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1 Harris Corner Detector

The Harris Corner Detector uses derivatives in x and y directions in order to
detect robust interest points. The derivatives need to be scaled for different
values of σ and so we form the derivative filter kernels for x and y using the
Haar filters.

The Haar filter kernels have a size of smallest even integer greater than 4σ
and are an extrapolation of the basic forms of the Haar wavelets along the x
and y directions. As an example, for σ = 1.2, we get

∂
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∂

∂y
=


1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1
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Once the derivatives are computed, we form the C matrix for each pixel
using a neighborhood of size 5σ × 5σ where we enforce 5σ to be odd to get a
unique center pixel. The C matrix is defined as

C =

[ ∑
d2x

∑
dxdy∑

dxdy
∑
d2y

]
(3)

where dx and dy denote the output of the derivative filters over the chosen
neighborhood.

An interest point is completely characterized by the ratio of the eigenvalues
of C , r = λ2

λ1
with λ1 > λ2 which can be subject to a threshold to detect interest

points. However, since it computationally expensive to calculate the eigenvalues
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at every pixel location, we use a proxy for the ratio r. We instead compute and
apply a threshold to

r

(1 + r)2
=

λ1λ2
(λ1 + λ2)2

=
det(C)

trace(C)2
(4)

which is computationally cheaper since it is directly in terms of the elements of
the matrix C.

Once we have established interest points using the above method, we tend to
get clusters of interest points along edges and corners which need to be filtered
out. This is done through non-maxima suppression so that only local maxima
(in terms of the ratio) interest points are retained.

2 Establishing Point Correspondences

2.1 NCC : Normalized Cross Correlation

Once we have established interest points in 2 images of the same scene, we can
establish correspondences through the NCC metric applied over an (M + 1) ×
(M + 1) window around the points being considered. NCC is defined as follows

NCC =

∑
i

∑
j(f1(i, j)−m1)(f2(i, j)−m2)√

(
∑
i

∑
j(f1(i, j)−m1)2)(

∑
i

∑
j(f2(i, j)−m2)2)

(5)

where fi is the window around the point in the ith image and mi is the
mean of the pixels in that window. For a point to be matched, the NCC must
be high. Since the NCC lies between 0 and 1, we can choose a suitable threshold
to determine point correspondences.

In my experiments, I thresholded the NCC at 0.95 which produced
accurate correspondences for all image pairs.

2.2 SSD : Sum of Squared Differences

Another metric used for establishing correspondences is the SSD which is also
applied over an (M + 1)× (M + 1) window around the points being considered.
SSD is defined as follows

SSD =
∑
i

∑
j

|f1(i, j)− f2(i, j)|2 (6)

where fi is the window around the point in the ith image. For a point to be
matched, the SSD must be low. We can threshold the SSD to determine point
correspondences.

In my experiments, I thresholded the SSD at 10.min(SSD) which
produced accurate correspondences for all image pairs. In this way,
the threshold is dynamic and does not need to tweaked for every
image pair and produces accurate correspondences generally
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3 SIFT : Scale Invariant Feature Transform

The Scale Invariant Feature Transform is one of the most popular interest point
detectors used in computer vision. For our experiments, we used the readily
available implementation of SIFT found in the VLFeat library.

SIFT is a rather complicated algorithm if one considers all the details in-
volved. Since it has been covered in thorough detail in class, we will provide a
brief overview of the highlights of the algorithm.

• SIFT is based entirely on the scale space analysis to identify interest
points. Specifically, it utilizes the DoG pyramid discussed in class. The
SIFT interest points are the points of local extrema in the scale space
D(x, y, σ) which are found by comparisons in a 3×3×3 volumetric neigh-
borhood in the scale space.

• As the σ increases in the scale space, the spatial resolution gets coarser and
in order to find accurate locations of the extrema in the original resolution,
the scale space is approximated near the point of extrema using the Taylor
Series expansion as

D( ~X) ≈ D( ~X0) + JT ( ~X0) ~X +
1

2
~XTH( ~X0) ~X (7)

where J is the gradient vector evaluated at the extrema ~X0 = (x0, y0, σ0)T

and H is the Hessian evaluated at ~X0. The higher order terms are ne-
glected in this approximation.

