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Introduction 

A common task in computer vision is establishing correspondences between interest points in 

two images of the same scene. The first step in this task is identifying distinct interest points in 

both images that may be invariant to changes in scale and rotation. To achieve this task, we 

explore the use of the Harris corner detector and the Scale Invariant Feature Transform (SIFT). 

The next step is matching the interest points in the two images. To achieve this task, we explore 

the use of the Sum of Squared Differences (SSD) and the Normalized Cross Correlation (NCC) 

of image gray levels in the vicinity of the interest points as metrics of similarity. In the case of 

SIFT, we use the Euclidean distance between formal descriptors of the interest points as the 

metric of similarity. Correspondences between the images may be established by identifying 

interest points with high similarity. First, we provide theoretical background on Harris Corner 

and SIFT key point detection and matching. Then we compare the performance of these 

algorithms using four pairs of test images.   

Theoretical Background 

Harris Corner Detection 

Harris corners are points in the image at which strong variations in gray levels are occurring in 

two orthogonal directions. The two orthogonal directions of maximum variation define the 

orientation of the corner. This makes Harris Corners invariant to image rotation. Harris corners 

may also be detected at multiple scales using properly-sized Haar filters. In this study, Harris 

Corner detection was accomplished using the following algorithm: 

1. Define an image scale 𝜎 (e.g. 𝜎 = √2, 2√2, 3√2, or 4√2). The corresponding Haar filters are 

of size 𝑁 × 𝑁 such that 𝑁 is the smallest even integer greater than 4𝜎. For example, when 𝜎 =

√2 the corresponding Haar filters in the x and y direction are given below. 
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2. Convert the image 𝐼 to grayscale and compute the x and y gradients of all of the pixels in the 

image at the desired scale 𝜎 by convolving the image with the appropriate Haar filters ℎ𝑥 and ℎ𝑦. 

𝐺𝑥 = 𝐼 ∗ ℎ𝑥  𝐺𝑦 = 𝐼 ∗ ℎ𝑦 

3. Compute the squares and products of the gradients at every pixel. 

𝐺𝑥2 = 𝐺𝑥
2  𝐺𝑦2 = 𝐺𝑦

2  𝐺𝑥𝑦 = 𝐺𝑥𝐺𝑦 

4. Define a window that you will use to compute Harris corner detector responses at each image 

pixel. The window may be sized as 5𝜎 × 5𝜎 rounded to the nearest odd integer.  

5. Center the search window on every image pixel (𝑥, 𝑦). Within each search window, compute 

the sums of the corresponding 𝐺𝑥2, 𝐺𝑦2, and 𝐺𝑥𝑦 values and define the matrix 𝐻(𝑥, 𝑦). 

𝑆𝑥2 = ∑𝐺𝑥2  𝑆𝑦2 = ∑𝐺𝑦2  𝑆𝑥𝑦 = ∑𝐺𝑥𝑦 

𝐻(𝑥, 𝑦) = [
𝑆𝑥2 𝑆𝑥𝑦

𝑆𝑥𝑦 𝑆𝑦2
] 

6. Compute the Harris corner detector response (𝑅) for each image pixel based on the 

eigenvalues of the matrix 𝐻(𝑥, 𝑦) (these eigenvalues correspond to the two orthogonal directions 

of maximum variation about the pixel) using experimentally-determined parameter 𝑘 = 0.04. 

𝑅 = 𝐷𝑒𝑡(𝐻) − 𝑘(𝑇𝑟𝑎𝑐𝑒(𝐻))
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𝐷𝑒𝑡(𝐻) = 𝜆1𝜆2 𝑇𝑟𝑎𝑐𝑒(𝐻) = 𝜆1 + 𝜆2 

7. Find Harris Corners by thresholding out pixels with small or negative R values and identifying 

the local maxima among the remaining pixels. In this study, local maxima were found using a 

search window of size 29x29 pixels. These maxima are likely to be strong ‘corners’ in the sense 

that they exhibit a relatively large amount of variation in gray levels about two orthogonal axes.  

 



Matching Harris Corners 

Harris Corners were matched using the Sum of Squared Differences (SSD) and the Normalized 

Cross Correlation (NCC) as metrics of similarity. These metrics were calculated over 𝑁 × 𝑁 

windows of pixels centered on each Harris Corner where N was set equal to 21. For a pair of 

Harris corners in images 𝐼1 and 𝐼2, the SSD and NCC are defined as follows: 

𝑆𝑆𝐷 = ∑∑|𝐼1(𝑖, 𝑗) − 𝐼2(𝑖, 𝑗)|
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Where 𝜇1 and 𝜇2 are the means of the gray levels of the pixels in the 𝑁 × 𝑁 windows in image 𝐼1 

and 𝐼2, respectively. In theory, the NCC should allow for slightly better matching than the SSD 

because it can account for small differences in illumination between the images by normalizing 

with respect to their mean gray levels 𝜇1 and 𝜇2. 

We note that although Harris Corners are invariant to rotation and detected at multiple scales, the 

SSD and NCC are computed in a manner such that they do not capture any changes in the scale 

or rotation of the interest points that may be present. Therefore, poor matching is to be expected 

for both NCC and SSD in images that exhibit large differences in scale and rotation. But, for 

image pairs that exhibit minimal differences in scale and rotation, it may still be reasonable to 

postulate that the lower the SSD or the higher the NCC, the more likely the interest points in the 

two images are a match.  

Following this reasoning, it might make sense to compute the SSD and NCC for all possible 

combinations of Harris Corners in the two images and then apply a threshold to these values to 

identify matching combinations. However, if we plot these SSD and NCC values for a pair of 

images, it becomes clear that there is no obvious way of identifying such a threshold (or even a 

ratio of successive SSD or NCC values) that indicates a transition from matches to non-matches 

(Figure 1). This problem persists even after removing obvious non-matches such as points that 

were already matched with other points or point combinations with very high SSD or low NCC. 

It might be possible to improve the situation by considering the image coordinates of the Harris 

Corners, but this would require a great deal of meaningless, ad-hoc programming that would not 



provide any valuable insight into the quality of correspondences that may be obtained by finding 

Harris Corners and relying on the SSD and NCC to match them.  

