
ECE661 Computer Vision HW 11

Rih-Teng Wu

Email: wu952@purdue.edu

1. Introduction

In the first part of this homework, we use principal component analysis (PCA)

and linear discriminant analysis (LDA) to perform face recognition. The PCA and
LDA is employed to project the high dimension data to their eigen-space, then the
nearest neighbor algorithm is used to classify the data.

In the second part of this homework, we use AdaBoost algorithm to perform car
recognition. The cascaded AdaBoost is employed to reduce the False-Positive rate.

2. Principal Component Analysis (PCA)

To find the projection matrix that can project our high-dimension data to a low-

dimension representation, PCA is introduced to perform this task. The procedure of
PCA is described as follows.

Step 1: Vectorize each training image of size 128x128 to a 16384x1 vector x�⃗ i,

normalize each x�⃗ i to make it illuminant-invariant. Use gray-scale images.

Step 2: Calculate the global training mean:

m���⃗ =
1
N� x�⃗ i

i

Step 3: Form a matrix X = [x�⃗ 1 − m���⃗ x�⃗ 2 − m���⃗ … … x�⃗ N − m���⃗].

Step 4: Instead of directly calculating the eigen-vectors 𝑤𝑤��⃗ of the covariance

matrix XXT, we calculate the eigen-vectors of matrix XTX. Let 𝑢𝑢�⃗ denote the eigen-
vectors of matrix XTX. To reconstruct the eigen-vectors 𝑤𝑤��⃗ from 𝑢𝑢�⃗ , we use the
following equation:

𝑤𝑤��⃗ = X𝑢𝑢�⃗

mailto:wu952@purdue.edu

Step 5: Normalize each eigen-vector in 𝑤𝑤��⃗ .

Step 6: Select the largest P eigen-vectors from the normalized 𝑤𝑤��⃗ . The

projection matrix WP is given as follows.

WP = [w���⃗ 1 w���⃗ 2 … … w���⃗ P]

Step 7: Project all the training samples using the following equation:

y�⃗ i = WP
T(x�⃗ i − m���⃗)

Step 8: Given a new test image, we first vectorize the test image, then project

it using the equation given in Step 7. The projected vector is then classified based
on the nearest neighbor within all the projected training vectors.

3. Linear Discriminant Analysis (LDA)

The objective of LDA is to find the eigen-vectors w���⃗ j that maximize the Fisher

Discriminant Function:

J�w���⃗ j� =
w���⃗ j

TSBw���⃗ j
w���⃗ j

TSWw���⃗ j

Where SB is the between-class scatter, SW is the within-class scatter.
However, in most cases SW is singular. Therefore, we need to use Yu and Yang’s

algorithm to find w���⃗ j, and use w���⃗ j to form the projection matrix. The procedure of Yu
and Yang’s algorithm is described as follows.

Step 1: Vectorize each training image of size 128x128 to a 16384x1 vector x�⃗ i,

normalize each x�⃗ i to make it illuminant-invariant. Use gray-scale images.

Step 2: Calculate the global training mean:

m���⃗ =
1
N� x�⃗ i

i

Step 3: Calculate the class mean:

m���⃗ k =
1

‖Ck‖
� x�⃗ i
iϵCk

 where Ck means the class of training images with identity k, k = 1~C.

Step 4: Form matrix M:

M= [m���⃗ 1 − m���⃗ m���⃗ 2 − m���⃗ … … m���⃗ C − m���⃗]

Step 5: Instead of directly calculating the eigen-vectors of SB = MMT C⁄ , we
calculate the eigen-vectors of matrix MTM C⁄ . Let u�⃗ be the eigen-vectors of
MTM C⁄ in descending order, we reconstruct the eigen-vectors 𝑉𝑉�⃗ of SB = MMT C⁄
by the following equation:

𝑉𝑉�⃗ = M𝑢𝑢�⃗

Step 6: Form matrix Y = �𝑉𝑉�⃗1 𝑉𝑉�⃗ 2 … … 𝑉𝑉�⃗C�, and form DB which is the
eigen-value matrix of SB. (The eigen-values of MMT C⁄ and MTM C⁄ are the same,
except that the former have additional zeros.)

