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1. Introduction  
 
In the first part of this homework, we use principal component analysis (PCA) 

and linear discriminant analysis (LDA) to perform face recognition. The PCA and 
LDA is employed to project the high dimension data to their eigen-space, then the 
nearest neighbor algorithm is used to classify the data. 

In the second part of this homework, we use AdaBoost algorithm to perform car 
recognition. The cascaded AdaBoost is employed to reduce the False-Positive rate.  

 
2. Principal Component Analysis (PCA)  

 
To find the projection matrix that can project our high-dimension data to a low-

dimension representation, PCA is introduced to perform this task. The procedure of 
PCA is described as follows. 

 
Step 1:  Vectorize each training image of size 128x128 to a 16384x1 vector x�⃗ i, 

normalize each x�⃗ i to make it illuminant-invariant. Use gray-scale images. 
 
Step 2:  Calculate the global training mean: 

m���⃗ =
1
N� x�⃗ i

i

 

Step 3:  Form a matrix X = [x�⃗ 1 − m���⃗ x�⃗ 2 − m���⃗ … … x�⃗ N − m���⃗ ]. 
 
Step 4:  Instead of directly calculating the eigen-vectors 𝑤𝑤��⃗  of the covariance 

matrix XXT, we calculate the eigen-vectors of matrix XTX. Let 𝑢𝑢�⃗  denote the eigen-
vectors of matrix XTX. To reconstruct the eigen-vectors 𝑤𝑤��⃗  from 𝑢𝑢�⃗ , we use the 
following equation: 

𝑤𝑤��⃗ = X𝑢𝑢�⃗  
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Step 5:  Normalize each eigen-vector in  𝑤𝑤��⃗ .  
 
Step 6:  Select the largest P eigen-vectors from the normalized 𝑤𝑤��⃗ . The 

projection matrix WP is given as follows. 
 

WP = [w���⃗ 1 w���⃗ 2 … … w���⃗ P] 
 
Step 7:  Project all the training samples using the following equation: 
 

y�⃗ i = WP
T(x�⃗ i − m���⃗ ) 

 
Step 8:  Given a new test image, we first vectorize the test image, then project 

it using the equation given in Step 7. The projected vector is then classified based 
on the nearest neighbor within all the projected training vectors. 

 
3. Linear Discriminant Analysis (LDA)  

 
The objective of LDA is to find the eigen-vectors w���⃗ j that maximize the Fisher 

Discriminant Function: 

J�w���⃗ j� =
w���⃗ j

TSBw���⃗ j
w���⃗ j

TSWw���⃗ j
 

Where SB is the between-class scatter, SW is the within-class scatter. 
However, in most cases SW is singular. Therefore, we need to use Yu and Yang’s 

algorithm to find w���⃗ j, and use w���⃗ j to form the projection matrix. The procedure of Yu 
and Yang’s algorithm is described as follows. 

 
Step 1:  Vectorize each training image of size 128x128 to a 16384x1 vector x�⃗ i, 

normalize each x�⃗ i to make it illuminant-invariant. Use gray-scale images. 
 
Step 2:  Calculate the global training mean: 

m���⃗ =
1
N� x�⃗ i

i

 

Step 3:  Calculate the class mean: 



m���⃗ k =
1

‖Ck‖
� x�⃗ i
iϵCk

 

  where Ck means the class of training images with identity k, k = 1~C. 

Step 4:  Form matrix M: 
 

M= [m���⃗ 1 − m���⃗ m���⃗ 2 − m���⃗ … … m���⃗ C − m���⃗ ] 
 

Step 5:  Instead of directly calculating the eigen-vectors of SB = MMT C⁄ , we 
calculate the eigen-vectors of matrix MTM C⁄ . Let  u�⃗   be the eigen-vectors of 
MTM C⁄  in descending order, we reconstruct the eigen-vectors 𝑉𝑉�⃗  of SB = MMT C⁄  
by the following equation: 

𝑉𝑉�⃗ = M𝑢𝑢�⃗  

Step 6:  Form matrix Y = �𝑉𝑉�⃗1 𝑉𝑉�⃗ 2 … … 𝑉𝑉�⃗C�, and form DB which is the 
eigen-value matrix of SB. (The eigen-values of  MMT C⁄   and MTM C⁄  are the same, 
except that the former have additional zeros.) 

 
Step 7:  Compute Z = YDB

−1/2 . 
 
Step 8:  Compute the eigen-vectors of ZTSWZ. We can use the same 

computation trick as described previously since ZTSWZ  has the following form: 
 

ZTSWZ = (ZTXW)(ZTXW)T 
 
Where XW = [x�⃗ 11 − m���⃗ 1, x�⃗ 12 − m���⃗ 1, … , x�⃗ 1𝑘𝑘 − m���⃗ 1 … , x�⃗ 𝐶𝐶1 − m���⃗ C, … , x�⃗ 𝐶𝐶𝑘𝑘 − m���⃗ C] 
 
Step 9:  Organize the eigen-vectors U of  ZTSWZ  in ascending order. Select the 

smallest P eigen-vectors from U. Denote the eigen-vector matrix after selection as 
U� . Then the projection matrix WP is given as follows. 

 
WP

𝑇𝑇 = U�𝑇𝑇𝑍𝑍𝑇𝑇 
 
Step 10:  Normalize each eigen-vector in  WP.  
 



