
ECE661 Computer Vision HW 6

Rih-Teng Wu

Email: wu952@purdue.edu

1. Introduction

In this homework, we apply Otsu’s method to perform image segmentation.

Otsu’s method aims to find the optimal gray level that can best separate the
foreground and the background of the image. The RGB segmentation is achieved by
applying the Otsu’s algorithm to the three RGB color channel separately, and then
combine the segmentation results to get the final image segmentation. The texture-
based segmentation is achieved by first computing the texture features with three
different windows, apply the Otsu’s algorithm to the three texture features
separately, and then combine the segmentation results to get the final image
segmentation. After the segmentation is done, we use contour extraction techniques
to get the boundary of the foreground.

2. Otsu’s Method

The procedure of the Otsu’s method is described as follows. Given a gray-scale

image, we can find the optimal gray level that best separate the foreground and the
background by the following steps:

Step 1: Calculate the pixel intensity histogram of the image. For gray levels in

[1, 256], compute the PDF of the gray levels:
i

i

hp
N

=

Where ih is the pixel intensity for gray level i , N is the total number of pixels,
and ip is the probability density for gray level i .

Step 2: Given a gray level threshold k , class 0 is defined as the pixels with gray

level less or equal to k (background), and class 1 is defined as the pixels with gray
level greater than k (foreground). Calculate the probability of class 0, 0ω , and the
probability of class 1, 1ω :

mailto:wu952@purdue.edu

0
1

k

i
i

hω
=

=∑ , and 1 01ω ω= −

Step 3: Calculate the mean for both the two classes:

0
10

1 k

i
i

ipµ
ω =

= ∑ , and
256

1
11

1
i

i k
ipµ

ω = +

= ∑

Step 4: Calculate the between-class variance, 2

bσ :
2 2

0 1 0 1()bσ ω ω µ µ= −

Step 5: Choose the threshold k that maximize the between-class variance 2

bσ .

Step 6: Construct a mask whose pixel value is 1 if the corresponding pixel in the

gray-scale image is greater than the threshold k , and 0 otherwise.

Step 7: Repeat Step 1 to Step 6 for several iterations. To improve the

segmentation result, the number of iteration is manually chosen depending on the
original image.

3. RGB Image Segmentation

The image segmentation can be achieved by applying Otsu’s method to the three

RGB color channels separately, and then combine the segmentation results to get
final segmentation of the image. The procedure is described as follows.

Step 1: Separate the three RGB color channels and convert them into three gray-

scale images.

Step 2: Construct the mask for each channel using Otsu’s method as described

in Section 2.

Step 3: Combine the three masks by logical operator AND. To get a better

segmentation result, the combination logic is chosen depending on the image. For
the lake image, the blue mask is chosen as the foreground while the other two
channel are chosen as the background, since the lake is mostly blue. Therefore, the
overall mask for the lake image is:

& () & ()b r gmask mask mask mask= ¬ ¬
Where bmask , rmask , and gmask , are the masks obtained from the blue, red, and

the green channel, respectively.
For the leopard image and the brain image, there is no dominant color. Therefore,

the overall mask for the two images is:
& &b r gmask mask mask mask=

4. Texture-based Image Segmentation

The texture-based segmentation method is similar to what we have done in

Section 3. The only difference is that we use three texture feature channels as the
input to Otsu’s method instead of using the three RGB channels. The procedure is
described as follows.

Step 1: Convert the image to gray-scale image.

Step 2: Generate a new gray-scale image whose pixel value is the variance of the

gray-scale values in a N N× window around the corresponding pixels of the
original gray-scale image.

Step 3: Do Step 1 to Step 2 for three different window sizes 3N = , 5N = , and

7N = . These three gray-scale images are considered to be the texture features of the
original image.

Step 4: Treat the three texture features as the three channels of the original image,

apply Otsu’s method separately to get the three masks.

Step 5: Combine the three masks by logical operator AND. To get a better

segmentation result, the combination logic is chosen depending on the image. It
should be noted that the values in the texture feature represent the variance.
Therefore, for the lake image, we select class 0 as the foreground. Also, we select
the mask from 7N = window as the overall mask for the lake image.

For the leopard image and the brain image, the overall mask is chosen as the
combination of all the three masks:

3 5 7& &mask mask mask mask=

Where 3mask , 5mask , and 7mask , are the masks obtained from the 3N = , 5N =
, and the 7N = window, respectively.