Step 7: Compute Z = YDB

−1/2 .

Step 8: Compute the eigen-vectors of ZTSWZ. We can use the same

computation trick as described previously since ZTSWZ has the following form:

ZTSWZ = (ZTXW)(ZTXW)T

Where XW = [x�⃗ 11 − m���⃗ 1, x�⃗ 12 − m���⃗ 1, … , x�⃗ 1𝑘𝑘 − m���⃗ 1 … , x�⃗ 𝐶𝐶1 − m���⃗ C, … , x�⃗ 𝐶𝐶𝑘𝑘 − m���⃗ C]

Step 9: Organize the eigen-vectors U of ZTSWZ in ascending order. Select the

smallest P eigen-vectors from U. Denote the eigen-vector matrix after selection as
U� . Then the projection matrix WP is given as follows.

WP

𝑇𝑇 = U�𝑇𝑇𝑍𝑍𝑇𝑇

Step 10: Normalize each eigen-vector in WP.

Step 11: Project all the training samples using the following equation:

y�⃗ i = WP
T(x�⃗ i − m���⃗)

Step 12: Given a new test image, we first vectorize the test image, then project

it using the equation given in Step 11. The projected vector is then classified based
on the nearest neighbor within all the projected training vectors.

4. Performance Evaluation and Parameter Setting for PCA and LDA

The performance evaluation of PCA and LDA is conducted using the following

equation:

𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
of test images correctly classified

𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 # of test images

The parameter setting for PCA and LDA is tabulated as follows.

Parameters Description Setting

p The subspace dimensionality, which is the number of
eigen-vectors used to project image 1~20

5. PCA and LDA Result and Observations

Result plot:

0 2 4 6 8 10 12 14 16 18 20

Subspace Dimension

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

PCA

LDA

Result tabulation:
Subspace dimension PCA accuracy LDA accuracy
1 0.270 0.137
2 0.784 0.538
3 0.940 0.840
4 0.967 0.971
5 0.987 0.983
6 0.986 0.997
7 0.990 1.000
8 0.995 0.997
9 0.997 0.998
10 0.998 1.000
11 0.998 1.000
12 0.998 1.000
13 1.000 1.000
14 1.000 1.000
15 1.000 1.000
16 1.000 1.000
17 1.000 1.000
18 1.000 1.000
19 1.000 1.000
20 1.000 1.000

According to the above results, we have the following observations:

a. LDA is not always better than PCA.

b. When subspace dimensionality is below 4, LDA performs worse than PCA.

When subspace dimensionality is higher than 5, LDA achieves better accuracy
than PCA.

c. LDA achieves 100% accuracy at subspace dimensionality of 7, while PCA
achieves 100% accuracy at subspace dimensionality of 13.

PART II: Object Detection with Cascaded AdaBoost Classifier

1. Main Concept of Cascaded AdaBoost

The main concept of cascaded AdaBoost classifier is to design several strong

classifiers, each strong classifier consists of multiple weak classifiers. By selecting
the targeted false-positive rate and the true detection rate of each strong classifier,
the final combined classifier can achieve a desirable low false-positive rate while
keeping the true detection rate being acceptable. The figure below shows the
configuration of the cascaded AdaBoost classifier.

2. Feature Generation

In AdaBoost algorithm, the weak classifier is simply built by the thresholding of

feature. In this homework, we generate the Haar-like edge features, which has the
following form:

In mathematical representation, we denote horizontal filter and vertical filter as

[0,1] and [1,0]T , respectively. To reduce computation burden, we use horizontal
filters of size 1x2, 1x4, …, 1x40 sliding over the whole image to generate features.
Also, we use vertical filters of size 2x2, 4x2, …, 20x2 sliding over the whole image.
The feature calculation utilizes the integral image, which reduces computation
efforts as well. As a result, there is a total of 11,900 features employed in this
homework.