 

Figure 1. The best SSD and NCC values for Harris Corners detected at scale 1 in the first pair of 

test images. Matches are among these point combinations, but it is impossible to identify them 

based on the SSD and NCC alone.   

Therefore, in this implementation, the 200 combinations with the highest SSD and NCC values 

were taken to be ‘matches’ and the quality of the matches was evaluated and compared to the top 

200 ‘matches’ obtained from SIFT.  

SIFT Key Point Detection 

The SIFT algorithm was described in detail in lecture, so it will only be described briefly here. 

SIFT key points are defined as the local extrema of the Difference of Gaussian (𝐷𝑜𝐺) pyramid of 

an image. The 𝐷𝑜𝐺 of an image (𝐷) is defined as follows: 

𝐷(𝑥, 𝑦, 𝜎) = 𝑓𝑓(𝑥, 𝑦, 𝜎1) − 𝑓𝑓(𝑥, 𝑦, 𝜎2) 

Where 𝑓𝑓(𝑥, 𝑦, 𝜎) is the image convolved with a Gaussian filter of standard deviation 𝜎 and 𝜎1 

and 𝜎2 are two closely spaced values of 𝜎 (the 𝐷𝑜𝐺 serves as an approximation for the Laplacian 

of the image computed at scale 𝜎). The 𝐷𝑜𝐺 pyramid extends through multiple octaves of scale 

space (𝑖𝜎 where 𝑖 = 1, 2, and 4) and multiple 𝐷𝑜𝐺’s are calculated across the scale space within 

each octave. Key points are identified as the local extrema of 𝐷 in the space defined by  Χ =

(𝑥, 𝑦, 𝜎). Since 𝐷 is initially computed at discrete sampling intervals, additional work is needed 

to localize the extrema with sub-pixel accuracy. This is accomplished by using a Taylor series 



expansion to form a continuous approximation for 𝐷 about the approximate location of the 

extrema Χ0 = (𝑥0, 𝑦0, 𝜎0) based on its second-order derivative: 

𝐷(𝑥, 𝑦, 𝜎) = 𝐷(Χ0) + 𝐽𝑇(Χ0)Χ +
1

2
𝑥𝑇𝐻(Χ0)Χ 

Where Χ is an incremental deviation from Χ0, 𝐽 is the Jacobian, and 𝐻 is the Hessian: 
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Following this local approximation for 𝐷 to a refined location for the extrema allows SIFT key 

points to be localized with sub-pixel precision. Low-contrast key points are ignored by requiring 

that |𝐷(Χ)| > 0.03 and key points near the edge of the image are also excluded. In this study, 

SIFT key point detection was accomplished using the implementation in the VLFeat library with 

default parameter settings (http://www.vlfeat.org/).  

Matching SIFT Key Points 

Once key points are localized in both images, the next step is to match them across the images. 

In the SIFT algorithm this is accomplished by describing each key point uniquely and in a 

manner that is invariant to scale and rotation using a 128-dimensional descriptor. Key points are 

matched based on the Euclidean distance between their descriptors. A small Euclidean distance 

between two descriptors indicates a match.  

The descriptor for a given key point is computed based on a window of pixels in the vicinity of 

the key point in the image smoothed at the scale in which the key point was detected 𝑓𝑓(𝑥, 𝑦, 𝜎) 

(this makes the descriptor invariant to scale). First, the orientation of the key point is determined 

by analyzing the magnitudes and orientations of gray levels within the vicinity of the key point: 

𝑚(𝑥, 𝑦) = √|𝑓𝑓(𝑥 + 1, 𝑦, 𝜎) − 𝑓𝑓(𝑥, 𝑦, 𝜎)|2 + |𝑓𝑓(𝑥, 𝑦 + 1, 𝜎) − 𝑓𝑓(𝑥, 𝑦, 𝜎)|2    

http://www.vlfeat.org/


 𝜃(𝑥, 𝑦) = arctan (
𝑓𝑓(𝑥+1,𝑦,𝜎)−𝑓𝑓(𝑥,𝑦,𝜎)

𝑓𝑓(𝑥,𝑦+1,𝜎)−𝑓𝑓(𝑥,𝑦,𝜎)
) 

The orientations 𝜃 are weighted by their respective magnitudes 𝑚 and sorted into a histogram of 

36 bins spanning 360°. The bins with the greatest weight determine the dominant orientation of 

the key point. Finally, the descriptor is computed using a 16 × 16 window of pixels surrounding 

the key point. The 16 × 16  window of pixels is sub-divided into sixteen 4 × 4 blocks of pixels. 

Each 4 × 4 block contains 16 pixels. For each 4 × 4 block the magnitudes and orientations of the 

16 pixels are calculated relative to the dominant orientation of the key point and binned into an 

8-bin histogram (this makes the descriptor invariant to rotation). Thus, we get one 8-bin 

histogram for each 4 × 4 block of pixels, resulting in a total of sixteen 8-bin histograms. These 

histograms are stringed together to form a 128-dimensional descriptor for each key point. The 

descriptor is normalized to unit length to make it invariant to small changes in illumination. The 

Euclidean distance between key point descriptors (labeled 𝑎 and 𝑏) is calculated as follows: 

𝑑(𝑎, 𝑏) = √∑(𝑎𝑖 − 𝑏𝑖)2

128

𝑖

 

The smaller the Euclidean distance between two key points, the more likely they are a match. 

These descriptors offer a highly detailed and unique description of each key point that is 

invariant to scale and rotation. This makes it possible to identify matches between the images by 

computing distances between all possible combinations of key points and applying a threshold.  

Validation of Matches 

A crude, but fast and sufficiently accurate method was devised for validating matches detected in 

this image set. This involved comparing the image coordinates of the detected matches to the 

image coordinates of manually-measured matches. Specifically, the images were appended side-

by-side and lines were drawn between the detected matches. The angles and lengths of the lines 

were compared to the angle and length of a line between the manually measured matches. If the 

angle differed by more than 5 degrees or the length differed by more than 5% from the reference 

line, then the detected match was considered erroneous. This method worked well for this image 

set because these images exhibited minimal differences in rotation and scale and also minimal 

projective distortion.   



Experimental Results 

Image Set 

Four pairs of images were used for this study (Figures 2, 3, 4, and 5). 