Now, to find accurate locations, the condition ∂D( ~X)

∂ ~X
= 0 is imposed which

yields the extrema as ~X = −H−1( ~X0)J( ~X0)

• Weak Extrema points are filtered out by thresholding |D( ~X)| < 0.03 which
results in removal of points along edges.

• Once we get points of extrema, we assign a dominant local orientation of
the gradient at the point of extrema as

m(x, y) =
√
|ff(x+ 1, y, σ)− ff(x, y, σ)|2 + |ff(x, y + 1, σ)− ff(x, y, σ)|2

(8)

θ(x, y) = arctan
ff(x, y + 1, σ)− ff(x, y, σ)

ff(x+ 1, y, σ)− ff(x, y, σ)
(9)

• Without going into the specific details, once we get a dominant orientation,
a histogram of orientations for pixels in a neighborhood around the point
of extrema is created where the direction of reference is the dominant
direction that we determined. Stringing together these histogram entries
generates the SIFT feature vector at the location of the point of extrema.
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• It is interesting to note that since the orientations are measured using
the dominant orientation as a reference, the histograms generated are
invariant to in plane rotations. The feature vectors are also normalized
to have a unit magnitude which makes them invariant to illumination
changes. Hence the feature vector formed is highly robust.

4 Establishing Point Correspondences for SIFT

Since SIFT gives highly robust feature vectors at every interest point, we can
establish correspondences between points by simply calculating the euclidian
distance between their respective feature vectors and applying a threshold to it.
If di is the feature vector corresponding to an interest point in the ith image,
then the euclidian distance is defined as the L2 norm

EuclidianDist = ||d1 − d2||2 (10)

Note that using the Euclidian distance metric is the same as using the SSD
metric since it is just the square root of the SSD.

EuclidianDist =
√
SSD (11)

In my experiments, I thresholded the euclidian distance at 3.min(
Euclidian Distance) which produced accurate correspondences for all
image pairs. In this way, the threshold is dynamic and does not need
to tweaked for every image pair and produces accurate correspon-
dences generally

In addition, I also used the NCC metric for SIFT correspondences
with a threshold of 0.99 which produced more accurate correspon-
dences than the Euclidian distance.

5 Experiments

5.1 Observations and Comparisons of the Methods

For the Harris detector, we see that as the scale increases, the number of detected
interest points located along edges or what appears to be fine texture reduce.
In a sense, these points are not very robust. On the other hand, interest points
located at corners and other prominent features tend to have a high response
to the Harris Detector and are found to be detected at all the scales used for
the experiments.

We observe that in general SIFT is more robust than Harris and detects
and matches a lot more interest points than the Harris detector does. Further,
Harris detector’s performance is highly dependent on the parameters used for
the scales and matching algorithms. In my experiments I have used a single set
of parameters for all image pairs which consequently produces better results in
some particular cases as compared to the rest. Harris detector also picks up a lot
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of false positive interest points which need to be filtered out using non-maxima
suppression.

We further notice that the NCC metric is more accurate in establishing point
correspondences in comparison to the SSD metric. SSD is highly dependent on
the parameters used and is not as robust as the NCC over a wide range or
perspective differences between 2 images.

5.2 Pair 1

Figure 1: SIFT image with correspondences using Euclidian Distance

Figure 2: SIFT image with correspondences using NCC

5



Figure 3: Image correspondences using NCC on Harris with scale 1.2

Figure 4: Image correspondences using SSD on Harris with scale 1.2

Figure 5: Image correspondences using NCC on Harris with scale 1.6
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Figure 6: Image correspondences using SSD on Harris with scale 1.6

Figure 7: Image correspondences using NCC on Harris with scale 2.2

Figure 8: Image correspondences using SSD on Harris with scale 2.2
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Figure 9: Image correspondences using NCC on Harris with scale 2.6

Figure 10: Image correspondences using SSD on Harris with scale 2.6
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5.3 Pair 2

Figure 11: SIFT image with correspondences using Euclidian Distance
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Figure 12: SIFT image with correspondences using NCC
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Figure 13: Image correspondences using NCC on Harris with scale 1.6
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Figure 14: Image correspondences using SSD on Harris with scale 1.6
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Figure 15: Image correspondences using NCC on Harris with scale 2.2

13



Figure 16: Image correspondences using SSD on Harris with scale 2.2
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Figure 17: Image correspondences using NCC on Harris with scale 2.6