P P P

N N N

images Strong
Classifier 1

Strong
Classifier 2

Strong
Classifier 3

Positive

Negative

N N N

3. AdaBoost Classifier

(a) Find the best weak classifier

The procedure of finding the best weak classifier (feature) is described as follows.

Step 1: For each feature, sorting the feature value in ascending order. The error

for selecting the feature value of the current example as the threshold is:

()min (T S), (T S)e S S+ − − − + += + − + −
Where T+ is the total sum of positive example weights, T− is the total sum of

negative example weights, S + is the sum of positive weights below the current
example, S − is the sum of negative weights below the current example. The feature
which gives us the minimum error is selected as the best weak classifier.

Step 2: The weights for each training image is initially equal assigned. After

the t weak classifier is obtained, update the weights using the following equation:
1

1, ,
ie

t i t i tw w β −
+ =

1
t

t
t

εβ
ε

=
−

Where 0ie = if the sample is correctly classified, 1ie = if the sample is

misclassified. tε is the weighted error.

Step 3: The t weak classifier is defined as:

h(x, f, p,θ) = �1, if pf(x) < pθ
0, otherwise

where x is image, f is feature, f(x) is feature value, θ is the threshold and p is

polarity sign determined by ()min (T S), (T S)e S S+ − − − + += + − + − . If (T S)S + − −+ −

is less than (T S)S − + ++ − , then p = −1. Otherwise, p = 1.

(b) Build Strong Classifier

The procedure of building the strong classifier is described as follows.

Step 1: Given n training images xi , label the positive examples as 1 and the

negative examples as 0.

Step 2: Initial image weights w1,i = 1

2M
, 1
2L

 for negative and positive image
respectively, where M and L are the number of negative and positive images
respectively.

Step 3: For iteration t = 1~T,

I. Normalize weight wt,i = wt,i ∑ wt,ii⁄
II. For all the feature f, find the best weak classifier ht(x) = h(x, f, p,θ)

with the minimum weighted error εt.
III. Compute βt = εt 1 − εt⁄ ,αt = log (1/βt)
IV. Update weights 1

1, ,
ie

t i t i tw w β −
+ =

Step 4: The final strong classifier is:

C(x) = �
1,�αtht(x)

t

≥ threshold

0, otherwise

Step 5: The stopping criterion is determined by the targeted false-positive rate

and the true detection rate for each strong classifier. In this homework, the targeted
true detection rate during training is 1, and the targeted false-positive rate during
training is 0.5.

It should be noted that the threshold for the strong classifier can be adjusted based

on our objective. Since we want our classifier to pass all the positive examples during
training, the threshold is set to be the minimum value of ∑ αtht(x)𝑇𝑇

𝑡𝑡=1 . During
testing, we set the threshold to be 0.5 × ∑ αt𝑇𝑇

𝑡𝑡=1 .

4. Performance Evaluation and Parameter Setting for AdaBoost

The performance evaluation of AdaBoost is conducted using the false-positive

rate (FP) and the false-negative rate (FN):

𝐹𝐹𝐹𝐹 =
of misclassfied negative test images

𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 # of negative test images

𝐹𝐹𝐹𝐹 =
of misclassfied positive test images

𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 # of positive test images

The parameter setting for AdaBoost is tabulated as follows.

Parameters Description Setting
threshold_positive The acceptable positive detection rate 1
threshold_FP The acceptable False-Positive rate 0.5
S Maximum number of strong classifiers 10
T Maximum number of weak classifiers in each stage 100

5. AdaBoost Result and Observations

Training result:
The number of positive images, number of negative images, true detection rate ,

and the false positive rate in each stage is tabulated as follows.

stage # of weak
classifier

of positive images
before / after

Stage detection
rate

of negative images
before / after

Stage false
positive rate

1 8 710 -> 710 100.00% 1758 -> 755 42.95%

2 13 710 -> 710 100.00% 755 -> 376 49.80%

3 9 710 -> 710 100.00% 376 -> 181 48.14%

4 8 710 -> 710 100.00% 181 -> 80 44.20%

5 8 710 -> 710 100.00% 80 -> 37 46.25%

6 8 710 -> 710 100.00% 37 -> 12 32.43%

7 5 710 -> 710 100.00% 12 -> 2 16.67%

8 2 710 -> 710 100.00% 2 -> 0 0.00%

Test result:
The overall false-positive rate and the overall false-negative rate at each stage is

shown in the following figure.