  
Figure 2. Image pair 1. 

  
Figure 3. Image pair 2. 

 



  
Figure 4. Image pair 3. 

  
Figure 5. Image pair 4. 

Tables 1 and 2 summarize the parameters used for interest point detection and matching. 

Table 1. Parameters for Harris Corner detection and matching. 

Parameter Value 

Scale (𝜎) (unitless) √2, 2√2, 3√2, and 4√2 

Haar filter size (pixels) Smallest even integer greater than 4𝜎 

Size of window for computing Harris 

corner detector responses (pixels) 

5𝜎 × 5𝜎 rounded to nearest odd integer 

Experimentally-determined parameter for 

computing detector responses (𝑘) 

0.04 

Size of window for finding local maxima 

of detector responses in the image (pixels) 

29 × 29 

Size of window for computing SSD and 

NCC (pixels) 

21 × 21 

Threshold for matches Best 200 SSD and NCC values are ‘matches’ 
 

Evaluating matches ‘Correct’ if within 5 degrees and 5% of the angle 

and length of a line drawn between true matches 

 



Table 2. Parameters for SIFT key point detection and matching. * 

 

Threshold for matches 
Smallest 200 Euclidean distances between key 

point descriptors are ‘matches’ 
 

 

Evaluating matches 
‘Correct’ if within 5 degrees and 5% of the angle 

and length of a line drawn between true matches 

*Default parameters were used for SIFT according to the implementation at vlfeat.org.  

Matching Harris Corners and SIFT Key Points 

The number of correct matches of Harris Corners based on the SSD and NCC and the number of 

correct matches of SIFT key points based on Euclidean distances are tabulated below. Also 

included are the number of Harris Corners detected at each scale and the number of SIFT key 

points. 

Table 3. Number of Harris corners detected. 

Image Pair 1 2 3 4 

Image 1 2 1 2 1 2 1 2 

Scale 1 493 504 229 227 205 209 540 589 

Scale 2 283 265 144 154 118 121 403 484 

Scale 3 181 178 114 123 91 89 303 342 

Scale 4 144 147 109 111 89 93 268 289 

 

Table 4. Number of correct matches of Harris corners using SSD and NCC. 

Image Pair 1 2 3 4 

Scale SSD NCC SSD NCC SSD NCC SSD NCC 

1 79 130 111 104 161 136 2 11 

2 74 66 80 84 109 104 5 19 

3 76 70 69 70 82 78 8 37 

4 61 59 50 55 75 68 12 35 

 

Table 5. Number of SIFT key points detected and correct matches using Euclidean distances. 

Image Pair 1 2 3 4 

Image 1 2 1 2 1 2 1 2 

Key Points 8260 10570 2312 2750 1393 1380 11531 12559 

Correct Matches 148 200 200 92 

*Note: Total number of detected ‘matches’ was 200 in all cases. 

In the appendix, Figures 6-25 illustrate the correct, incorrect, and validation matches in each case 

as blue, red, and yellow lines, respectively.  Basically, more blue lines indicate better 

performance.  



Discussion and Conclusions 

As the scale is increased, the number of Harris corners that are detected decreases 

proportionately. For example, for image 1 in pair 1 at scale 1, 493 corners were detected, but at 

scale 4, only 144 corners were detected (Table 3). This has obvious and important ramifications 

for image matching. Basically, the larger the scale, the smaller the number of corners, and 

therefore smaller the number of possible matches.  

It is also interesting to observe what types of corners are detected at multiple scales. Basically, 

for a corner to remain detectable at multiple scales, it must be a large, yet sharply-defined corner 

without too much noise in its vicinity that could cause it to become obscured at larger spatial 

scales. Such corners might be found on the outline of a large, sharply-defined object in the 

image, such as the edge of a building or tree where it meets the sky. For example, in image pair 1 

(Figure 6-9) we can see that corners within the trees at small spatial scales do not remain at 

larger spatial scales since they get smoothed out. But, corners detected at the edge of the tree are 

still detected at larger spatial scales since the edge of the tree does not get smoothed out. 

The experimental results are consistent with these ideas. In all image pairs, the number of correct 

matches decreases as the scale increases (Table 4). This is largely because there are fewer 

corners to work with. Also, depending on the type of scene that is imaged, corners that are 

defined at larger spatial scales (such as corners of buildings, which typically look the same) may 

be harder to distinguish and match correctly than corners defined at smaller spatial scales where 

more intricate details may be present. 

Contrary to expectations, for this image set, the NCC and SSD exhibited similar performance in 

terms of their ability to discriminate matches from non-matches. This is reflected by the fact that 

the best 200 NCC and SSD values contained very similar numbers of correct matches (Table 4). 

This is likely because in this image set, there are only minimal differences in illumination from 

image to image, so the normalization applied by the NCC does not really help make the corners 

easier to match. Only in image pair 4 did the NCC clearly out-perform the SSD. Nevertheless, it 

is expected that the NCC would yield more correct matches than the SSD for a larger set of 

images that exhibits greater changes in illumination.   

 



With regards to SIFT key points, we note that on the order of 10 times as many SIFT key points 

were detected than Harris Corners in these image pairs (Table 5). Generally, with more key 

points it is reasonable to expect a greater number of possible matches. So this is one advantage 

that SIFT key points have over Harris Corners.     

Also, when we compare the results of matching Harris Corners based on SSD and NCC to 

matching SIFT key points based on Euclidean distances between descriptors, we find that SIFT 

key points are much easier to match correctly. In the case of SIFT, key points were detected at 

multiple spatial scales and the point combinations with the smallest 200 Euclidean distances 

between their descriptors were taken to be ‘matches’. Remarkably, the descriptors described the 

key points so uniquely that many of these point combinations (often the majority) were correct 

matches. For example, in two of the image pairs, all 200 point combinations were correct 

matches (Table 5). Still, SIFT key points were not always matched correctly. Some incorrect 

matches may be unavoidable in portions of scenes where there is little contrast or various points 

or objects look the same, as in image pairs 1 and 4 (Figures 22 and 25). Nevertheless, this is a 

strong demonstration of why it is better to match interest points based on descriptors rather than 

crude metrics like the SSD or NCC. Descriptors offer a much more detailed and therefore unique 

description of each key point. Also, they may be invariant to both scale and rotation and they can 

be normalized for changes in illumination, as is the case for SIFT descriptors.   