15



Figure 18: Image correspondences using SSD on Harris with scale 2.6
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Figure 19: Image correspondences using NCC on Harris with scale 3.2
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Figure 20: Image correspondences using SSD on Harris with scale 3.2

5.4 Pair 3

Figure 21: SIFT image with correspondences using Euclidian Distance
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Figure 22: SIFT image with correspondences using NCC

Figure 23: Image correspondences using NCC on Harris with scale 1.2

Figure 24: Image correspondences using SSD on Harris with scale 1.2
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Figure 25: Image correspondences using NCC on Harris with scale 1.6

Figure 26: Image correspondences using SSD on Harris with scale 1.6

Figure 27: Image correspondences using NCC on Harris with scale 2.2
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Figure 28: Image correspondences using SSD on Harris with scale 2.2

Figure 29: Image correspondences using NCC on Harris with scale 2.6

Figure 30: Image correspondences using SSD on Harris with scale 2.6
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5.5 Pair 4

Figure 31: SIFT image with correspondences using Euclidian Distance

Figure 32: SIFT image with correspondences using NCC

Figure 33: Image correspondences using NCC on Harris with scale 1.2
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Figure 34: Image correspondences using SSD on Harris with scale 1.2

Figure 35: Image correspondences using NCC on Harris with scale 1.6

Figure 36: Image correspondences using SSD on Harris with scale 1.6
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Figure 37: Image correspondences using NCC on Harris with scale 2.2

Figure 38: Image correspondences using SSD on Harris with scale 2.2

Figure 39: Image correspondences using NCC on Harris with scale 2.6
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Figure 40: Image correspondences using SSD on Harris with scale 2.6

6 Source Code

6.1 Code for main function

c l c
c l e a r

cd HW4Pics
cd pa i r2 % Change accord ing to which images to use f o r input
I1 = imread ( ’ 1 . jpg ’ ) ;
I2 = imread ( ’ 2 . jpg ’ ) ;
cd . .
cd . .

sigma = [ 0 . 8 , 1 . 2 , 1 . 6 , 2 . 2 , 2 . 6 , 3 . 2 ] ;

SIFT( I1 , I2 ) ;

f o r i = 1 : l ength ( sigma )
Point Correspondence ( I1 , I2 , sigma ( i ) ) ;

end

6.2 Code for SIFT function

f unc t i on [ ] = SIFT( I1 , I2 )
%Function to c a l c u l a t e po int cor re spondences between images I1 and I2 us ing
%SIFT

% Setup SIFT func t i on from VLFeat l i b r a r y
run v l f e a t −0.9.20/ too lbox / v l s e t u p

I 1 c o l o r = double ( I1 ) ;
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I 2 c o l o r = double ( I2 ) ;
I1 = double ( rgb2gray ( I1 ) ) ;
I2 = double ( rgb2gray ( I2 ) ) ;

% Find Point Correspondences through SIFT
[ f1 , d1 ] = v l s i f t ( s i n g l e ( I1 ) ) ;
[ f2 , d2 ] = v l s i f t ( s i n g l e ( I2 ) ) ;

P s i f t = Eucl id ( f1 , d1 , f2 , d2 ) ;

% Dispaly Point Correspondences f o r Eucl id Metric
I s i f t = [ I 1 c o l o r I 2 c o l o r ] ;
[ ˜ , n ] = s i z e ( I1 ) ;
P s i f t ( : , 4 ) = P s i f t ( : , 4 ) + n ;
f i g u r e , imshow ( I s i f t /255 ) ;
t i t l e ( ’ SIFT Euclid ’ ) ;
hold on , s c a t t e r ( f 1 ( 1 , : ) , f 1 ( 2 , : ) , ’ rx ’ ) ;
hold on , s c a t t e r ( f 2 (1 , : )+n , f 2 ( 2 , : ) , ’ rx ’ ) ;
[ k , ˜ ] = s i z e ( P s i f t ) ;
f o r i = 1 : k

hold on , p l o t ( [ P s i f t ( i , 2 ) P s i f t ( i , 4 ) ] , [ P s i f t ( i , 1 ) P s i f t ( i , 3 ) ] , ’ g ’ ) ;
end

pause ( 1 ) ;

frame = getframe ( gca ) ;
Im = frame2im ( frame ) ;
imwrite (Im , ’ SIFT . jpg ’ ) ;