The overall false-positive rate and the overall false-negative rate at each stage is

tabulated as follows.

stage # of weak classifier Overall false-positive rate Overall false-negative rate

1 8 0.098 0.107

2 13 0.020 0.185

3 9 0.018 0.208

4 8 0.011 0.247

5 8 0.009 0.298

6 8 0.009 0.320

7 5 0.007 0.331

8 2 0.007 0.337

According to the above results, we have the following observations:
a. Based on the configuration we have for the cascaded classifier, we expect to

see the overall false-positive rate decreases as we use more strong classifiers.
And we also expect to see the overall false-negative rate increases as we use
more strong classifiers. The result we have is reasonable.

1 2 3 4 5 6 7 8

Stage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e

Overall Performance

False-Positive

False-Negative

b. The final false-positive rate is 0.007, while the final false-negative rate is
0.337. The false-negative rate might be reduced if we use more features during
the training stage. However, this will increase the computation effort.

Code hw11_RihTengWu_PCA_LDA.m
% ECE 661 HW 11 - Face Recognition, PCA and LDA
% Student: Rih-Teng Wu

clc
clear all
close all

% ==== parameters
p = 1:1:20; % subspace dimensionality, number of eigen-vectors used to
project image
num_class = 30; % number of different classes
num_data = 21; % number of data in each class

% ==== Do PCA or LDA
Do_PCA = 1; % 0: dont do; 1: do
Do_LDA = 1;

if Do_PCA
 % ==== PCA training
 train_path = 'ECE661_2016_hw11_DB1\train\';
 cd 'ECE661_2016_hw11_DB1\train'
 train_file = dir('*.png');
 cd '..'
 cd '..'

 [y_train, W_K, mean_img] = trainPCA(train_path,train_file,p);

 % ==== PCA testing
 test_path = 'ECE661_2016_hw11_DB1\test\';
 cd 'ECE661_2016_hw11_DB1\test'
 test_file = dir('*.png');
 cd '..'
 cd '..'

 % ==== generate target label
 target = [];
 for i = 1:num_class
 temp = [i*ones(num_data,1)];
 target = [target; temp];
 end

 [PCA_accuracy] =
testPCA(test_path,test_file,y_train,W_K,mean_img,target);
 figure, plot(p,PCA_accuracy);

end

if Do_LDA
 % ==== LDA training
 train_path = 'ECE661_2016_hw11_DB1\train\';
 cd 'ECE661_2016_hw11_DB1\train'

 train_file = dir('*.png');
 cd '..'
 cd '..'

 [y_train, W_K, mean_img] =
trainLDA(train_path,train_file,p,num_class,num_data);

 % ==== LDA testing
 test_path = 'ECE661_2016_hw11_DB1\test\';
 cd 'ECE661_2016_hw11_DB1\test'
 test_file = dir('*.png');
 cd '..'
 cd '..'