 

 

 

 

 



Appendix.  

 

  
Figure 6. Pair 1 scale 1 Harris matches.         Figure 7. Pair 1 scale 2 Harris matches.



 

 

  
Figure 8. Pair 1 scale 3 Harris matches.    Figure 9. Pair 1 scale 4 Harris matches. 

 

 



  
Figure 10. Pair 2 scale 1 Harris matches.     Figure 11. Pair 2 scale 2 Harris matches.  



  
     Figure 12. Pair 2 scale 3 Harris matches.    Figure 13. Pair 2 scale 4 Harris matches.  



 
         Figure 14. Pair 3 scale 1 Harris matches. 

 

 
Figure 15. Pair 3 scale 2 Harris matches. 



 
Figure 16. Pair 3 scale 3 Harris matches. 

 

 
Figure 17. Pair 3 scale 4 Harris matches. 



 

  
     Figure 18. Pair 4 scale 1 Harris matches.    Figure 19. Pair 4 scale 2 Harris matches.  



  
     Figure 20. Pair 4 scale 3 Harris matches.    Figure 21. Pair 4 scale 4 Harris matches.  



Matching SIFT Key Points 

 
Figure 22. Pair 1 SIFT matches. 

 

 
Figure 23. Pair 2 SIFT matches. 



 
Figure 24. Pair 3 SIFT matches. 

 
Figure 25. Pair 4 SIFT matches. 

 

 

 



0.1 Code

0.1.1 Harris.m

%har r i s corner d e t e c t i on and matching

%assuming no i se in the image happens at s p a t i a l s c a l e o f
sigma = s q r t (2)

sigma = sqrt (2 ) ∗ s c a l e ;

%ca l c u l a t e s i z e o f square haar f i l t e r
hs = round( ce i l (4∗ sigma ) /2) ∗2 ;%( haar s i z e ) ( sma l l e s t even

i n t e r g e r g r ea t e r than 4∗ sigma )

%c a l c u l a t e s i z e o f square p i x e l windows t ha t you w i l l use
to c a l c u l a t e corner score s

cs = round( ce i l (5∗ sigma ) /2) ∗2+1;%( corner s i z e ) ( w i l l be
odd so there ’ s a cen ter p i x e l )

%save h a l f s o f some window s i z e s
h a l f c s = ( cs−1) /2 ;
ha l f ms = (ms−1) /2 ;
h a l f p s = ( ps−1) /2 ;

%genera te haar f i l t e r s in x and y d i r e c t i o n
hx = [−ones ( hs , hs /2) , ones ( hs , hs /2) ] ;
hy = [ ones ( hs /2 , hs ) ; −ones ( hs /2 , hs ) ] ;

%−−−−−−−−−−−−−implement a l gor i thm on image pair
−−−−−−−−−−−−−−−

%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%−−−−−−−−−−−−−−−−−−−−−PART 1 − FIND HARRIS CORNERS
−−−−−−−−−−−−−−−−−−−−−−−−−

%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1



%loop over the pa i r o f images (named 1 . j pg and 2 . j pg )
for n = 1 :2

%load the image
load ( s t r c a t ( ’ p a i r ’ , pa ir , ’ img ’ ,num2str(n) , ’ . mat ’ ) ) ;
I = double ( I ) ;

%compute x and y g rad i en t s o f image at proper s c a l e
us ing haar f i l t e r s

Gx = im f i l t e r ( I , hx ) ;
Gy = im f i l t e r ( I , hy ) ;
clear I

%compute squares and product s o f g r ad i en t s at every
p i x e l in the image ( xx , yy , xy )

Gx2 = Gx. ˆ 2 ;
Gy2 = Gy. ˆ 2 ;
Gxy = Gx.∗Gy;
clear Gx Gy

%at every p i x e l ( excep t ones too c l o s e to image
boundar ies ) compute the Harris Detec tor Score R

[ nrows , n co l s ] = s ize (Gx2) ;
R = zeros ( nrows , n co l s ) ;%s to r e corner score s f o r

p i x e l s
for i = h a l f c s +1:nrows−h a l f c s

for j = h a l f c s +1: nco l s−h a l f c s
%grab g rad i en t va l u e s w i th in the search

window around t h i s p i x e l
Gx2 sub = Gx2( i−h a l f c s : i+ha l f c s , j−h a l f c s :

j+h a l f c s ) ;
Gy2 sub = Gy2( i−h a l f c s : i+ha l f c s , j−h a l f c s :

j+h a l f c s ) ;
Gxy sub = Gxy( i−h a l f c s : i+ha l f c s , j−h a l f c s :

j+h a l f c s ) ;

%compute sums o f g r ad i en t s w i th in the search
window

Sx2 = sum(sum(Gx2 sub ) ) ;
Sy2 = sum(sum(Gy2 sub ) ) ;
Sxy = sum(sum(Gxy sub ) ) ;

%de f i n e matrix H at each p i x e l
H = [ Sx2 Sxy ; . . .

Sxy Sy2 ] ;
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%compute response o f h a r r i s corner d e t e c t o r
f o r the p i x e l ( i , j )

R( i , j ) = det (H) − k∗( trace (H) ) ˆ2 ;
end

end
clear Gx2 Gy2 Gxy Gx2 sub Gy2 sub Gxy sub

%f ind l o c a l maxima o f the corner responses
C = uint8 ( zeros ( nrows , n co l s ) ) ;%make 1 f o r corner ,

l e a v e as 0 f o r non corner ,
for i = ha l f ms+1:nrows−ha l f ms

for j = ha l f ms+1: nco l s−ha l f ms
%grab corner response va l u e s w i th in the

search window around t h i s p i x e l
R sub = R( i−ha l f ms : i+hal f ms , j−ha l f ms : j+

hal f ms ) ;