5. Contour Extraction

After the segmentation is done, the contour can be extract for better visualization.

My contour extraction algorithm is implemented based on 8-neighbors. The
foreground corresponds to the pixel values equal to 1 in the overall mask, while the
background corresponds to the pixel values equal to 0 in the overall mask. For each
pixel in the overall mask:

a. If the pixel value is 0, then it is not selected as the contour point.
b. If the pixel value is 1, and all its 8-neighbors are 1, then it is not selected as

the contour point.
c. If the pixel value is 1, and not all of its 8-neighbors are 1, then it is selected as

the contour point.

6. Observations

1. The performance of the segmentation results depends highly on the

characteristic of the original image. We should select the appropriate
segmentation method based on the input image.

2. According to the results, the texture-based method works better in the leopard
image, while the RGB segmentation method works better in the other two
images. It is reasonable since the texture-based method is suitable when our
foreground image contains more textures than the background image. The
leopard image is the case. In addition, the color characteristic in the lake image
and the gray level difference in the brain image makes them more suitable for
applying the RGB segmentation method.

3. Sometimes if we do some preprocessing on the images, the segmentation
results can be enhanced. For instance, the RGB segmentation in the lake
image, the RGB and texture segmentation in the brain image, are improved
by first smoothing the original image with a Gaussian filter, then do the
processing.

4. The contour extraction method could also influence the result. Right now my
contour extraction algorithm would depict the boundary of those tiny
foreground regions. Use other contour extraction algorithms may improve the
results.

7. Results
7.1 Lake Image

Original image:

RGB segmentation:

R-channel with 2 iteration of the Otsu’s method:

G-channel with 2 iteration of the Otsu’s method:

B-channel with 1 iteration of the Otsu’s method:

Overall mask:

Contour:

In this case, we can improve our result by smoothing the image with Gaussian low-
pass filter of 2.5σ = , then apply the Otsu’s method.

Overall mask with Gaussian smoothing:

Contour:

Texture-based segmentation:

N=7 channel with 4 iteration of the Otsu’s method:

Overall mask:

Contour:

In this case, applying Gaussian filter do not improve the result.

7.2 Leopard Image

Original image:

RGB segmentation:

R-channel with 1 iteration of the Otsu’s method:

G-channel with 1 iteration of the Otsu’s method:

B-channel with 2 iteration of the Otsu’s method:

Overall mask:

Contour:

Texture-based segmentation:

N=3 channel with 1 iteration of the Otsu’s method:

N=5 channel with 1 iteration of the Otsu’s method:

N=7 channel with 1 iteration of the Otsu’s method:

Overall mask:

Contour:

7.3 Brain Image

Original image:

RGB segmentation:

R-channel with 1 iteration of the Otsu’s method:

G-channel with 1 iteration of the Otsu’s method:

B-channel with 1 iteration of the Otsu’s method:

Overall mask:

Contour:

In this case, we can improve our result by smoothing the image with Gaussian low-
pass filter of 2.5σ = , then apply the Otsu’s method.

Overall mask with Gaussian smoothing:

Contour:

According to the original brain image, if we want to differentiate between the
relatively white region and the gray region, we can use different iteration numbers
for Otsu’s method. To improve the result, we also smooth the image with Gaussian
low-pass filter of 2.5σ = .

R-channel with 2 iteration of the Otsu’s method:

G-channel with 1 iteration of the Otsu’s method:

B-channel with 1 iteration of the Otsu’s method:

Overall mask with Gaussian smoothing:

Contour:

Texture-based segmentation:

N=3 channel with 1 iteration of the Otsu’s method:

N=5 channel with 1 iteration of the Otsu’s method:

N=7 channel with 1 iteration of the Otsu’s method:

Overall mask:

Contour:

In this case, we can improve our result by smoothing the image with Gaussian low-
pass filter of 2.5σ = , then apply the Otsu’s method.