 % ==== generate target label
 target = [];
 for i = 1:num_class
 temp = [i*ones(num_data,1)];
 target = [target; temp];
 end

 [LDA_accuracy] =
testPCA(test_path,test_file,y_train,W_K,mean_img,target);
 figure, plot(p,LDA_accuracy);
end

figure, plot(p,PCA_accuracy,'b*-',p,LDA_accuracy,'r*-');
legend('PCA','LDA'); xlabel('Subspace Dimension'); ylabel('Accuracy');

Code trainPCA.m
function [y_train, W_K, mean_img] = trainPCA(train_path,train_file,p)
% This function output the eigen-vector matrix and the mean of training
% images for PCA method
% Author: Rih-Teng Wu
% y_train: the projected training feature vector for all training images
% W_K: matrix containing the largest p eigen-vectors of covariance
% matrix C
% mean_img: mean of all training images
% train_path: path of training folder
% train_file: structure contains training image names
% p: the subspace dimensionality

img = imread([train_path train_file(1).name]);
[h,w,~] = size(img); % assume all training images have the same sizes
n = h*w; % number of pixels in each image

% ==== normalize each image, calculate mean of training images, form X
(normalized images)
X = [];
for i = 1:length(train_file)
 file_path = [train_path train_file(i).name];
 img = imread(file_path);

 % ==== convert to gray-scale and form vector
 img_g = rgb2gray(img); % need to first convert to gray, then convert to
double
 img_g = double(img_g); % convert to double
 x_i = reshape(img_g',[n,1]);

 % ==== normalize image
 x_i_n = x_i./norm(x_i);

 % ==== form X
 X = [X x_i_n];
end

% ==== calculate mean of training images after normalization
mean_img = mean(X,2);

% ==== subtract from mean
X2 = X - repmat(mean_img,[1,size(X,2)]);

% ==== C = X*X', but first calculate the eigenvectors of X'*X
[u,D1,~] = eig(X2'*X2); % The eigen-values is in ascending order
[~,idx] = sort(diag(D1),'descend');
u2 = u(:,idx); % get the eigenvectors in descending order

% ==== get the eigenvectors of C
W = X2*u2;

% ==== normalize eigenvectors W
W_n = W;

for i = 1:size(W,2)
 W_n(:,i) = W(:,i)./norm(W(:,i));
end

% ==== extract the p largest eigenvectors
for i = 1:length(p)
 W_K{i} = W_n(:,1:p(i));
end

% ==== compute the projected y_train
for i = 1:length(p)
 y_train{i} = W_K{i}'*X2;
end

end

Code testPCA.m
function [PCA_accuracy] =
testPCA(test_path,test_file,y_train,W_K,mean_img,target)
% This function output the test accuracy using the nearest neighbor method
% Author: Rih-Teng Wu
% PCA_accuracy: the accuracy of test images
% test_path: the path of the test images
% test_file: contains the names of test images
% y_train: The training feature vector, of dimension p*N (N:number or
training images)
% W_K: matrix containing the largest p eigen-vectors of covariance
% mean_img: mean of all training images
% target: the target label of test images

img = imread([test_path test_file(1).name]);
[h,w,~] = size(img); % assume all test images have the same sizes
n = h*w; % number of pixels in each image

% ==== normalize each image
X = [];
for i = 1:length(test_file)
 file_path = [test_path test_file(i).name];
 img = imread(file_path);

 % ==== convert to gray-scale and form vector
 img_g = rgb2gray(img); % need to first convert to gray, then convert to
double
 img_g = double(img_g); % convert to double
 x_i = reshape(img_g',[n,1]);

 % ==== normalize image
 x_i_n = x_i./norm(x_i);

 % ==== form X
 X = [X x_i_n];
end

% ==== subtract X from the mean of training images
X2 = X - repmat(mean_img,[1,size(X,2)]);

% ==== calculate the projected y_test
for i = 1:length(W_K)
 y_test{i} = W_K{i}'*X2;
end

% ==== perform nearnest neighbor and calculate accuracy
N = size(y_train{1},2);
PCA_accuracy = [];

for i = 1:length(W_K)
 y_train_temp = y_train{i};
 y_test_temp = y_test{i};

 predict_label = [];
 for j = 1:length(test_file)
 diff = y_train_temp - repmat(y_test_temp(:,j),[1 N]);
 temp = diff.^2;
 distacne = sqrt(sum(temp,1));