%only a s s i gn a 1 to t h i s p i x e l i f i t has the
maximum corner

%response w i th in the search window and i t s
non−nega t i v e and i t

%has a corner response t ha t i s r e l a t i v e l y
l a r g e compared to the

%o v e r a l l image ( i t s not in a smooth par t o f
the image )

i f ( R( i , j ) == max(max( R sub ) ) ) && ( R( i , j )
> 0 ) && ( abs (R( i , j ) ) > mean(mean(abs (R) )
) )
C( i , j ) = uint8 (1 ) ;

end
end

end
clear R R sub

%ge t the row , column ind i c e s o f the corners ( and save
images o f corners )

i f n == 1
[ rows1 , c o l s 1 ] = find (C == uint8 (1 ) ) ;

else
[ rows2 , c o l s 2 ] = find (C == uint8 (1 ) ) ;

end
clear C

end
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%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%−−−−−−−−−−−−PART 2 − FIND CORRESPONDENCES BETWEEN IMAGES
−−−−−−−−−−−−−−−−−−

%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%load the g r ay s ca l e images ( in un i t s o f doub le )
load ( s t r c a t ( ’ p a i r ’ , pa ir , ’ img 1 .mat ’ ) )
I1 = double ( I ) ;
load ( s t r c a t ( ’ p a i r ’ , pa ir , ’ img 2 .mat ’ ) )
I2 = double ( I ) ;
clear I

%okay . . . so we need to grab l o c a l r eg i ons o f p i x e l s around
a l l o f the corners in each

%of the images . . . then we need to compare a l l p o s s i b l e
combinat ions o f corners in the

%two images and keep only the b e s t matching corners . . .
where b e s t match i s determined

%by l owe s t SSD or h i g h e s t NCC
n pt s 1 = length ( c o l s 1 ) ;
n p t s 2 = length ( c o l s 2 ) ;
n combinat ions = n pt s 1 ∗ n pt s 2 ;
pt data = zeros ( n combinations , 4 ) ;%4 columns correspond

to ( image 1 pt id ) , ( image 2 pt id ) , ( ssd ) , ( ncc ) , and
the re are as many rows as the r e are p o s s i b l e
combinat ions o f i n t e r e s t p t s in the two images

idx = 0 ;%index f o r combination number
for n = 1 : n pt s 1

%grab image coord ina t e s o f the po in t in image 1
i 1 = rows1 (n) ;
j 1 = co l s 1 (n) ;

%grab p i x e l s around the po in t in image 1
sub1 = I1 ( i1−ha l f p s : i 1+ha l f p s , j1−ha l f p s : j 1+

ha l f p s ) ;
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%compute s t a t i s t i c s f o r sub1 ( need f o r ncc
c a l c u l a t i o n s )

mu1 = mean(mean( sub1 ) ) ;
dev1 = sub1−mu1 ;

for m = 1 : n pt s 2

%grab image coord ina t e s o f po in t s
i 2 = rows2 (m) ;
j 2 = co l s 2 (m) ;

%grab p i x e l s around the po in t in image 2
sub2 = I2 ( i2−ha l f p s : i 2+ha l f p s , j2−ha l f p s : j 2+

ha l f p s ) ;

%compute s t a t i s t i c s f o r sub2 ( need f o r ncc
c a l c u l a t i o n s )

mu2 = mean(mean( sub2 ) ) ;
dev2 = sub2−mu2 ;

%compute NCC
ncc = sum(sum( dev1 .∗ dev2 ) ) / sqrt ( sum(sum( dev1

. ˆ 2 ) ) ∗sum(sum( dev2 . ˆ 2 ) ) ) ;

%compute SSD
ssd = sum(sum( ( sub1 − sub2 ) . ˆ 2 ) ) ;

%compute the po in t combination index
idx = idx+1;

%s to r e the po in t data
pt data ( idx , 1 ) = n ;
pt data ( idx , 2 ) = m;
pt data ( idx , 3 ) = ssd ;
pt data ( idx , 4 ) = ncc ;

end
end

% %sor t the ssd and ncc data and p l o t them to see how
they change . . . t r y to

% %i d e n t i f y the c u t o f f where i t goes from matches to non−
matches

% ssd = so r t ( p t da t a ( : , 3 ) , ’ ascend ’ ) ;
% ncc = so r t ( p t da t a ( : , 4 ) , ’ descend ’ ) ;
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% f i g u r e (1)
% p l o t (1 :1000 , ssd (1 :1000) , ’ b ’ )
% t i t l e ( ’Sum of Squared Di f f e rences ’ )
% f i g u r e (2)
% p l o t (1 :1000 , ncc (1 :1000) , ’ r ’ )
% t i t l e ( ’ Normalized Cross Corre la t ion ’ )

%NOTE − the above p l o t s c l e a r l y show tha t t h e r e IS no
obv ious c u t o f f o f sdd

%or ncc va l u e s t ha t s epa ra t e s good matches from bad
matches . t h e r e f o r e ,

%the re r e a l l y isn ’ t any s e n s i b l e way o f i d e n t i f y i n g
matches from the s e data

%alone , o ther than j u s t t a k ing the top n matches and
l a t e r e v a l u a t i n g t h e i r

%accuracy by separa t e means .

%ge t ssd matches
pt data = sort rows ( pt data , 3 ) ;
s sd p t da ta = pt data ( 1 : n matches , : ) ;
ssd matches = zeros ( n matches , 4 ) ;
for i = 1 : n matches

n = s sd pt da ta ( i , 1 ) ;
m = ssd pt da ta ( i , 2 ) ;
match = [ rows1 (n) c o l s 1 (n) rows2 (m) c o l s 2 (m) ] ;%

s to r e match as [ i1 j1 i2 j2 ] row vec to r
ssd matches ( i , : ) = match ;%stack match row ve c t o r s

end

%ge t ncc matches
pt data = sort rows ( pt data , 4 ) ;
ncc pt data = pt data ( n combinations−n matches+1:

n combinations , : ) ;%note , s o r t ed in ascending order , so
take l a s t n matches e n t r i e s

ncc matches = zeros ( n matches , 4 ) ;
for i = 1 : n matches

n = ncc pt data ( i , 1 ) ;
m = ncc pt data ( i , 2 ) ;
match = [ rows1 (n) c o l s 1 (n) rows2 (m) c o l s 2 (m) ] ;%

s to r e match as [ i1 j1 i2 j2 ] row vec to r
ncc matches ( i , : ) = match ;%stack match row ve c t o r s

end

%open the images in f i g u r e s , draw the matches on the
f i g u r e s , and then save the f i g u r e s