% Dispaly Point Correspondences f o r NCC Metric
P s i f t 2 = NCC SIFT( f1 , d1 , f2 , d2 ) ;

I s i f t = [ I 1 c o l o r I 2 c o l o r ] ;
[ ˜ , n ] = s i z e ( I1 ) ;
P s i f t 2 ( : , 4 ) = P s i f t 2 ( : , 4 ) + n ;
f i g u r e , imshow ( I s i f t /255 ) ;
t i t l e ( ’ SIFT ’ ) ;
hold on , s c a t t e r ( f 1 ( 1 , : ) , f 1 ( 2 , : ) , ’ rx ’ ) ;
hold on , s c a t t e r ( f 2 (1 , : )+n , f 2 ( 2 , : ) , ’ rx ’ ) ;
[ k , ˜ ] = s i z e ( P s i f t 2 ) ;
f o r i = 1 : k

hold on , p l o t ( [ P s i f t 2 ( i , 2 ) P s i f t 2 ( i , 4 ) ] , [ P s i f t 2 ( i , 1 ) P s i f t 2 ( i , 3 ) ] , ’ g ’ ) ;
end

pause ( 1 ) ;
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frame = getframe ( gca ) ;
Im = frame2im ( frame ) ;
imwrite (Im , ’ SIFT NCC . jpg ’ ) ;

end

6.3 Code for Euclid function

f unc t i on [ P ] = Eucl id ( f1 , d1 , f2 , d2 )
%func t i on to c a l c u l a t e po int cor re spondences between SIFT f e a t u r e s through
%e u c l i d i a n d i s t a n c e s

[ ˜ ,m] = s i z e ( f 1 ) ;
[ ˜ , n ] = s i z e ( f 2 ) ;

E = ze ro s (m, n ) ;

% Eucl id Distance between a l l combinat ions o f i n t e r e s t po in t s
f o r i = 1 :m

f o r j = 1 : n
E( i , j ) = s q r t (sum ( ( d1 ( : , i ) − d2 ( : , j ) ) . ˆ 2 ) ) ;

end
end

% Threshold ing d i s t a n c e s to f i n d po int cor re spondences
[ min E , c o r l o c ] = min (E , [ ] , 2 ) ;
E thresh = 3∗min ( min E ) ;
Val id = min E < E thresh ;

P = ze ro s (sum( Val id ) , 4 ) ;

count = 1 ;
f o r i = 1 :m

i f ( Val id ( i ) == 1)
P( count , : ) = [ f 1 (2 , i ) f 1 (1 , i ) f 2 (2 , c o r l o c ( i ) ) f 2 (1 , c o r l o c ( i ) ) ] ;
count = count + 1 ;

end
end

end

6.4 Code for NCC SIFT function

f unc t i on [ P ] = NCC SIFT( f1 , d1 , f2 , d2 )
%func t i on to c a l c u l a t e po int cor re spondences between SIFT f e a t u r e s through
%NCC
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[ p ,m] = s i z e ( d1 ) ;
[ ˜ , n ] = s i z e ( d2 ) ;

NCC = ze ro s (m, n ) ;

M1 = mean( d1 ) ;
M2 = mean( d2 ) ;
N1 = double ( d1 ) − repmat (M1, [ p 1 ] ) ;
N2 = double ( d2 ) − repmat (M2, [ p 1 ] ) ;

count = 0 ;

% NCC between a l l combinat ions o f i n t e r e s t po in t s
f o r i = 1 :m

f o r j = 1 : n
count = count + 1 ;
T1 = N1 ( : , i ) ;
T2 = N2 ( : , j ) ;
NCC( i , j ) = sum(T1 .∗T2)/ s q r t (sum(T1 . ˆ 2 )∗ sum(T2 . ˆ 2 ) ) ;
i f (mod( count ,50000)==0)

d i sp ( count ) ;
pause ( 0 . 1 ) ;

end
end

end

% Threshold ing d i s t a n c e s to f i n d po int cor re spondences
[max NCC, c o r l o c ] = max(NCC, [ ] , 2 ) ;
NCC thresh = 0 . 9 9 ;
Val id = max NCC > NCC thresh ;