Step 11:  Project all the training samples using the following equation: 
 

y�⃗ i = WP
T(x�⃗ i − m���⃗ ) 

 
Step 12:  Given a new test image, we first vectorize the test image, then project 

it using the equation given in Step 11. The projected vector is then classified based 
on the nearest neighbor within all the projected training vectors. 

 
4. Performance Evaluation and Parameter Setting for PCA and LDA 

 
The performance evaluation of PCA and LDA is conducted using the following 

equation: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
# of test images correctly classified 

𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 # of test images   

 
The parameter setting for PCA and LDA is tabulated as follows.  
 

Parameters Description Setting 

p The subspace dimensionality, which is the number of 
eigen-vectors used to project image 1~20 

 
5. PCA and LDA Result and Observations 

Result plot: 
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Result tabulation: 
Subspace dimension PCA accuracy LDA accuracy 
1 0.270 0.137 
2 0.784 0.538 
3 0.940 0.840 
4 0.967 0.971 
5 0.987 0.983 
6 0.986 0.997 
7 0.990 1.000 
8 0.995 0.997 
9 0.997 0.998 
10 0.998 1.000 
11 0.998 1.000 
12 0.998 1.000 
13 1.000 1.000 
14 1.000 1.000 
15 1.000 1.000 
16 1.000 1.000 
17 1.000 1.000 
18 1.000 1.000 
19 1.000 1.000 
20 1.000 1.000 

 
According to the above results, we have the following observations: 
 
a. LDA is not always better than PCA. 

 
b. When subspace dimensionality is below 4, LDA performs worse than PCA. 

When subspace dimensionality is higher than 5, LDA achieves better accuracy 
than PCA. 
 

c. LDA achieves 100% accuracy at subspace dimensionality of 7, while PCA 
achieves 100% accuracy at subspace dimensionality of 13. 

  



PART II: Object Detection with Cascaded AdaBoost Classifier 
 

1. Main Concept of Cascaded AdaBoost 
 
The main concept of cascaded AdaBoost classifier is to design several strong 

classifiers, each strong classifier consists of multiple weak classifiers. By selecting 
the targeted false-positive rate and the true detection rate of each strong classifier, 
the final combined classifier can achieve a desirable low false-positive rate while 
keeping the true detection rate being acceptable. The figure below shows the 
configuration of the cascaded AdaBoost classifier. 

 

 

 

 

 

 

 

 

2. Feature Generation  
 
In AdaBoost algorithm, the weak classifier is simply built by the thresholding of 

feature. In this homework, we generate the Haar-like edge features, which has the 
following form: 

 
In mathematical representation, we denote horizontal filter and vertical filter as 

[0,1]  and [1,0]T , respectively. To reduce computation burden, we use horizontal 
filters of size 1x2, 1x4, …, 1x40 sliding over the whole image to generate features. 
Also, we use vertical filters of size 2x2, 4x2, …, 20x2 sliding over the whole image. 
The feature calculation utilizes the integral image, which reduces computation 
efforts as well. As a result, there is a total of 11,900 features employed in this 
homework. 
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3. AdaBoost Classifier 
 

(a) Find the best weak classifier 
 
The procedure of finding the best weak classifier (feature) is described as follows. 
 
Step 1:  For each feature, sorting the feature value in ascending order. The error 

for selecting the feature value of the current example as the threshold is: 
 

( )min (T S ), (T S )e S S+ − − − + += + − + −  
Where T+  is the total sum of positive example weights, T−  is the total sum of 

negative example weights, S +  is the sum of positive weights below the current 
example, S −  is the sum of negative weights below the current example. The feature 
which gives us the minimum error is selected as the best weak classifier.  

 
Step 2:  The weights for each training image is initially equal assigned. After 

the t  weak classifier is obtained, update the weights using the following equation:  
1

1, ,
ie

t i t i tw w β −
+ =  

1
t

t
t

εβ
ε

=
−

 

 
Where 0ie =  if the sample is correctly classified, 1ie =  if the sample is 

misclassified. tε  is the weighted error.  
 
Step 3:  The t  weak classifier is defined as: 

h(x, f, p,θ) = �1, if pf(x) < pθ
0, otherwise  

 
where x  is image, f is feature, f(x) is feature value, θ is the threshold and p is 

polarity sign determined by ( )min (T S ), (T S )e S S+ − − − + += + − + − . If (T S )S + − −+ −

is less than (T S )S − + ++ − , then p = −1. Otherwise,  p = 1. 

  



(b) Build Strong Classifier 
 
The procedure of building the strong classifier is described as follows. 
 
Step 1:  Given n training images xi , label the positive examples as 1 and the 

negative examples as 0.  
 
Step 2:  Initial image weights w1,i = 1

2M
, 1
2L

  for negative and positive image 
respectively, where M and L are the number of negative and positive images 
respectively. 

 
Step 3:  For iteration t = 1~T, 

I. Normalize weight wt,i = wt,i ∑ wt,ii⁄  
II. For all the feature f, find the best weak classifier ht(x) = h(x, f, p,θ) 

with the minimum weighted error εt. 
III. Compute βt = εt 1 − εt⁄ ,αt = log (1/βt) 
IV. Update weights 1

1, ,
ie

t i t i tw w β −
+ =   

 
Step 4:  The final strong classifier is: 

C(x) = �
1,�αtht(x)

t

≥ threshold

0, otherwise
 

 
Step 5:  The stopping criterion is determined by the targeted false-positive rate 

and the true detection rate for each strong classifier. In this homework, the targeted 
true detection rate during training is 1, and the targeted false-positive rate during 
training is 0.5. 