 [~,idx] = sort(distacne,'ascend');
 temp_label = target(idx(1));
 predict_label = [predict_label; temp_label];
 end

 % ==== calculate accuracy
 [row,~,~] = find(predict_label==target);
 accuracy = length(row)/length(test_file);
 PCA_accuracy = [PCA_accuracy; accuracy];
end

end

Code trainLDA.m
function [y_train, W_K, mean_img] =
trainLDA(train_path,train_file,p,num_class,num_data)
% This function output the eigen-vector matrix and the mean of training
% images for LDA method
% Author: Rih-Teng Wu
% y_train: the projected training feature vector for all training images
% W_K: the matrix containing the smallest p eigen-vectors of SW
% mean_img: mean of all training images
% train_path: path of training folder
% train_file: structure contains training image names
% p: the subspace dimensionality
% num_class: number of classes in training images
% num_data: number of training images in each class

img = imread([train_path train_file(1).name]);
[h,w,~] = size(img); % assume all training images have the same sizes
n = h*w; % number of pixels in each image

% ==== normalize each image, calculate mean of training images, form X
(normalized images)
X = [];
for i = 1:length(train_file)
 file_path = [train_path train_file(i).name];
 img = imread(file_path);

 % ==== convert to gray-scale and form vector
 img_g = rgb2gray(img); % need to first convert to gray, then convert to
double
 img_g = double(img_g); % convert to double
 x_i = reshape(img_g',[n,1]);

 % ==== normalize image
 x_i_n = x_i./norm(x_i);

 % ==== form X
 X = [X x_i_n];
end

% ==== calculate the global mean of training images after normalization
mean_img = mean(X,2);

% ==== calculate the mean of each class
mean_class = [];
for i = 1:num_class
 mean_class_temp = mean(X(:,num_data*(i-1)+1:num_data*i),2);
 mean_class = [mean_class mean_class_temp];
end

% ==== calculate SB, constant is not important (will do normalization)
X_mean = mean_class - repmat(mean_img,[1 num_class]);
S_B = X_mean*X_mean';

% ==== Use computation trick (X'*X) to do eigen-decomposition on SB,

% calculate DB, Y, and Z
[u,D1,~] = eig(X_mean'*X_mean);
[~,idx] = sort(diag(D1),'descend');
u2 = u(:,idx); % get the eigenvectors in descending order
D2_temp = D1(:,idx);
D2 = flipud(D2_temp); % get the eigenvalues in descending order
V = X_mean*u2;

Y = V(:,1:num_class); % get Y
DB = D2; % get DB (The eigenvalues of X'*X and X*X' are the
same, only X*X' has 0 as an additional eigenvalue.
Z = Y*DB^(-1/2); % get Z

% ==== compute U, by eigen-decomposition of Z'*SW*Z = (Z'X_W)(Z'X_W)'
% ==== first form X_W
mean_class_extend = [];
for i = 1:num_class
 temp = repmat(mean_class(:,i),[1 num_data]);
 mean_class_extend = [mean_class_extend temp];
end

X_W = X - mean_class_extend;

[U,D3,~] = eig((Z'*X_W)*(Z'*X_W)');
[~,idx] = sort(diag(D3),'ascend');
U = U(:,idx); % get the eigenvectors in ascending order

% ==== extract the p smallest eigenvectors
for i = 1:length(p)
 W_T = U(:,1:p(i))'*Z';
 W{i} = W_T';
end

% ==== normalize eigenvectors W
for i = 1:length(W)
 W_temp = W{i};
 W_n = W_temp;
 for j = 1:size(W_temp,2)
 W_n(:,j) = W_n(:,j)./norm(W_n(:,j));
 end
 W_K{i} = W_n;
end

% ==== compute the projected y_train
X2 = X - repmat(mean_img,[1,size(X,2)]);

for i = 1:length(p)
 y_train{i} = W_K{i}'*X2;
end

end

Code hw11_RihTengWu_Adaboost.m
% ECE 661 HW 11 - Car Recognition, AdaBoost
% Student: Rih-Teng Wu

clc
clear all
close all

% ==== whether or not to do operations
Do_feature_generate = 0; % 1:do; 0: not to do
Do_training = 0;
Do_testing = 1;