P = ze ro s (sum( Val id ) , 4 ) ;

count = 1 ;
f o r i = 1 :m

i f ( Val id ( i ) == 1)
P( count , : ) = [ f 1 (2 , i ) f 1 (1 , i ) f 2 (2 , c o r l o c ( i ) ) f 2 (1 , c o r l o c ( i ) ) ] ;
count = count + 1 ;

end
end

end

6.5 Code for point correspondence function

28



f unc t i on [ ] = Point Correspondence ( I1 , I2 , sigma )
%Function to c a l c u l a t e po int Correspondences between images I1 and I2 us ing
%the s c a l e parameter sigma f o r the Haar F i l t e r s in Harr i s Corner Detector

% Convert images to g r a y s c a l e and doubles f o r computation
I 1 c o l o r = double ( I1 ) ;
I 2 c o l o r = double ( I2 ) ;
I1 = double ( rgb2gray ( I1 ) ) ;
I2 = double ( rgb2gray ( I2 ) ) ;

% Form Haar F i l t e r s
[X,Y] = H a a r F i l t e r s ( sigma ) ;

% Form the x and y d e r i v a t i v e images
[ Dx1 , Dy1 ] = De r i va t i v e s ( I1 ,X,Y) ;
[ Dx2 , Dy2 ] = De r i va t i v e s ( I2 ,X,Y) ;

% Form a binary image with 1 at p i x e l s i g n i f y i n g corner po int
B1 = Corners (Dx1 , Dy1 , sigma ) ;
[ cx1 , cy1 ] = f i n d (B1 == 1 ) ;

B2 = Corners (Dx2 , Dy2 , sigma ) ;
[ cx2 , cy2 ] = f i n d (B2 == 1 ) ;

% Find Point Correspondences through SSD
P = SSD( cx1 , cy1 , cx2 , cy2 , I1 , I2 ) ;
I = [ I 1 c o l o r I 2 c o l o r ] ;
[ ˜ , n ] = s i z e ( I1 ) ;
P( : , 4 ) = P( : , 4 ) + n ;
f i g u r e , imshow ( I /255 ) ;
t i t l e ( [ ’ SSD with Sigma = ’ num2str ( sigma ) ] ) ;
hold on , s c a t t e r ( cy1 , cx1 , ’ rx ’ ) ;
hold on , s c a t t e r ( cy2+n , cx2 , ’ rx ’ ) ;
[ k , ˜ ] = s i z e (P) ;
f o r i = 1 : k

hold on , p l o t ( [P( i , 2 ) P( i , 4 ) ] , [ P( i , 1 ) P( i , 3 ) ] , ’ c ’ ) ;
end

pause ( 1 ) ;

frame = getframe ( gca ) ;
Im = frame2im ( frame ) ;
imwrite (Im , [ ’ SSD sig ’ num2str ( sigma ) ’ . jpg ’ ] ) ;

% Find Point Correspondences through NCC
P ncc = NCC( cx1 , cy1 , cx2 , cy2 , I1 , I2 ) ;
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I n c c = [ I 1 c o l o r I 2 c o l o r ] ;
[ ˜ , n ] = s i z e ( I1 ) ;
P ncc ( : , 4 ) = P ncc ( : , 4 ) + n ;
f i g u r e , imshow ( I n c c /255 ) ;
t i t l e ( [ ’NCC with Sigma = ’ num2str ( sigma ) ] ) ;
hold on , s c a t t e r ( cy1 , cx1 , ’ rx ’ ) ;
hold on , s c a t t e r ( cy2+n , cx2 , ’ rx ’ ) ;
[ k , ˜ ] = s i z e ( P ncc ) ;
f o r i = 1 : k

hold on , p l o t ( [ P ncc ( i , 2 ) P ncc ( i , 4 ) ] , [ P ncc ( i , 1 ) P ncc ( i , 3 ) ] , ’ y ’ ) ;
end

pause ( 1 ) ;

frame = getframe ( gca ) ;
Im = frame2im ( frame ) ;
imwrite (Im , [ ’ NCC sig ’ num2str ( sigma ) ’ . jpg ’ ] ) ;

end

6.6 Code for Haar Filters function

f unc t i on [ X,Y ] = H a a r F i l t e r s ( sigma )
%Function to generate the Haar F i l t e r k e r n e l s f o r the s p e c i f i e d s c a l e