%append the images
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i f ( nrows1 < nrows2 )
I1 ( nrows2 , 1 ) = 0 ;

else
I2 ( nrows1 , 1 ) = 0 ;

end
I3 = [ I1 I2 ] ;

%draw ssd matches and s t o r e l i n e ang l e s and l e n g t h s
s s d ang l e s = zeros ( length ( ssd matches ( : , 1 ) ) , 1 ) ;
s s d l e n g th s = zeros ( length ( ssd matches ( : , 1 ) ) , 1 ) ;
f igure ( ’ Po s i t i on ’ , [ 100 100 s ize ( I3 , 2 ) s ize ( I3 , 1 ) ] ) ;
colormap ( ’ gray ’ ) ;
imagesc ( I3 ) ;
hold on ;
for i = 1 : length ( ssd matches ( : , 1 ) )

%ge t l i n e endpo in t s
x1 = ssd matches ( i , 2 ) ;
x2 = ssd matches ( i , 4 )+nco l s1 ;
y1 = ssd matches ( i , 1 ) ;
y2 = ssd matches ( i , 3 ) ;
%ge t the ang l e o f the l i n e
%ang l e i n d e g=atan2 ( y2−y1 , x2−x1 ) ∗180/ p i
s s d ang l e s ( i ) = (180/pi ) ∗atan2 ( y2−y1 , x2−x1 ) ;
%ge t the l en g t h o f the l i n e
s s d l e n g th s ( i ) = sqrt ( ( x2−x1 ) ˆ2+(y2−y1 ) ˆ2) ;

%i f the ang le and d i s t ance o f the l i n e are reasonab le
, draw in red

i f ( ( s s d ang l e s ( i ) > angl−a ) && ( s sd ang l e s ( i ) <
angl+a ) && ( s sd l e n g th s ( i ) > d i s t−d) && (
s s d l e n g th s ( i ) < d i s t+d) )
l ine ( [ x1 x2 ] , [ y1 y2 ] , ’ Color ’ , ’ c ’ ) ;%draw

l i n e s between matches us ing l i n e (X,Y) ( s h i f t x
’ s f o r image 2 by nco l s1 )

else%i f the ang le and d i s t ance are not reasonab le ,
draw in cyan ( b l u e )
l ine ( [ x1 x2 ] , [ y1 y2 ] , ’ Color ’ , ’ r ’ ) ;%draw

l i n e s between matches us ing l i n e (X,Y) ( s h i f t x
’ s f o r image 2 by nco l s1 )

end

end
%draw the v a l i d a t i o n l i n e on the f i g u r e in ye l l ow
l ine ( [ X1 X2 ] , [ Y1 Y2 ] , ’ Color ’ , ’ y ’ ) ;
hold o f f ;
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%draw ncc matches and s t o r e l i n e ang l e s and l e n g t h s
ncc ang l e s = zeros ( length ( ncc matches ( : , 1 ) ) , 1 ) ;
n c c l eng th s = zeros ( length ( ssd matches ( : , 1 ) ) , 1 ) ;
f igure ( ’ Po s i t i on ’ , [ 100 100 s ize ( I3 , 2 ) s ize ( I3 , 1 ) ] ) ;
colormap ( ’ gray ’ ) ;
imagesc ( I3 ) ;
hold on ;
for i = 1 : length ( ncc matches ( : , 1 ) )

%ge t l i n e endpo in t s
x1 = ncc matches ( i , 2 ) ;
x2 = ncc matches ( i , 4 )+nco l s1 ;
y1 = ncc matches ( i , 1 ) ;
y2 = ncc matches ( i , 3 ) ;
%ge t the ang l e o f the l i n e
%ang l e i n d e g=atan2 ( y2−y1 , x2−x1 ) ∗180/ p i
ncc ang l e s ( i ) = (180/pi ) ∗atan2 ( y2−y1 , x2−x1 ) ;
%ge t the l en g t h o f the l i n e
ncc l eng th s ( i ) = sqrt ( ( x2−x1 ) ˆ2+(y2−y1 ) ˆ2) ;

%i f the ang le and d i s t ance o f the l i n e are reasonab le
, draw in red

i f ( ( n c c ang l e s ( i ) > angl−a ) && ( ncc ang l e s ( i ) <
angl+a ) && ( ncc l eng th s ( i ) > d i s t−d) && (
ncc l eng th s ( i ) < d i s t+d) )
l ine ( [ x1 x2 ] , [ y1 y2 ] , ’ Color ’ , ’ c ’ ) ;%draw

l i n e s between matches us ing l i n e (X,Y) ( s h i f t x
’ s f o r image 2 by nco l s1 )

else%i f the ang le and d i s t ance are not reasonab le ,
draw in cyan ( b l u e )
l ine ( [ x1 x2 ] , [ y1 y2 ] , ’ Color ’ , ’ r ’ ) ;%draw

l i n e s between matches us ing l i n e (X,Y) ( s h i f t x
’ s f o r image 2 by nco l s1 )

end
end
%draw the v a l i d a t i o n l i n e on the f i g u r e in ye l l ow
l ine ( [ X1 X2 ] , [ Y1 Y2 ] , ’ Color ’ , ’ y ’ ) ;
hold o f f ;

%f i g u r e out how many f a l s e−p o s i t i v e s t h e r e were f o r each
method based on the ang l e s o f the l i n e s formed in the
f i g u r e

s sd co r r e c t mat che s = sum( ( s s d ang l e s > angl−a ) . ∗ (
s s d ang l e s < angl+a ) . ∗ ( s s d l e n g th s > d i s t−d) . ∗ (
s s d l e n g th s < d i s t+d) )

s s d f a l s e p o s i t i v e s = n matches − s sd co r r e c t mat che s
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ncc co r r e c t matche s = sum( ( n c c ang l e s > angl−a ) . ∗ (
n c c ang l e s < angl+a ) . ∗ ( n c c l eng th s > d i s t−d) . ∗ (
n c c l eng th s < d i s t+d) )

n c c f a l s e p o s i t i v e s = n matches − ncc co r r e c t matche s

toc

0.1.2 Sift.m

%s i f t f e a t u r e d e t e c t i on and matching

%−−−−−−−−−−−−−implement a l gor i thm on image pair
−−−−−−−−−−−−−−−

%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% %−−−−−−−−−−−−−−−−−−−−−−PART 1 − FIND SIFT FEATURES
−−−−−−−−−−−−−−−−−−−−−−−−−

