = ICP(Q, P, th)

%Output is the transformed target point cloud for one iteration

Pp = [];

Qp = [];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Find the closest points

for k = 1:size(Q,2)

[D,I] = pdist2(P’,Q(:,k)’,’euclidean’,’Smallest’,1);

if D < th

Pp = [Pp,P(:,I)];

Qp = [Qp,Q(:,k)];

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Estimate Transformation Matrix

N = size(Pp,2);

Pc = sum(Pp,2)/N;

Qc = sum(Qp,2)/N;

Mp = Pp-repmat(Pc,1,N);

5



Mq = Qp-repmat(Qc,1,N);

C = Mq*Mp’;

[U S V] = svd(C);

R = V*U’;

t = Pc - R * Qc;

T = [R t;0 0 0 1];

Qt = T*[Q;ones(1,size(Q,2))];

Qt = Qt./repmat(Qt(4,:),4,1);

Qt(4,:) = [];

end

Main Script

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Read Depth Data

Dp = dlmread(’depthImage1ForHW.txt’);

Dq = dlmread(’depthImage2ForHW.txt’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plotting Depth Image

figure;

imagesc(Dp)

figure;

imagesc(Dq)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Convert Depth Image to Point Cloud

% This is the camera calibration matrix

K = [365 0 256; 0 365 212; 0 0 1];

%This is the threshold for the ICP algorithm

th = 0.1;

%This is the number of iterations

M=20;

w = size(Dp,2);

l = size(Dp,1);

P = [];

Q = [];

for i = 1:w

for j = 1:l

if Dp(j,i) ~= 0

P = [P,Dp(j,i)*inv(K)*[j;i;1]];

end

6



if Dq(j,i) ~= 0

Q = [Q,Dq(j,i)*inv(K)*[j;i;1]];

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plot Pointcloud Before ICP

figure;

scatter3(P(1,:),P(2,:),P(3,:),’.’)

hold on

scatter3(Q(1,:),Q(2,:),Q(3,:),’.’)

hold off

xlim([-0.9 0.5])

ylim([-0.5 0.5])

zlim([0.5 1])

view(-80,9)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% % Conduct ICP

%

for i = 1:M

%Do the iterative ICP

Q = ICP(Q,P,th);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plot Pointcloud after ICP

figure;

scatter3(P(1,:),P(2,:),P(3,:),’.’)

hold on

scatter3(Q(1,:),Q(2,:),Q(3,:),’.’)

hold off

xlim([-0.9 0.5])

ylim([-0.5 0.5])

zlim([0.5 1])

view(-80,9)

7


