
ECE 661 : HW6

Yellamraju Tarun (ytarun@purdue.edu)

October 24, 2016

1 Implementation of Otsu Algorithm

• First, we construct a L = 256 level histogram which counts the number
of pixels with a given intensity level, i.e. h[i] = ni where ni denotes the
number of pixels with intensity level i.

• Next, using the histogram generated above, we estimate the probability
mass function of intensity levels by calculating pi = ni

N for each intensity
level i where N denotes the total number of pixels in the image.

• Next we calculate

ω0 =

k∑
i=1

pi and ω1 =

L∑
i=k+1

pi (1)

µ0 =

k∑
i=1

ipi
ω0

and µ1 =

L∑
i=k+1

ipi
ω1

(2)

σ2
B = ω0ω1(µ0 − µ1)2 (3)

for every value of k ∈ [0, L− 1]

• We find a value of k = k∗ such that the between class variance σ2
B is

maximized.

• All pixels with intensity > k∗ are determined to be part of the foreground
while the rest are part of the background

2 Intensity Based Segmentation

We treat each of the three color channels of an RGB image as a separate image
and generate masks for each of them using the Otsu segmentation algorithm as
described above. The composite mask is formed by taking the logical AND of
the individual masks to form the final segmentation. We can manually modify
the way the combination of the three masks is taken based on the image we are
segmenting as follows

1

• For the lake image, we take the complements of R and G channels while
taking the retaining the B channel segmentation as is. The Otsu algorithm
is run iteratively in this case to produce better segmentation.

• For the leopard image, we retain all three channels as they are without
modifying them. There was no need for recursively applying the segmen-
tation algorithm in this case.

• For the brain image, we retain all three channels as they are without mod-
ifying them.The Otsu algorithm is run iteratively in this case to produce
better segmentation.

3 Texture Based Segmentation

To form the texture images, we first convert the image to grayscale. Next, we
place N ×N windows around each pixel and calculate the variance of the pixels
within this window and place that value in the location of the center pixel.
We do this for N = 3, 5, 7 forming 3 texture images for each image. These 3
texture images are treated as RGB channels and we follow the same procedure
for segmentation thereafter as mentioned for the intensity based segmentation
approach.

• For the lake image, we take the complements of all three texture channels
since the lake is a smooth region and subsequently has a very low texture
response. There was no need for recursively applying the segmentation
algorithm in this case.

• For the leopard image, we retain all three channels as they are without
modifying them. There was no need for recursively applying the segmen-
tation algorithm in this case.

• For the brain image, we retain all three channels as they are without mod-
ifying them. There was no need for recursively applying the segmentation
algorithm in this case.

4 Noise Filtering in Segmentation Masks

It is often the case that there are many gaps or holes in the foreground segmenta-
tion mask and small patches of noise detected as foreground in the background.
To fill in the gaps in the foreground segmentation, we can perform a dilation
process followed by erosion with an appropriately sized operator (refer to source
code for details). To remove background noise, we can first do an erosion process
followed by dilation. We filter background noise only for the lake image since
for the other images, this process will remove a large chunk of the foreground
segmentation as well.

2

5 Extraction of Segmentation Contour

Once we have the segmentation mask, we can extract the contour of the seg-
mented region by scanning the mask pixels in raster order. When we encounter a
pixel with value 1 and at least one of its 8 neighbors has value 0, it is determined
to be on the contour. If not, the pixel is not on the contour.

6 Observations

The Otsu algorithm works better with intensity based segmentation for some
cases and with texture based segmentation for other cases. For example, for the
brain image, since the image was in general a bit noisy, there was a significant
texture content in not just the white matter but the gray matter as well because
of which the segmentation algorithm could not distinguish between the two. For
this case, intensity based segmentation was a lot more successful in segmenting
the white matter from the rest of the image.

Another example is the leopard image. The leopard owing to its spots con-
tains a lot of texture content which leads to good results with texture based
segmentation. Intensity based segmentation is not very effective in this case.
At the same time however, the grassy region at the bottom of the image also
has a strong texture response and gets classified as foreground in this approach.

The lake image is an example where both methods work well. There is how-
ever a small issue of some of the background at the top of the image appearing
similar in both intensity and texture to the foreground of the lake which erro-
neously gets classified as foreground. The errors seem to be less in the case of
the texture based segmentation.