 
It should be noted that the threshold for the strong classifier can be adjusted based 

on our objective. Since we want our classifier to pass all the positive examples during 
training, the threshold is set to be the minimum value of ∑ αtht(x)𝑇𝑇

𝑡𝑡=1 . During 
testing, we set the threshold to be 0.5 × ∑ αt𝑇𝑇

𝑡𝑡=1 . 

 

  



4. Performance Evaluation and Parameter Setting for AdaBoost 
 
The performance evaluation of AdaBoost is conducted using the false-positive 

rate (FP) and the false-negative rate (FN): 

𝐹𝐹𝐹𝐹 =
# of misclassfied negative test images  

𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 # of negative test images   

 

𝐹𝐹𝐹𝐹 =
# of misclassfied positive test images  

𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 # of positive test images   

 
The parameter setting for AdaBoost is tabulated as follows.  
 

Parameters Description Setting 
threshold_positive The acceptable positive detection rate 1 
threshold_FP The acceptable False-Positive rate 0.5 
S Maximum number of strong classifiers 10 
T Maximum number of weak classifiers in each stage 100 

 
 

5. AdaBoost Result and Observations 
 
Training result: 
The number of positive images, number of negative images, true detection rate , 

and the false positive rate in each stage is tabulated as follows.  

stage # of weak 
classifier 

# of positive images 
before / after 

Stage detection 
rate 

# of negative images 
before / after 

Stage false 
positive rate 

1 8 710 -> 710 100.00% 1758 -> 755 42.95% 

2 13 710 -> 710 100.00% 755 -> 376 49.80% 

3 9 710 -> 710 100.00% 376 -> 181 48.14% 

4 8 710 -> 710 100.00% 181 -> 80 44.20% 

5 8 710 -> 710 100.00% 80 -> 37 46.25% 

6 8 710 -> 710 100.00% 37 -> 12 32.43% 

7 5 710 -> 710 100.00% 12 -> 2 16.67% 

8 2 710 -> 710 100.00% 2 -> 0 0.00% 



Test result: 
The overall false-positive rate and the overall false-negative rate at each stage is 

shown in the following figure. 

 
The overall false-positive rate and the overall false-negative rate at each stage is 

tabulated as follows. 

stage # of weak classifier Overall false-positive rate  Overall false-negative rate 

1 8 0.098 0.107 

2 13 0.020 0.185 

3 9 0.018 0.208 

4 8 0.011 0.247 

5 8 0.009 0.298 

6 8 0.009 0.320 

7 5 0.007 0.331 

8 2 0.007 0.337 

 
According to the above results, we have the following observations: 
a. Based on the configuration we have for the cascaded classifier, we expect to 

see the overall false-positive rate decreases as we use more strong classifiers. 
And we also expect to see the overall false-negative rate increases as we use 
more strong classifiers. The result we have is reasonable. 
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b. The final false-positive rate is 0.007, while the final false-negative rate is 
0.337. The false-negative rate might be reduced if we use more features during 
the training stage. However, this will increase the computation effort. 

 

  



Code hw11_RihTengWu_PCA_LDA.m 
% ECE 661 HW 11 - Face Recognition, PCA and LDA 
% Student: Rih-Teng Wu 
  
clc 
clear all 
close all 
  
% ==== parameters  
p = 1:1:20; % subspace dimensionality, number of eigen-vectors used to 
project image 
num_class = 30; % number of different classes 
num_data = 21;  % number of data in each class 
  
% ==== Do PCA or LDA 
Do_PCA = 1; % 0: dont do; 1: do 
Do_LDA = 1; 
  
if Do_PCA 
    % ==== PCA training 
    train_path = 'ECE661_2016_hw11_DB1\train\'; 
    cd 'ECE661_2016_hw11_DB1\train' 
    train_file = dir('*.png'); 
    cd '..' 
    cd '..' 
     
    [y_train, W_K, mean_img] = trainPCA(train_path,train_file,p); 
     
    % ==== PCA testing 
    test_path = 'ECE661_2016_hw11_DB1\test\'; 
    cd 'ECE661_2016_hw11_DB1\test' 
    test_file = dir('*.png'); 
    cd '..' 
    cd '..' 
     
    % ==== generate target label 
    target = []; 
    for i = 1:num_class 
        temp = [i*ones(num_data,1)]; 
        target = [target; temp]; 
    end 
     
    [PCA_accuracy] = 
testPCA(test_path,test_file,y_train,W_K,mean_img,target); 
    figure, plot(p,PCA_accuracy); 
  
end 
  
  
if Do_LDA 
    % ==== LDA training 
    train_path = 'ECE661_2016_hw11_DB1\train\'; 
    cd 'ECE661_2016_hw11_DB1\train' 



    train_file = dir('*.png'); 
    cd '..' 
    cd '..' 
     
    [y_train, W_K, mean_img] = 
trainLDA(train_path,train_file,p,num_class,num_data); 
     
    % ==== LDA testing 
    test_path = 'ECE661_2016_hw11_DB1\test\'; 
    cd 'ECE661_2016_hw11_DB1\test' 
    test_file = dir('*.png'); 
    cd '..' 
    cd '..' 
     