% F i l t e r s i z e i s s m a l l e s t even i n t e g e r g r e a t e r than 4∗ sigma
N = c e i l (4∗ sigma ) ;
i f (mod(N, 2 ) ˜= 0)

N = N + 1 ;
end

% Forming Haar F i l e r s
X = ones (N,N) ;
Y = −1.∗X;

X( : , 1 : (N/2)) = −1.∗X( : , 1 : (N/ 2 ) ) ;
Y( 1 : (N/ 2 ) , : ) = −1.∗Y( 1 : (N/ 2 ) , : ) ;

end

6.7 Code for Derivatives function

f unc t i on [ Dx,Dy ] = D er i va t i v e s ( I ,X,Y )
%Function to c a l c u l a t e the image d e r i v a t i v e s in x and y d i r e c t i o n s g iven
%the d e r i v a t i v e f i l t e r s X and Y f o r the image I
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Dx1 = conv2 ( I ,X, ’ same ’ ) ;
Dy1 = conv2 ( I ,Y, ’ same ’ ) ;

Dx = (Dx1 − min (Dx1 ( : ) ) ) . / ( max(Dx1 ( : ) ) − min (Dx1 ( : ) ) ) ;
Dy = (Dy1 − min (Dy1 ( : ) ) ) . / ( max(Dy1 ( : ) ) − min (Dy1 ( : ) ) ) ;

end

6.8 Code for Corners function

f unc t i on [ I ] = Corners ( X, Y, sigma )
%Function to output a 1 in p i x e l c oo rd ina t e s where corner i s detec ted given
%a sigma and the x and y d e r i v a t e s .

[m, n ] = s i z e (X) ;
R = ze ro s (m, n ) ;
I = R;

% Finding neighborhood s i z e f o r forming matrix M
% Want an odd s i z e neighborhood f o r to have unique c e n t r a l p i x e l
N = c e i l (5∗ sigma ) ;
i f (mod(N, 2 ) == 0)

N = N + 1 ;
end

pad = (N−1)/2;
X = padarray (X, [ pad pad ] ) ;
Y = padarray (Y, [ pad pad ] ) ;

C = ze ro s ( 2 , 2 ) ;

% Forming matrix C at each p i x e l and c a l c u l a t i n g r a t i o r
count = 0 ;
f o r i = 1 :m

f o r j = 1 : n
count = count + 1 ;
i f (mod( count ,50000) == 0)

d i sp ( count ) ;
end

patchX = X( ( i+pad)−pad : ( i+pad)+pad , ( j+pad)−pad : ( j+pad)+pad ) ;
patchY = Y( ( i+pad)−pad : ( i+pad)+pad , ( j+pad)−pad : ( j+pad)+pad ) ;

C(1 , 1 ) = sum( patchX ( : ) . ˆ 2 ) ;
C(2 , 2 ) = sum( patchY ( : ) . ˆ 2 ) ;
C(1 , 2 ) = sum( patchX ( : ) . ∗ patchY ( : ) ) ;
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C(2 ,1 ) = C( 1 , 2 ) ;

r = rank (C) ;
i f ( r == 2)

R( i , j ) = det (C)/( t r a c e (C) ˆ 2 ) ;
end

end
end

% Removing detec ted po in t s at the co rne r s that can occur due to boundary
% c o n d i t i o n s being 0 out s id e the boundary
R( 1 : 1 5 , : ) = 0 ;
R(m−14:m, : ) = 0 ;
R( : , 1 : 1 5 ) = 0 ;
R( : , n−14:n) = 0 ;

% Non maximum suppre s s i on
SN = 31 ; % Window s i z e to con s id e r f o r non maximum suppre s s i on
pad SN = (SN−1)/2;
R SN = padarray (R, [ pad SN pad SN ] ) ;
Thresh = mean(R ( : ) ) ;

count = 0 ;
f o r i = 1 :m

f o r j = 1 : n
count = count + 1 ;
i f (mod( count ,50000) == 0)

d i sp ( count ) ;
end

i f (R( i , j ) > 0)
patch = R SN ( ( i+pad SN)−pad SN : ( i+pad SN)+pad SN , . . .