%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

run ( VLfeat setup path )

%load the g r ay s ca l e images ( in un i t s o f s i n g l e )
load ( s t r c a t ( ’ p a i r ’ , pa ir , ’ img 1 .mat ’ ) )
I1 = s i n g l e ( I ) ;
load ( s t r c a t ( ’ p a i r ’ , pa ir , ’ img 2 .mat ’ ) )
I2 = s i n g l e ( I ) ;
clear I

[ f1 , d1 ] = v l s i f t ( I1 ) ;
[ f2 , d2 ] = v l s i f t ( I2 ) ;

c o l s 1 = f1 ( 1 , : ) ;%x coord ina t e s o f k eypo in t s
rows1 = f1 ( 2 , : ) ;%y coord ina t e s o f k eypo in t s

c o l s 2 = f2 ( 1 , : ) ;%x coord ina t e s o f k eypo in t s
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rows2 = f2 ( 2 , : ) ;%y coord ina t e s o f k eypo in t s

%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% %−−−−−−−−−−−−−−−−−−−−−−PART 2 − FIND SIFT MATCHES
−−−−−−−−−−−−−−−−−−−−−−−−−−

%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%d has d e s c r i p t o r s f o r s i f t k eypo in t s as columns , so you
j u s t need to

%d i r e c t l y compare the d e s c r i p t o r s us ing euc l i d ean
d i s t ance . . . so now

%euc l i d ean d i s t ance i s your ”match” metr ic
n pt s 1 = length ( c o l s 1 ) ;
n p t s 2 = length ( c o l s 2 ) ;
n combinat ions = n pt s 1 ∗ n pt s 2 ;
pt data = zeros ( n combinations , 3 ) ;%4 columns correspond

to ( image 1 pt id ) , ( image 2 pt id ) , ( ssd ) , ( ncc ) , and
the re are as many rows as the r e are p o s s i b l e
combinat ions o f i n t e r e s t p t s in the two images

idx = 0 ;%index f o r combination number
for n = 1 : n pt s 1

%grab d e s c r i p t o r f o r po in t in image 1
D1 = double ( d1 ( : , n ) ) ;

for m = 1 : n pt s 2

%grab d e s c r i p t o r f o r po in t in image 1
D2 = double ( d2 ( : ,m) ) ;

%compute euc l i d ean d i s t ance
euc = sqrt ( sum( (D1−D2) . ˆ 2 ) ) ;

%compute the po in t combination index
idx = idx+1;
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%s to r e the po in t data
pt data ( idx , 1 ) = n ;
pt data ( idx , 2 ) = m;
pt data ( idx , 3 ) = euc ;

end
end

%ge t s i f t matches
pt data = sort rows ( pt data , 3 ) ;
pt data = pt data ( 1 : n matches , : ) ;
s i f t ma t ch e s = zeros ( n matches , 4 ) ;
for i = 1 : n matches

n = pt data ( i , 1 ) ;
m = pt data ( i , 2 ) ;
match = [ rows1 (n) c o l s 1 (n) rows2 (m) c o l s 2 (m) ] ;%

s to r e match as [ i1 j1 i2 j2 ] row vec to r
s i f t ma t ch e s ( i , : ) = match ;%stack match row ve c t o r s

end

%open the images in f i g u r e s , draw the matches on the
f i g u r e s , and then save the f i g u r e s

%append the images
i f ( nrows1 < nrows2 )

I1 ( nrows2 , 1 ) = 0 ;
else

I2 ( nrows1 , 1 ) = 0 ;
end
I3 = [ I1 I2 ] ;

%draw s i f t matches and s t o r e l i n e ang l e s and l e n g t h s
s i f t a n g l e s = zeros ( length ( s i f t ma t ch e s ( : , 1 ) ) , 1 ) ;
s i f t l e n g t h s = zeros ( length ( s i f t ma t ch e s ( : , 1 ) ) , 1 ) ;
f igure ( ’ Po s i t i on ’ , [ 100 100 s ize ( I3 , 2 ) s ize ( I3 , 1 ) ] ) ;
colormap ( ’ gray ’ ) ;
imagesc ( I3 ) ;
hold on ;
for i = 1 : length ( s i f t ma t ch e s ( : , 1 ) )

%ge t l i n e endpo in t s
x1 = s i f t ma t ch e s ( i , 2 ) ;
x2 = s i f t ma t ch e s ( i , 4 )+nco l s1 ;
y1 = s i f t ma t ch e s ( i , 1 ) ;
y2 = s i f t ma t ch e s ( i , 3 ) ;
%ge t the ang l e o f the l i n e
%ang l e i n d e g=atan2 ( y2−y1 , x2−x1 ) ∗180/ p i
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s i f t a n g l e s ( i ) = (180/pi ) ∗atan2 ( y2−y1 , x2−x1 ) ;
%ge t the l en g t h o f the l i n e
s i f t l e n g t h s ( i ) = sqrt ( ( x2−x1 ) ˆ2+(y2−y1 ) ˆ2) ;

%i f the ang le and d i s t ance o f the l i n e are reasonab le
, draw in red

i f ( ( s i f t a n g l e s ( i ) > angl−a ) && ( s i f t a n g l e s ( i ) <
angl+a ) && ( s i f t l e n g t h s ( i ) > d i s t−d) && (
s i f t l e n g t h s ( i ) < d i s t+d) )
l ine ( [ x1 x2 ] , [ y1 y2 ] , ’ Color ’ , ’ c ’ ) ;%draw

l i n e s between matches us ing l i n e (X,Y) ( s h i f t x
’ s f o r image 2 by nco l s1 )

else%i f the ang le and d i s t ance are not reasonab le ,
draw in cyan ( b l u e )
l ine ( [ x1 x2 ] , [ y1 y2 ] , ’ Color ’ , ’ r ’ ) ;%draw

l i n e s between matches us ing l i n e (X,Y) ( s h i f t x
’ s f o r image 2 by nco l s1 )

end

end
%draw the v a l i d a t i o n l i n e on the f i g u r e in ye l l ow
l ine ( [ X1 X2 ] , [ Y1 Y2 ] , ’ Color ’ , ’ y ’ ) ;
hold o f f ;