Further, the texture based method is computationally more intensive due to
the formation of the texture images. In general scenarios of images with low
noise, it seems that the texture based method performs better than the intensity
based method.

3

7 Experimental Results

7.1 Lake Image

Figure 1: Original Image

4

Figure 2: Segmentation mask using RGB values prior to noise filtering

Figure 3: Segmentation using RGB values prior to noise filtering

5

Figure 4: Segmentation mask using RGB values post noise filtering

Figure 5: Segmentation using RGB values post noise filtering

6

Figure 6: Contour based on RGB Segmentation

Figure 7: Segmentation mask using texture values prior to noise filtering

7

Figure 8: Segmentation using texture values prior to noise filtering

Figure 9: Segmentation mask using texture values post noise filtering

8

Figure 10: Segmentation using texture values post noise filtering

Figure 11: Contour based on texture Segmentation

9

7.2 Leopard Image

Figure 12: Original Image

10

Figure 13: Segmentation mask using RGB values prior to noise filtering

Figure 14: Segmentation using RGB values prior to noise filtering

11

Figure 15: Segmentation mask using RGB values post noise filtering

Figure 16: Segmentation using RGB values post noise filtering

12

Figure 17: Contour based on RGB Segmentation

Figure 18: Segmentation mask using texture values prior to noise filtering

13

Figure 19: Segmentation using texture values prior to noise filtering

Figure 20: Segmentation mask using texture values post noise filtering

14

Figure 21: Segmentation using texture values post noise filtering

Figure 22: Contour based on texture Segmentation

15

7.3 Brain Image

Figure 23: Original Image

16

Figure 24: Segmentation mask using RGB values prior to noise filtering

17

Figure 25: Segmentation using RGB values prior to noise filtering

18

Figure 26: Segmentation mask using RGB values post noise filtering

19

Figure 27: Segmentation using RGB values post noise filtering

20

Figure 28: Contour based on RGB Segmentation

21

Figure 29: Segmentation mask using texture values prior to noise filtering

22

Figure 30: Segmentation using texture values prior to noise filtering

23

Figure 31: Segmentation mask using texture values post noise filtering

24

Figure 32: Segmentation using texture values post noise filtering

25

Figure 33: Contour based on texture Segmentation

8 Source Code

8.1 Main Function

clc
clear

cd HW6Pics
% I = imread('lake.jpg');
I = imread('leopard.jpg');
% I = imread('brain.jpg');
cd ..

I gray = double(rgb2gray(I));
I = double(I);
I1 = I(:,:,1);
I2 = I(:,:,2);

26

I3 = I(:,:,3);

[a,b,˜] = size(I);

% Masks for different color channels
maskR = zeros(a,b,3);
maskR(:,:,1) = ones(a,b);
maskG = zeros(a,b,3);
maskG(:,:,2) = ones(a,b);
maskB = zeros(a,b,3);
maskB(:,:,3) = ones(a,b);

%% Pixel Intensity based segmentation

% For lake image
% N iterR = 4; %Number of Iterations Otsu's algorithm needs to run
% N iterG = 4;
% N iterB = 1;

% For leopard image
N iterR = 1; %Number of Iterations Otsu's algorithm needs to run
N iterG = 1;
N iterB = 1;

% For brain image
% N iterR = 3; %Number of Iterations Otsu's algorithm needs to run
% N iterG = 3;
% N iterB = 3;

for i = 1:N iterR
Seg1 = Otsu Seg(I1);
I1 = I1.*Seg1;

end

for i = 1:N iterG
Seg2 = Otsu Seg(I2);
I2 = I2.*Seg2;

end

for i = 1:N iterB
Seg3 = Otsu Seg(I3);
I3 = I3.*Seg3;

end

% Forming the complete Mask

% For lake image
% Seg = (1−Seg1).*(1−Seg2).*(Seg3);
% For leopard and brain image
Seg = (Seg1).*(Seg2).*(Seg3);

% Display Images
figure, imshow(I.*maskR/255);
figure, imshow(I.*maskG/255);
figure, imshow(I.*maskB/255);
figure, imshow(Seg);
figure, imshow(I.*repmat(Seg,[1 1 3])/255);