    % ==== generate target label 
    target = []; 
    for i = 1:num_class 
        temp = [i*ones(num_data,1)]; 
        target = [target; temp]; 
    end 
     
    [LDA_accuracy] = 
testPCA(test_path,test_file,y_train,W_K,mean_img,target); 
    figure, plot(p,LDA_accuracy); 
end 
  
figure, plot(p,PCA_accuracy,'b*-',p,LDA_accuracy,'r*-'); 
legend('PCA','LDA'); xlabel('Subspace Dimension'); ylabel('Accuracy'); 
  
 
 
 

 

  



Code trainPCA.m  
function [ y_train, W_K, mean_img ] = trainPCA( train_path,train_file,p ) 
% This function output the eigen-vector matrix and the mean of training 
% images for PCA method  
% Author: Rih-Teng Wu 
% y_train: the projected training feature vector for all training images 
% W_K: matrix containing the largest p eigen-vectors of covariance  
% matrix C 
% mean_img: mean of all training images 
% train_path: path of training folder 
% train_file: structure contains training image names  
% p: the subspace dimensionality 
  
img = imread([train_path train_file(1).name]); 
[h,w,~] = size(img); % assume all training images have the same sizes 
n = h*w;             % number of pixels in each image 
  
% ==== normalize each image, calculate mean of training images, form X 
(normalized images) 
X = []; 
for i = 1:length(train_file) 
    file_path = [train_path train_file(i).name]; 
    img = imread(file_path); 
     
    % ==== convert to gray-scale and form vector 
    img_g = rgb2gray(img); % need to first convert to gray, then convert to 
double 
    img_g = double(img_g); % convert to double 
    x_i = reshape(img_g',[n,1]); 
     
    % ==== normalize image 
    x_i_n = x_i./norm(x_i); 
     
    % ==== form X 
    X = [X x_i_n]; 
end 
  
% ==== calculate mean of training images after normalization 
mean_img = mean(X,2); 
  
% ==== subtract from mean 
X2 = X - repmat(mean_img,[1,size(X,2)]); 
  
% ==== C = X*X', but first calculate the eigenvectors of X'*X 
[u,D1,~] = eig(X2'*X2); % The eigen-values is in ascending order 
[~,idx] = sort(diag(D1),'descend'); 
u2 = u(:,idx);        % get the eigenvectors in descending order 
  
% ==== get the eigenvectors of C 
W = X2*u2; 
  
% ==== normalize eigenvectors W 
W_n = W; 



for i = 1:size(W,2) 
    W_n(:,i) = W(:,i)./norm(W(:,i)); 
end 
  
% ==== extract the p largest eigenvectors  
for i = 1:length(p) 
    W_K{i} = W_n(:,1:p(i)); 
end 
  
% ==== compute the projected y_train 
for i = 1:length(p) 
    y_train{i} = W_K{i}'*X2; 
end 
  
end 
  
 
 

  



Code testPCA.m  
function [ PCA_accuracy ] = 
testPCA( test_path,test_file,y_train,W_K,mean_img,target ) 
% This function output the test accuracy using the nearest neighbor method 
% Author: Rih-Teng Wu 
% PCA_accuracy: the accuracy of test images 
% test_path: the path of the test images 
% test_file: contains the names of test images 
% y_train: The training feature vector, of dimension p*N (N:number or 
training images) 
% W_K: matrix containing the largest p eigen-vectors of covariance 
% mean_img: mean of all training images 
% target: the target label of test images 
  
img = imread([test_path test_file(1).name]); 
[h,w,~] = size(img); % assume all test images have the same sizes 
n = h*w;             % number of pixels in each image 
  
% ==== normalize each image 
X = []; 
for i = 1:length(test_file) 
    file_path = [test_path test_file(i).name]; 
    img = imread(file_path); 
     
    % ==== convert to gray-scale and form vector 
    img_g = rgb2gray(img); % need to first convert to gray, then convert to 
double 
    img_g = double(img_g); % convert to double 
    x_i = reshape(img_g',[n,1]); 
     
    % ==== normalize image 
    x_i_n = x_i./norm(x_i); 
     
    % ==== form X 
    X = [X x_i_n]; 
end 
  
% ==== subtract X from the mean of training images  
X2 = X - repmat(mean_img,[1,size(X,2)]); 
  
% ==== calculate the projected y_test 
for i = 1:length(W_K) 
    y_test{i} = W_K{i}'*X2; 
end 
  
% ==== perform nearnest neighbor and calculate accuracy 
N = size(y_train{1},2); 
PCA_accuracy = []; 
  
for i = 1:length(W_K) 
    y_train_temp = y_train{i}; 
    y_test_temp = y_test{i}; 
     



    predict_label = []; 
    for j = 1:length(test_file) 
        diff = y_train_temp - repmat(y_test_temp(:,j),[1 N]); 
        temp = diff.^2; 
        distacne = sqrt(sum(temp,1)); 
         
        [~,idx] = sort(distacne,'ascend'); 
        temp_label = target(idx(1)); 
        predict_label = [predict_label; temp_label]; 
    end 
     
    % ==== calculate accuracy 
    [row,~,~] = find(predict_label==target); 
    accuracy = length(row)/length(test_file); 
    PCA_accuracy = [PCA_accuracy; accuracy]; 
end 
  
end 
  
 
 

  



Code trainLDA.m   
function [ y_train, W_K, mean_img ] = 
trainLDA( train_path,train_file,p,num_class,num_data) 
% This function output the eigen-vector matrix and the mean of training 
% images for LDA method  
% Author: Rih-Teng Wu 
% y_train: the projected training feature vector for all training images 
% W_K: the matrix containing the smallest p eigen-vectors of SW 
% mean_img: mean of all training images 
% train_path: path of training folder 
% train_file: structure contains training image names  
% p: the subspace dimensionality 
% num_class: number of classes in training images 
% num_data: number of training images in each class 
  
img = imread([train_path train_file(1).name]); 
[h,w,~] = size(img); % assume all training images have the same sizes 
n = h*w;             % number of pixels in each image 
  