% ==== user specified parameters
threshold_positive = 1; % acceptable positive detection rate
threshold_FP = 0.5; % acceptable False-Positive rate
S = 10; % maximum number of strong classifiers
T = 100; % maximum number of weak classifiers in each stage

% ==== feature generation
if Do_feature_generate
 % ==== train feature
 train_path_p = 'ECE661_2016_hw11_DB2\train\positive\';
 cd 'ECE661_2016_hw11_DB2\train\positive'
 train_file_p = dir('*.png');
 cd '..'; cd '..'; cd '..';

 train_path_n = 'ECE661_2016_hw11_DB2\train\negative\';
 cd 'ECE661_2016_hw11_DB2\train\negative'
 train_file_n = dir('*.png');
 cd '..'; cd '..'; cd '..';

 [feature_train_p] = generateFeatureAdaBoost(train_path_p,train_file_p);
 [feature_train_n] = generateFeatureAdaBoost(train_path_n,train_file_n);

 % ==== test feature
 test_path_p = 'ECE661_2016_hw11_DB2\test\positive\';
 cd 'ECE661_2016_hw11_DB2\test\positive'
 test_file_p = dir('*.png');
 cd '..'; cd '..'; cd '..';

 test_path_n = 'ECE661_2016_hw11_DB2\test\negative\';
 cd 'ECE661_2016_hw11_DB2\test\negative'
 test_file_n = dir('*.png');
 cd '..'; cd '..'; cd '..';

 [feature_test_p] = generateFeatureAdaBoost(test_path_p,test_file_p);
 [feature_test_n] = generateFeatureAdaBoost(test_path_n,test_file_n);

 % ==== save data
 save('Train_positive.mat','feature_train_p','-v7.3');
 save('Train_negative.mat','feature_train_n','-v7.3');
 save('Test_positive.mat','feature_test_p','-v7.3');

 save('Test_negative.mat','feature_test_n','-v7.3');
end

% ==== AdaBoost training
if Do_training
 load('Train_positive.mat');
 load('Train_negative.mat');

 % ==== all features, [positive negative]
 feature_all = [feature_train_p feature_train_n];
 N_pos = size(feature_train_p,2);
 N_neg = size(feature_train_n,2);
 index = 1:1:N_pos+N_neg;
 new_idx = index; % new data index after classified by strong classifier

 for i = 1:S

 Strong =
performCascade(feature_all,N_pos,new_idx,i,threshold_positive,threshold_FP,T)
;

 % ==== update data index
 new_idx = Strong.UpdatedIndex;

 % ==== Stopping criteria (all negative examples are detected)
 neg_idx = find(new_idx > N_pos);

 % ==== record parameters
 Train_result(i) = Strong;

 if length(neg_idx) == 0
 break;
 end
 % ==== update N_pos
 N_pos = length(new_idx) - length(neg_idx);

 end
 save('Train_result.mat','Train_result','-v7.3');
end

% ==== AdaBoost testing
if Do_testing
 load('Test_positive.mat');
 load('Test_negative.mat');
 load('Train_result.mat');

 num_stage = length(Train_result); % number of strong classifier
 N_pos_all = size(feature_test_p,2);
 N_neg_all = size(feature_test_n,2);
 num_mis_pos = 0; % number of misclassfied positives
 num_cor_neg = 0; % number of correctly negatives

 for i = 1:num_stage
 stage = Train_result(i); % extract the ith strong classifier

 num_weak = stage.numberOfweak; % number of weak classifier
 weak_params = stage.parameters;% parameters of weak classifier

 f_idx = weak_params(1,1:num_weak); % best features
 theta = weak_params(2,1:num_weak); % the threshold for feature
 p = weak_params(3,1:num_weak); % the polarity for inequality
 alpha = weak_params(4,1:num_weak); % alpha values for weak
classifiers

 predict_result =
AdaBoostTesting(feature_test_p,feature_test_n,f_idx,theta,p,alpha,num_weak);

 predict_label = predict_result.predict;
 N_pos_test = predict_result.N_pos;
 N_neg_test = predict_result.N_neg;