27

% Filtering the noise out of the segmentation
Seg = Filter Seg(Seg);
figure, imshow(Seg);
figure, imshow(I.*repmat(Seg,[1 1 3])/255);

% Extracting the contour from the segmentation
C = Contour(Seg);
figure, imshow(C);

%% Generating texture images
I4 = Texture(I gray,3);
I5 = Texture(I gray,5);
I6 = Texture(I gray,7);

% Texture Based Segmentation using Otsu
Seg4 = Otsu Seg(I4);
Seg5 = Otsu Seg(I5);
Seg6 = Otsu Seg(I6);

% Forming the complete Mask
% For lake image
% Seg2 = (1−Seg4).*(1−Seg5).*(1−Seg6);
% For leopard and brain image
Seg2 = (Seg4).*(Seg5).*(Seg6);

% Display images
figure, imshow(I4/255);
figure, imshow(I5/255);
figure, imshow(I6/255);
figure, imshow(Seg2);
figure, imshow(I.*repmat(Seg2,[1 1 3])/255);

% Filtering the noise out of the segmentation
Seg2 = Filter Seg(Seg2);
figure, imshow(Seg2);
figure, imshow(I.*repmat(Seg2,[1 1 3])/255);

% Extracting the contour from the segmentation
C2 = Contour(Seg2);
figure, imshow(C2);

8.2 Otsu Segmentation Function

function [Seg] = Otsu Seg(I)
%Function that uses Otsu's algorithm to segment the given grayscale image I
[a,b] = size(I);

%Otsu Algorithm
% Parameter and Variable Initializations
N = a*b;
K = 256;
level = 0:K−1;
p = zeros(1,K);
n = zeros(1,K);
mask0 = zeros(1,K);

28

mask1 = ones(1,K);
varB = zeros(1,K);

% Calculate the pi and ni for every intensity level i
for i = 1:K

Pixels = (I==i);
n(i) = sum(Pixels(:));
p(i) = n(i)/N;

end

% Calculate the between class variances for each choice of threshold K
for k = 1:K

mask0(k) = 1;
mask1(k) = 0;
w0 = sum(mask0.*p);
w1 = sum(mask1.*p);
mu0 = sum(mask0.*level.*p)/w0;
mu1 = sum(mask1.*level.*p)/w1;
varB(k) = w0*w1*((mu0 − mu1)ˆ2);

end

% Find best threshold that maximizes the between class variance
k opt = find(varB == max(varB),1);

% Noisy Segmentation
Seg = (I>(k opt−1));

end

8.3 Segmentation Filtering Function

function [Seg] = Filter Seg(Seg)
%Function to filter the noise from the generated segmentation

% Filtering the noise in the segmentation
% Background noise reduction (only for lake image)
% SE = strel('square',30);
% Seg = imerode(Seg,SE);
% Seg = imdilate(Seg,SE);

% Foreground noise reduction
SE = strel('ball',10,10);
Seg = imdilate(Seg,SE);
Seg = imerode(Seg,SE);

% Making Seg a logical image again
Seg = (Seg>0);

end

8.4 Contour Extraction Function

function [C] = Contour(I)
%Function to detect contours in the segmented image I

29

[m,n] = size(I);
C = zeros(m,n);

N = 3;
fact = floor((N−1)/2);
I = padarray(I,[(N−1)/2 (N−1)/2]);

for i = 1:m
for j = 1:n

if(I(fact+i,fact+j) == 0)
C(i,j) = 0;

else
patch = I(fact+(i−fact):fact+(i+fact),...

fact+(j−fact):fact+(j+fact));
if(sum(patch(:)) ˜= N*N)

C(i,j) = 1;
end

end
end

end

end

8.5 Texture Image Formation Function

function [T] = Texture(I,N)
%Function to generate the texture image from the gray scale image I and for
%a window size N
[m,n] = size(I);
T = zeros(m,n);

fact = (N−1)/2;
I = padarray(I,[(N−1)/2 (N−1)/2]);

for i = 1:m
for j = 1:n

patch = I(fact+(i−fact):fact+(i+fact),fact+(j−fact):fact+(j+fact));
T(i,j) = var(patch(:));

end
end

end

30