% ==== normalize each image, calculate mean of training images, form X 
(normalized images) 
X = []; 
for i = 1:length(train_file) 
    file_path = [train_path train_file(i).name]; 
    img = imread(file_path); 
     
    % ==== convert to gray-scale and form vector 
    img_g = rgb2gray(img); % need to first convert to gray, then convert to 
double 
    img_g = double(img_g); % convert to double 
    x_i = reshape(img_g',[n,1]); 
     
    % ==== normalize image 
    x_i_n = x_i./norm(x_i); 
     
    % ==== form X 
    X = [X x_i_n]; 
end 
  
% ==== calculate the global mean of training images after normalization 
mean_img = mean(X,2); 
  
% ==== calculate the mean of each class 
mean_class = []; 
for i = 1:num_class 
    mean_class_temp = mean(X(:,num_data*(i-1)+1:num_data*i),2); 
    mean_class = [mean_class mean_class_temp]; 
end 
  
% ==== calculate SB, constant is not important (will do normalization) 
X_mean = mean_class - repmat(mean_img,[1 num_class]); 
S_B = X_mean*X_mean'; 
  
% ==== Use computation trick (X'*X) to do eigen-decomposition on SB, 



% calculate DB, Y, and Z 
[u,D1,~] = eig(X_mean'*X_mean); 
[~,idx] = sort(diag(D1),'descend'); 
u2 = u(:,idx);        % get the eigenvectors in descending order 
D2_temp = D1(:,idx);        
D2 = flipud(D2_temp); % get the eigenvalues in descending order 
V = X_mean*u2; 
  
Y = V(:,1:num_class); % get Y 
DB = D2;              % get DB (The eigenvalues of X'*X and X*X' are the 
same, only X*X' has 0 as an additional eigenvalue. 
Z = Y*DB^(-1/2);      % get Z 
  
% ==== compute U, by eigen-decomposition of Z'*SW*Z = (Z'X_W)(Z'X_W)' 
% ==== first form X_W 
mean_class_extend = []; 
for i = 1:num_class 
    temp = repmat(mean_class(:,i),[1 num_data]); 
    mean_class_extend = [mean_class_extend temp]; 
end 
  
X_W = X - mean_class_extend; 
  
[U,D3,~] = eig((Z'*X_W)*(Z'*X_W)'); 
[~,idx] = sort(diag(D3),'ascend'); 
U = U(:,idx);        % get the eigenvectors in ascending order 
  
% ==== extract the p smallest eigenvectors  
for i = 1:length(p) 
    W_T = U(:,1:p(i))'*Z'; 
    W{i} = W_T'; 
end 
  
% ==== normalize eigenvectors W 
for i = 1:length(W) 
    W_temp = W{i}; 
    W_n = W_temp; 
    for j = 1:size(W_temp,2) 
        W_n(:,j) = W_n(:,j)./norm(W_n(:,j)); 
    end 
    W_K{i} = W_n; 
end 
  
% ==== compute the projected y_train 
X2 = X - repmat(mean_img,[1,size(X,2)]); 
  
for i = 1:length(p) 
    y_train{i} = W_K{i}'*X2; 
end 
  
end 
  
 
 



Code hw11_RihTengWu_Adaboost.m 
% ECE 661 HW 11 - Car Recognition, AdaBoost 
% Student: Rih-Teng Wu 
  
clc 
clear all 
close all 
  
% ==== whether or not to do operations 
Do_feature_generate = 0; % 1:do; 0: not to do 
Do_training = 0; 
Do_testing = 1; 
  
% ==== user specified parameters 
threshold_positive = 1; % acceptable positive detection rate 
threshold_FP = 0.5;     % acceptable False-Positive rate  
S = 10;                 % maximum number of strong classifiers 
T = 100;                 % maximum number of weak classifiers in each stage 
  
% ==== feature generation 
if Do_feature_generate 
    % ==== train feature 
    train_path_p = 'ECE661_2016_hw11_DB2\train\positive\'; 
    cd 'ECE661_2016_hw11_DB2\train\positive' 
    train_file_p = dir('*.png'); 
    cd '..'; cd '..'; cd '..'; 
     
    train_path_n = 'ECE661_2016_hw11_DB2\train\negative\'; 
    cd 'ECE661_2016_hw11_DB2\train\negative' 
    train_file_n = dir('*.png'); 
    cd '..'; cd '..'; cd '..'; 
     
    [feature_train_p] = generateFeatureAdaBoost(train_path_p,train_file_p); 
    [feature_train_n] = generateFeatureAdaBoost(train_path_n,train_file_n); 
     
    % ==== test feature 
    test_path_p = 'ECE661_2016_hw11_DB2\test\positive\'; 
    cd 'ECE661_2016_hw11_DB2\test\positive' 
    test_file_p = dir('*.png'); 
    cd '..'; cd '..'; cd '..'; 
     
    test_path_n = 'ECE661_2016_hw11_DB2\test\negative\'; 
    cd 'ECE661_2016_hw11_DB2\test\negative' 
    test_file_n = dir('*.png'); 
    cd '..'; cd '..'; cd '..'; 
     