Overall mask with Gaussian smoothing:

Contour:

Code: hw6_RihTengWu.m
% ECE 661 HW 6 - Otsu's method, Texture based segmentation, Contour
extraction
% Student: Rih-Teng Wu

clc
clear all
close all

% ==== load images for different cases
Case = 3; % 1: lake; 2: leopard, 3: brain
switch Case
 case 1
 image = imread('lake.jpg');
 % ==== try gaussian lowpass filter,
 % ==== for texture-based, do not filter the image
 image = imgaussfilt(image,2.5);
 case 2
 image = imread('leopard.jpg');
 case 3
 image = imread('brain.jpg');
 image = imgaussfilt(image,2.5); % try gaussian lowpass filter
end
figure, imshow(image);

% ==== Show RGB images
image_black = zeros(size(image,1),size(image,2));
image_r = cat(3,image(:,:,1),image_black,image_black); % red channel
figure, imshow(image_r);
image_g = cat(3,image_black,image(:,:,2),image_black); % green channel
figure, imshow(image_g);
image_b = cat(3,image_black,image_black,image(:,:,3)); % blue channel
figure, imshow(image_b);

% ==== RGB images segmentation using Otsu
switch Case
 case 1
 N_iter_r = 2; N_iter_g = 2; N_iter_b = 1; % different iterations for
RGB channels, 2, 2, 1
 case 2
 N_iter_r = 1; N_iter_g = 1; N_iter_b = 2; % 1,1,2
 case 3
 N_iter_r = 2; N_iter_g = 1; N_iter_b = 1; % 2,1,1; 1,1,1
end
mask_r = Otsu_RGB(image_r,N_iter_r); % Perform Otsu separately for each
channel
mask_g = Otsu_RGB(image_g,N_iter_g);
mask_b = Otsu_RGB(image_b,N_iter_b);

figure, imshow(mask_r);
figure, imshow(mask_g);
figure, imshow(mask_b);

% ==== apply AND operator to get overall mask

switch Case
 case 1
 mask_overall = mask_b & ~mask_r & ~mask_g; % for the lake image
 case 2
 mask_overall = mask_b & mask_r & mask_g; % for the leopard image
 case 3
 mask_overall = mask_b & mask_r & mask_g; % for the brain image
end
figure, imshow(mask_overall);

% ==== perform texture segmentation
texture_3 = text_seg(image,3);
texture_5 = text_seg(image,5);
texture_7 = text_seg(image,7);

image_3 = cat(3,texture_3,image_black,image_black);
image_5 = cat(3,image_black,texture_5,image_black);
image_7 = cat(3,image_black,image_black,texture_7);

switch Case
 case 1
 % ==== for lake, consider small variance as the foreground image
 image_3 = uint8(255*ones(size(image,1),size(image,2),3)) - image_3;
 image_5 = uint8(255*ones(size(image,1),size(image,2),3)) - image_5;
 image_7 = uint8(255*ones(size(image,1),size(image,2),3)) - image_7;
 N_iter_3 = 1; N_iter_5 = 2; N_iter_7 = 4; % 1,2,4
 case 2
 N_iter_3 = 1; N_iter_5 = 1; N_iter_7 = 1;
 case 3
 N_iter_3 = 1; N_iter_5 = 1; N_iter_7 = 1;
end

mask_3 = Otsu_RGB(image_3,N_iter_3);
mask_5 = Otsu_RGB(image_5,N_iter_5);
mask_7 = Otsu_RGB(image_7,N_iter_7);

figure, imshow(mask_3);
figure, imshow(mask_5);
figure, imshow(mask_7);

% ==== apply AND operator to get overall mask
switch Case
 case 1
% mask_overall_text = mask_3 & mask_5 & mask_7; % for the lake
image
 mask_overall_text = mask_7; % for the lake image
 case 2
 mask_overall_text = mask_3 & mask_5 & mask_7; % for the leopard image
 case 3
 mask_overall_text = mask_3 & mask_5 & mask_7; % for the brain image
end
figure, imshow(mask_overall_text);

% ==== Contour extraction
contour_RGB = ContourExtraction(mask_overall);

contour_text = ContourExtraction(mask_overall_text);

figure, imshow(contour_RGB);
figure, imshow(contour_text);

Code: Otsu_RGB.m
function [mask] = Otsu_RGB(image, N)
% This function separate the foreground and the background of the
% input image based on Otsu's method
% Author: Rih-Teng Wu
% mask: 1 for foreground; 0 for background
% image: the red, green, or blue image of the original image (uint8 format)
% N: number of iteration for Otsu's method