( j+pad SN)−pad SN : ( j+pad SN)+pad SN ) ;

% Finding p o s i t i o n o f s i g n i f i c a n t corner po int
i f (R( i , j ) == max( patch ( : ) ) && R( i , j ) > Thresh )

I ( i , j ) = 1 ;
end

end
end

end

end

6.9 Code for NCC function
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f unc t i on [ P ] = NCC( x1 , y1 , x2 , y2 , I1 , I2 )
%Function to c a l c u l a t e po int cor re spondences between s e t s o f i n t e r e s t
%po in t s f o r I1 and I2

N = 31 ; %Window s i z e f o r c a l c u l a t i n g SSD
pad = (N−1)/2;

% Zero padding boundar ies
I1 = padarray ( I1 , [ pad pad ] ) ;
I2 = padarray ( I2 , [ pad pad ] ) ;

A = length ( x1 ) ;
B = length ( x2 ) ;

NCC = ze ro s (A,B) ;

% Finding NCC between a l l combinat ions o f i n t e r e s t po in t s
f o r i = 1 :A

f o r j = 1 :B
patch1 = I1 ( ( x1 ( i )+pad)−pad : ( x1 ( i )+pad)+pad , . . .

( y1 ( i )+pad)−pad : ( y1 ( i )+pad)+pad ) ;
patch2 = I2 ( ( x2 ( j )+pad)−pad : ( x2 ( j )+pad)+pad , . . .

( y2 ( j )+pad)−pad : ( y2 ( j )+pad)+pad ) ;

m1 = mean( patch1 ( : ) ) ;
m2 = mean( patch2 ( : ) ) ;

T1 = patch1 − m1;
T2 = patch2 − m2;

NCC( i , j ) = sum(sum(T1 .∗T2))/ s q r t (sum(T1 ( : ) . ˆ 2 ) ∗ sum(T2 ( : ) . ˆ 2 ) ) ;
end

end

% Threshold ing NCC to f i n d po int cor re spondences
[max NCC, c o r l o c ] = max(NCC, [ ] , 2 ) ;
NCC thresh = 0 . 9 5 ;
Val id = max NCC > NCC thresh ;

P = ze ro s (sum( Val id ) , 4 ) ;

count = 1 ;
f o r i = 1 :A

i f ( Val id ( i ) == 1)
P( count , : ) = [ x1 ( i ) y1 ( i ) x2 ( c o r l o c ( i ) ) y2 ( c o r l o c ( i ) ) ] ;
count = count + 1 ;
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end
end

end

6.10 Code for SSD function

f unc t i on [ P ] = SSD( x1 , y1 , x2 , y2 , I1 , I2 )
%Function to c a l c u l a t e po int cor re spondences between s e t s o f i n t e r e s t
%po in t s f o r I1 and I2

N = 31 ; %Window s i z e f o r c a l c u l a t i n g SSD
pad = (N−1)/2;

% Zero padding boundar ies
I1 = padarray ( I1 , [ pad pad ] ) ;
I2 = padarray ( I2 , [ pad pad ] ) ;

A = length ( x1 ) ;
B = length ( x2 ) ;

SSD = ze ro s (A,B) ;

% Find SSD between a l l combinat ions o f i n t e r e s t po in t s
f o r i = 1 :A

f o r j = 1 :B
patch1 = I1 ( ( x1 ( i )+pad)−pad : ( x1 ( i )+pad)+pad , . . .

( y1 ( i )+pad)−pad : ( y1 ( i )+pad)+pad ) ;
patch2 = I2 ( ( x2 ( j )+pad)−pad : ( x2 ( j )+pad)+pad , . . .

( y2 ( j )+pad)−pad : ( y2 ( j )+pad)+pad ) ;

SSD( i , j ) = sum(sum ( ( patch1 − patch2 ) . ˆ 2 ) ) ;
end

end

% Threshold ing SSD to f i n d corre spondences
[ min SSD , c o r l o c ] = min (SSD , [ ] , 2 ) ;
SSD thresh = 10∗min ( min SSD ) ;
Val id = min SSD < SSD thresh ;

P = ze ro s (sum( Val id ) , 4 ) ;

count = 1 ;
f o r i = 1 :A

i f ( Val id ( i ) == 1)
P( count , : ) = [ x1 ( i ) y1 ( i ) x2 ( c o r l o c ( i ) ) y2 ( c o r l o c ( i ) ) ] ;
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count = count + 1 ;
end

end

end
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