    [feature_test_p] = generateFeatureAdaBoost(test_path_p,test_file_p); 
    [feature_test_n] = generateFeatureAdaBoost(test_path_n,test_file_n); 
     
    % ==== save data 
    save('Train_positive.mat','feature_train_p','-v7.3'); 
    save('Train_negative.mat','feature_train_n','-v7.3'); 
    save('Test_positive.mat','feature_test_p','-v7.3'); 



    save('Test_negative.mat','feature_test_n','-v7.3'); 
end 
  
% ==== AdaBoost training 
if Do_training 
    load('Train_positive.mat'); 
    load('Train_negative.mat'); 
     
    % ==== all features, [positive negative] 
    feature_all = [feature_train_p feature_train_n]; 
    N_pos = size(feature_train_p,2); 
    N_neg = size(feature_train_n,2); 
    index = 1:1:N_pos+N_neg; 
    new_idx = index; % new data index after classified by strong classifier 
     
    for i = 1:S 
         
        Strong = 
performCascade(feature_all,N_pos,new_idx,i,threshold_positive,threshold_FP,T)
; 
         
        % ==== update data index 
        new_idx = Strong.UpdatedIndex; 
         
        % ==== Stopping criteria (all negative examples are detected) 
        neg_idx = find(new_idx > N_pos); 
         
        % ==== record parameters 
        Train_result(i) = Strong; 
             
        if length(neg_idx) == 0 
            break; 
        end 
        % ==== update N_pos 
        N_pos = length(new_idx) - length(neg_idx); 
  
    end 
    save('Train_result.mat','Train_result','-v7.3'); 
end 
  
% ==== AdaBoost testing 
if Do_testing 
    load('Test_positive.mat'); 
    load('Test_negative.mat'); 
    load('Train_result.mat'); 
  
    num_stage = length(Train_result); % number of strong classifier 
    N_pos_all = size(feature_test_p,2); 
    N_neg_all = size(feature_test_n,2); 
    num_mis_pos = 0; % number of misclassfied positives  
    num_cor_neg = 0; % number of correctly negatives  
     
    for i = 1:num_stage 
        stage = Train_result(i); % extract the ith strong classifier 



        num_weak = stage.numberOfweak; % number of weak classifier 
        weak_params = stage.parameters;% parameters of weak classifier 
         
        f_idx = weak_params(1,1:num_weak); % best features 
        theta = weak_params(2,1:num_weak); % the threshold for feature 
        p = weak_params(3,1:num_weak);     % the polarity for inequality 
        alpha = weak_params(4,1:num_weak); % alpha values for weak 
classifiers 
         
        predict_result = 
AdaBoostTesting(feature_test_p,feature_test_n,f_idx,theta,p,alpha,num_weak); 
         
        predict_label = predict_result.predict; 
        N_pos_test = predict_result.N_pos; 
        N_neg_test = predict_result.N_neg; 
  
        % ==== calculate overall FP and FN at each stage 
        mis_pos_temp = length(find(predict_label(1:N_pos_test)<1)); 
        num_mis_pos = num_mis_pos + mis_pos_temp; 
         
        correct_neg_temp = length(find(predict_label(N_pos_test+1:end)< 1)); 
        num_cor_neg = num_cor_neg + correct_neg_temp; 
         
        FP(i) = (N_neg_all-num_cor_neg)/N_neg_all; 
        FN(i) = num_mis_pos/N_pos_all; 
   
        % ==== update data 
        remain_pos_idx = find(predict_label(1:N_pos_test)>0); 
        feature_test_p = feature_test_p(:,remain_pos_idx); 
         
        remain_neg_idx = find(predict_label(N_pos_test+1:end)>0); 
        feature_test_n = feature_test_n(:,remain_neg_idx); 
    end 
     
    % ==== plot accumulative FP and FN 
    figure, plot(1:1:num_stage,FP,'r*-',1:1:num_stage,FN,'b*-'); 
    legend('False-Positive','False-Negative'); 
    title('Overall Performance'); xlabel('Stage'); ylabel('Rate'); 
    ylim([0 1]); 
end 
  
  
  
 
 

  



Code generateFeatureAdaBoost.m  
function [ feature ] = generateFeatureAdaBoost(path,file) 
% This function output the Haar-like feature used for AdaBoost learning based 
on  
% Integral images 
% Author: Rih-Teng Wu 
% feature: the desirable output feature 
% path: the path of files 
% file: contains the names of the images  
  
img = imread([path file(1).name]); 
[h,w,~] = size(img);    % assume all training images have the same sizes 
num_img = length(file); % number of images 
  
% ==== filter sizes 
h_size = 2:2:w; % sizes of horizontal edge filter, 1x2,1x4,...1x40 
v_size = 2:2:h; % sizes of horizontal edge filter, 2x2,4x2,...20x2 
  
% ==== initial feature 
feature = zeros(11900,num_img); 
  
% ==== generate Haar-like feature 
for i = 1:num_img 
    file_path = [path file(i).name]; 
    img = imread(file_path); 
     
    % ==== convert to gray-scale and double 
    img_g = rgb2gray(img); % need to first convert to gray, then convert to 
double 
    img_g = double(img_g); % convert to double 
     
    % ==== obtain integral image 
    img_int = integralImage(img_g); % there is zero padding at the top and 
left of the image 
                                    % zero padding will be helpful  
                                     