% ==== convert to double and grayscale
image = rgb2gray(image);
image = double(image);
image_shift = image + 1; % shift [0 255] to [1 256]

% ==== calculate image intensity histogram
L = 256; % Gray level from 0 to L-1 (0~255)
[h, w] = size(image); % the height and width of the image
p_total = h*w;

% ==== calculate pdf of pixel intensity
pixel_count = zeros(L,1);
pixel_pdf = zeros(L,1); % initial the pdf of pixel intensity

for i = 1:L
 pixel_count(i) = length(find(image_shift(:) == i));
 pixel_pdf(i) = pixel_count(i)/p_total;
end

% ==== Otsu's method
thresh = 1; % initial optimum gray level threshold in [1 256]

for i = 1:N
 sigma_b.thresh = []; % initial sigma_b (between-class variance)
 sigma_b.value = [];
 count = 1;

 for j = thresh:L
 % ==== apply Otsu only for gray level in [thresh,L-1]
 % ==== for the next interation, apply Otsu in the foreground
 % ==== threshold will be updated

 % ==== calculate W0 and W1, mu_0, mu_1, and between-class variance
 W0 = sum(pixel_pdf(thresh:j,1));
 W1 = sum(pixel_pdf(j+1:L,1));

 mu_0 = sum([thresh:j]'.*pixel_pdf(thresh:j,1))/W0;
 mu_1 = sum([j+1:L]'.*pixel_pdf(j+1:L,1))/W1;

 sigma_b.thresh(count) = j;
 sigma_b.value(count) = W0*W1*(mu_0-mu_1)^2;
 count = count + 1;
 end

 % ==== update threshold
 sigma_max = max([sigma_b.value]);
 max_idx = find(sigma_b.value == sigma_max);
 thresh = sigma_b.thresh(max_idx);

 % ==== update histogram
 [row col] = find(image_shift >= thresh);
 p_total = length(row);
 pixel_count = zeros(L,1);
 pixel_pdf = zeros(L,1); % initial the pdf of pixel intensity

 for k = thresh:L
 pixel_count(k) = length(find(image_shift(:) == k));
 pixel_pdf(k) = pixel_count(k)/p_total;
 end
end

% ==== get mask
thresh = thresh - 1; % convert back to [0 255];
mask = zeros(h,w); % initial of mask

for i = 1:h
 for j = 1:w
 if image(i,j)> thresh
 mask(i,j) = 1;
 end
 end
end

end

Code: text_seg.m
function [texture] = text_seg(image , N)
% This function output the texture feature by using a N by N window
% The feature corresponds to the variance of the pixels in the window
% Author: Rih-Teng Wu
% texture: the output texture feature
% image: original image with uint8 format
% N: defines the window size, need to be an odd number

% ==== convert to grayscale, then convert to double
image_g = rgb2gray(image);
image_g = double(image_g);

[h w] = size(image_g);
w_half = (N-1)/2; % half of window size,
np = N*N; % number of pixel in the window

texture = zeros(h,w); % initial output

for i = 1+w_half:h-w_half
 for j = 1+w_half:w-w_half
 img_window = image_g(i-w_half:i+w_half,j-w_half:j+w_half);
 value = img_window(:);
 m_window = mean(value);
 % ==== calculate variance
 texture(i,j) = 1/np*sum((value-m_window).^2);
 end
end

% ==== scale to [0 255], then convert to uint8 format
texture = texture./max(texture(:))*255;
texture = uint8(texture);
end

Code: ContourExtraction.m
function [contour] = ContourExtraction(mask)
% This function output the contour from the mask
% Author: Rih-Teng Wu
% contour: the contour that separate the foreground and the
% background
% mask: the mask obtained from image segmentation

[h w] = size(mask);
contour = zeros(h,w); % initial contour
N = 3; % 3x3 window, with 8-neighbors
w_half = (N-1)/2;

% ==== only if the center pixel value is 1, and not all its surrounding
pixels
% equals to 1, is considered as a valid contour point

for i = 1+w_half:h-w_half
 for j = 1+w_half:w-w_half
 img_window = mask(i-w_half:i+w_half,j-w_half:j+w_half);
 if img_window(2,2)== 1
 values = img_window(:);
 if sum(values)< N*N
 contour(i,j) = 1;
 end
 end
 end
end

end