%f i g u r e out how many f a l s e−p o s i t i v e s t h e r e were f o r each
method based on the ang l e s o f the l i n e s formed in the
f i g u r e

s i f t c o r r e c t ma t c h e s = sum( ( s i f t a n g l e s > angl−a ) . ∗ (
s i f t a n g l e s < angl+a ) . ∗ ( s i f t l e n g t h s > d i s t−d) . ∗ (
s i f t l e n g t h s < d i s t+d) )

s i f t f a l s e p o s i t i v e s = n matches − s i f t c o r r e c t ma t c h e s

toc

0.1.3 HW4 Inputs.m

%format inpu t s f o r ha r r i s and s i f t a l go r i t hms

t ic ;
format compact
%−−−−−−−−−−−−−−−−−−s p e c i f y inputs

−−−−−−−−−−−−−−−−−−−−−−−−−−−

%s e l e c t a l gor i thm
method = 2 ;%1 fo r ha r r i s corners , 2 f o r s i f t f e a t u r e s
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%s e l e c t image s c a l e at which you search f o r f e a t u r e s and
matches (1 , 2 , 3 , or 4)

s c a l e = 1 ;

%image d i r e c t o r y (uncomment co r r e c t d i r e c t o r y )
% img d i r e c t o ry = ’U:\ Personal \ece−661\hw4\HW4Pics\ pa ir1

\ ’ ;
% img d i r e c t o ry = ’U:\ Personal \ece−661\hw4\HW4Pics\ pa ir2

\ ’ ;
% img d i r e c t o ry = ’U:\ Personal \ece−661\hw4\HW4Pics\ pa ir3

\ ’ ;
img d i r e c to ry = ’U:\ Personal \ ece−661\hw4\HW4Pics\ pa i r4 \ ’ ;

%VLfeat SIFT f o l d e r d i r e c t o r y
VLfeat setup path = ’U:\ Personal \ ece−661\hw4\

f i n a l s ubm i s s i o n \ v l f e a t −0.9.20\ too lbox \ v l s e tup ’ ;

%manually measured matches in each pa i r o f images
%pa i r 1 in row 1 , pa i r 2 in row 2 , pa i r 3 in row 3 as [ y1

x1 y2 x2 ] row ve c t o r s
manual matches = [ 590 799 652 534 ; . . .%pair 1

349 388 360 551 ; . . .%pair 2
301 386 299 364 ; . . .%pair 3
428 1798 396 851 ] ; %pair 4

%number o f matches you want to ob ta in ( recommended not to
exceed 200)

n matches = 200 ;

%cons tant k f o r computing ha r r i s d e t e c t o r responses
k = 0 . 0 4 ;%0.04 to 0.06 recommended in l i t e r a t u r e

%s i z e o f search window fo r f i n d i n g l o c a l maxima o f corner
d e t e c t o r responses

ms = 29 ;%p i x e l s (maxima search ) (must be odd )

%s i z e o f window fo r computing sum of squared d i f f e r e n c e s
or normal ized cros s c o r e l a t i o n to match corners in the
image pa i r s

ps = 21 ;%p i x e l s ( pa i r search ) (must be odd )

%maximum a l l owa b l e change in the ang le o f the l i n e drawn
between matches in
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%the images ( used to i d e n t i f y f a l s e−p o s i t i v e s a f t e r
g rabb ing the s p e c i f i e d

%number o f ”matches ”)
a = 5 ;%degrees

%maximum a l l owa b l e f r a c t i o n a l change in the l e n g t h o f the
l i n e drawn

%between matches in the images ( used to i d e n t i f y f a l s e−
p o s i t i v e s a f t e r

%grabb ing the s p e c i f i e d number o f ”matches ”)
f = 0 . 0 5 ;%f r a c t i o n

%−−−−−−−−−−−−−−−−−c a l c u l a t e d inputs
−−−−−−−−−−−−−−−−−−−−−−−−

%ge t the pa i r number
pa i r = img d i r e c to ry ( length ( img d i r e c to ry )−1) ;

for n = 1 :2

%ge t the image f i l ename
img name = s t r c a t (num2str(n) , ’ . jpg ’ ) ;
img f i l ename = s t r c a t ( img d i rec tory , img name ) ;

%read the image
I = imread ( img f i l ename ) ;

%conver t image to g r ay s ca l e
I = rgb2gray ( I ) ;

%ge t image dimensions
i f n == 1

nrows1 = s ize ( I , 1 ) ;
nco l s 1 = s ize ( I , 2 ) ;

else
nrows2 = s ize ( I , 1 ) ;
nco l s 2 = s ize ( I , 2 ) ;

end

%save the image as a .mat f i l e f o r f a s t r e l oad ing
l a t e r

save ( s t r c a t ( ’ p a i r ’ , pa ir , ’ img ’ ,num2str(n) , ’ . mat ’ ) , ’
I ’ ) ;

end
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%ca l c u l a t e r e f e r ence ang l e s and l e n g t h s f o r l i n e s drawn
between

%correspondences when the images are p laced s ide−by−s i d e
( used

%to he l p i d e n t i f y i n c o r r e c t matches )
X1 = manual matches (str2num( pa i r ) , 2 ) ;%stored as [ y1 x1 y2

x2 ]
X2 = manual matches (str2num( pa i r ) , 4 )+nco l s1 ;
Y1 = manual matches (str2num( pa i r ) , 1 ) ;
Y2 = manual matches (str2num( pa i r ) , 3 ) ;
angl = (180/pi ) ∗atan2 (Y2−Y1 , X2−X1) ;
d i s t = sqrt ( (X2−X1) ˆ2+(Y2−Y1) ˆ2) ;
d = d i s t ∗ f ;

%run the s e l e c t e d a l rog i thm
i f method == 1

disp ( ’ h a r r i s ’ )
m160923 ece661 hw4 harr i s ah

else
disp ( ’ s i f t ’ )
m160923 ece661 hw4 s i f t ah

end
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