    % ==== compute horizontal Haar-like feature 
    feature_temp = []; 
     
    for j = 1:length(h_size) 
        width = h_size(j); 
  
        for k = 1:h 
            for m = 1:w-width+1 
                corner_0 = [k m;k m+width/2;k+1 m;k+1 m+width/2]; % 1,2,3,4 
corners 
                corner_1 = [k m+width/2;k m+width;k+1 m+width/2;k+1 m+width]; 
                 
                rec_0 = getRec(img_int,corner_0); 
                rec_1 = getRec(img_int,corner_1); 
                diff = rec_1 - rec_0; 
                 
                feature_temp = [feature_temp; diff]; 



            end 
        end 
    end 
     
    % ==== compute vertical Haar-like feature 
    for j = 1:length(v_size) 
        height = v_size(j); 
         
        for k = 1:h-height+1 
            for m = 1:w-2+1 
                corner_1 = [k m;k m+2;k+height/2 m;k+height/2 m+2]; % 1,2,3,4 
corners 
                corner_0 = [k+height/2 m;k+height/2 m+2;k+height m;k+height 
m+2]; 
                 
                rec_1 = getRec(img_int,corner_1); 
                rec_0 = getRec(img_int,corner_0); 
                diff = rec_1 - rec_0; 
                 
                feature_temp = [feature_temp; diff]; 
            end 
        end 
    end 
     
    feature(:,i) = feature_temp; 
     
end 
  
end 
  
 
 

  



Code getRec.m   
function [ Rec ] = getRec( img_int,corner ) 
% This function output the sum of pixels within the rectangle 
% with four specified corner points based on integral image 
% Author: Rih-Teng Wu 
% Rec: sum of pixels withing the rectangle 
% img_int: integral image 
% corner: four specified corner points 
  
One = img_int(corner(1,1),corner(1,2)); % corner 1 
Two = img_int(corner(2,1),corner(2,2)); % corner 2 
Three = img_int(corner(3,1),corner(3,2)); % corner 3 
Four = img_int(corner(4,1),corner(4,2)); % corner 4 
  
Rec = Four + One - (Two+Three); 
  
end 
  
 
 

  



Code performCascade.m  
function [ Strong ] = 
performCascade( feature_all,N_pos,new_idx,stage,thres_pos,thres_FP,T) 
% This function output the strong classfier based on AdaBoost method 
% Author: Rih-Teng Wu 
% Strong: output structure that contains information of the aggregated  
% weak classifiers 
% feature_all: training features for all training images 
% N_pos: number of remaining positive samples 
% new_idx: the data index after passing the previous strong classifier 
% stage: indicate the current stage of building strong classifer 
% thres_pos: acceptable positive detection rate 
% thres_FP:  acceptable False-Positive rate  
% T: maximum number of weak classifiers in each stage 
  
% ==== calculate remaining samples 
N_img = length(new_idx); % number of total remaining images 
N_neg = N_img - N_pos; 
  
% ==== update feature 
feature = feature_all(:,new_idx); 
  
% ==== initial weights and labels 
weights = zeros(N_img,1); 
labels = zeros(N_img,1); % 1: positive; 0: negative 
  
for i = 1:N_img 
    if i <= N_pos 
        weights(i) = 1/2/N_pos; 
        labels(i) = 1; 
    else 
        weights(i) = 1/2/N_neg; 
    end 
end 
  
% ==== Initial parameters 
Strong_result = zeros(N_img,1); % classification result of the strong 
classifier 
alpha = zeros(T,1);             % alpha value for each weak classifier 
h = zeros(4,T);                 % selected feature, threshold, polarity, 
alpha for each weak classifier (used for testing later on) 
h_result = zeros(N_img,T);      % classification result of each weak 
classifier 
accuracy_pos = [];              % accuracy of positive examples for each 
strong classifier 
FP_neg = [];                    % False positive of negative examples for 
each strong classifier 
  
  
for t = 1:T 
    t 
    % ==== normalize weights 
    weights = weights./sum(weights); 
     



    % ==== get best weak classifier 
    best_weak = getBestWeak(feature,weights,labels,N_pos);   
     
    % ==== get the parameters of best weak classifier 
    error = best_weak.minError; 
    h(1,t) = best_weak.feature; 
    h(2,t) = best_weak.theta; 
    h(3,t) = best_weak.p; 
    h_result(:,t) = best_weak.classification; 
     
    % ==== compute beta 
    beta = error/(1-error); 
    alpha(t,1) = log(1/beta); 
    h(4,t) = alpha(t,1); 
     
    % ==== update weights 
    weights = weights.*beta.^(1-xor(labels,h_result(:,t))); 
     
    % ==== compute strong classifier result 
    strong_temp = h_result(:,1:t)*alpha(1:t,1); 
    % ==== instead of set the threshold to 0.5*sum(alpha(1:t,1)); 
    % ==== we adjust the threshold to make all positive examples are 
    % ==== correctly classified 
    threshold = min(strong_temp(1:N_pos));  
     
    for i = 1:N_img 
        if strong_temp(i) >= threshold 
            Strong_result(i) = 1; 
        else 
            Strong_result(i) = 0; 
        end 
    end 
     
    % ==== calculate accuracy of positive examples and False positive 
    acc_temp = sum(Strong_result(1:N_pos))/N_pos; 
    accuracy_pos = [accuracy_pos; acc_temp]; 
     
    FP_temp = sum(Strong_result(N_pos+1:end))/N_neg; 
    FP_neg = [FP_neg; FP_temp]; 
     
    accuracy_pos(t) 
    FP_neg(t) 
     
    % ==== stopping criteria 
    if (accuracy_pos(t) >= thres_pos) && (FP_neg(t) <= 0.5) 
        break; 
    end     
end 
  
% ==== get remaining positive and negative examples 
% ==== if use thres_pos other than 1, this part need to be modified 
  
[sort_neg,sort_neg_idx] = sort(Strong_result(N_pos+1:end),'ascend'); 
  



% ==== output 
if sum(sort_neg)>0 
     
    for i = 1:N_neg 
        if sort_neg(i)>0 
            remain_neg_idx = sort_neg_idx(i:end); 
            Strong.UpdatedIndex = [1:1:N_pos,remain_neg_idx'+N_pos]; 
            break; 
        end 
    end 
else 
    Strong.UpdatedIndex = [1:1:N_pos]; 
end 
  
Strong.numberOfweak = t; % number of weak classifiers in each stage 
Strong.parameters = h; % parameters used to test 
end 
  
 
 

 

  



Code getBestWeak.m   
function [ best_weak ] = getBestWeak( feature,weights,labels,N_pos ) 
% This function output the best weak classifer based on sorting method 
% Author: Rih-Teng Wu 
% best_weak: output structure that contains information of the best  
% weak classifier 
% feature: training features for the remaining training images 
% weights: the updated weights from the previous weak classifier 
% labels: the target labels 
% N_pos: number of remaining positive samples 
  
N_feat = size(feature,1); % number of features 
N_img = size(feature,2);  % number of remaining images 
  
% ==== calculte T_plus and T_minus 
T_plus = repmat(sum(weights(1:N_pos)),[N_img 1]); 
T_minus = repmat(sum(weights(N_pos+1:end)),[N_img 1]); 
  
% ==== iterate over all features 
best_weak.minError = inf; % initial minimum error 
  
for i = 1:N_feat 
    feat_temp = feature(i,:); 
     
    % ==== sorting in ascending order 
    [sort_feat,sort_idx] = sort(feat_temp,'ascend'); 
    sort_weight = weights(sort_idx); 
    sort_label = labels(sort_idx); 
     
    % ==== calculate S_plus and S_minus 
    S_plus = cumsum(sort_weight.*sort_label); % sum of positive weights for 
all threshold 
    S_minus = cumsum(sort_weight) - S_plus;   % sum of negative weights for 
all threshold 
     
    % ==== determin threshold 
    err_1 = S_plus + (T_minus - S_minus); 
    err_2 = S_minus + (T_plus - S_plus); 
    min_error_temp = min(err_1,err_2); 
    [min_error, min_idx] = min(min_error_temp); 
     
    % ==== get cloassification result 
    classify_result = zeros(N_img,1); 
     
    if err_1(min_idx) <= err_2(min_idx) 
        p = -1; 
        classify_result(min_idx+1:end) = 1; % label 1 to the examples above 
current example 
        classify_result(sort_idx) = classify_result; 
    else 
        p = 1; 
        classify_result(1:min_idx) = 1; % label 1 to the examples below 
current example 
        classify_result(sort_idx) = classify_result; 



    end 
     
    % ==== get best weak classifier 
    if min_error < best_weak.minError 
         best_weak.minError = min_error; 
         best_weak.p = p; 
         best_weak.feature = i; 
         best_weak.classification = classify_result; 
         % ==== get threshold value for best feature 
         if min_idx == 1 
             best_weak.theta = sort_feat(1) - 0.01; % 0.01 is just a constant 
to make sure every feature value is larger than theta  
         elseif min_idx == N_feat 
             best_weak.theta = sort_feat(N_feat) + 0.01; % 0.01 is just a 
constant to make sure every feature value is smaller than theta  
         else 
             best_weak.theta = mean([sort_feat(min_idx),sort_feat(min_idx-
1)]); 
         end 
    end 
end 
  
end 
 
 
  
 
 

  



Code AdaBoostTesting.m  
function [ result ] = 
AdaBoostTesting( feature_p,feature_n,f_idx,theta,p,alpha,num_weak) 
% This function output the classification result in each stage based on 
AdaBoost  
% testing 
% Author: Rih-Teng Wu 
% result: the output of predicted labels, # of positives, # of negatives 
% feature_p: features of positive test samples 
% feature_n: features of negative test samples 
% f_idx: best features 
% theta: the threshold for feature 
% p: the polarity for inequality 
% alpha: alpha values for weak classifiers 
% num_weak: number of weak classifier in this stage 
  
feature_all = [feature_p feature_n]; 
N_pos = size(feature_p,2); 
N_neg = size(feature_n,2); 
N_img = N_pos + N_neg; 
  
weak_result = zeros(N_img,num_weak); 
% ==== get weak classifier results 
for i = 1:num_weak 
    feat_temp = feature_all(f_idx(i),:); 
     
    for j = 1:N_img 
        if p(i)*feat_temp(j) <= p(i)*theta(i) 
            weak_result(j,i) = 1; 
        end 
    end 
end 
  
% ==== get strong classifier result 
strong_temp = weak_result*alpha'; 
threshold = 0.5*sum(alpha); 
Strong_result = zeros(N_img,1); 
  
for i = 1:N_img 
    if strong_temp(i) >= threshold 
        Strong_result(i) = 1; 
    end 
end 
  
% ==== output 
result.predict = Strong_result; 
result.N_pos = N_pos; 
result.N_neg = N_neg; 
     
end 
  
 
 