 % ==== calculate overall FP and FN at each stage
 mis_pos_temp = length(find(predict_label(1:N_pos_test)<1));
 num_mis_pos = num_mis_pos + mis_pos_temp;

 correct_neg_temp = length(find(predict_label(N_pos_test+1:end)< 1));
 num_cor_neg = num_cor_neg + correct_neg_temp;

 FP(i) = (N_neg_all-num_cor_neg)/N_neg_all;
 FN(i) = num_mis_pos/N_pos_all;

 % ==== update data
 remain_pos_idx = find(predict_label(1:N_pos_test)>0);
 feature_test_p = feature_test_p(:,remain_pos_idx);

 remain_neg_idx = find(predict_label(N_pos_test+1:end)>0);
 feature_test_n = feature_test_n(:,remain_neg_idx);
 end

 % ==== plot accumulative FP and FN
 figure, plot(1:1:num_stage,FP,'r*-',1:1:num_stage,FN,'b*-');
 legend('False-Positive','False-Negative');
 title('Overall Performance'); xlabel('Stage'); ylabel('Rate');
 ylim([0 1]);
end

Code generateFeatureAdaBoost.m
function [feature] = generateFeatureAdaBoost(path,file)
% This function output the Haar-like feature used for AdaBoost learning based
on
% Integral images
% Author: Rih-Teng Wu
% feature: the desirable output feature
% path: the path of files
% file: contains the names of the images

img = imread([path file(1).name]);
[h,w,~] = size(img); % assume all training images have the same sizes
num_img = length(file); % number of images

% ==== filter sizes
h_size = 2:2:w; % sizes of horizontal edge filter, 1x2,1x4,...1x40
v_size = 2:2:h; % sizes of horizontal edge filter, 2x2,4x2,...20x2

% ==== initial feature
feature = zeros(11900,num_img);

% ==== generate Haar-like feature
for i = 1:num_img
 file_path = [path file(i).name];
 img = imread(file_path);

 % ==== convert to gray-scale and double
 img_g = rgb2gray(img); % need to first convert to gray, then convert to
double
 img_g = double(img_g); % convert to double

 % ==== obtain integral image
 img_int = integralImage(img_g); % there is zero padding at the top and
left of the image
 % zero padding will be helpful

 % ==== compute horizontal Haar-like feature
 feature_temp = [];

 for j = 1:length(h_size)
 width = h_size(j);

 for k = 1:h
 for m = 1:w-width+1
 corner_0 = [k m;k m+width/2;k+1 m;k+1 m+width/2]; % 1,2,3,4
corners
 corner_1 = [k m+width/2;k m+width;k+1 m+width/2;k+1 m+width];

 rec_0 = getRec(img_int,corner_0);
 rec_1 = getRec(img_int,corner_1);
 diff = rec_1 - rec_0;

 feature_temp = [feature_temp; diff];

 end
 end
 end

 % ==== compute vertical Haar-like feature
 for j = 1:length(v_size)
 height = v_size(j);

 for k = 1:h-height+1
 for m = 1:w-2+1
 corner_1 = [k m;k m+2;k+height/2 m;k+height/2 m+2]; % 1,2,3,4
corners
 corner_0 = [k+height/2 m;k+height/2 m+2;k+height m;k+height
m+2];

 rec_1 = getRec(img_int,corner_1);
 rec_0 = getRec(img_int,corner_0);
 diff = rec_1 - rec_0;

 feature_temp = [feature_temp; diff];
 end
 end
 end

 feature(:,i) = feature_temp;

end

end

Code getRec.m
function [Rec] = getRec(img_int,corner)
% This function output the sum of pixels within the rectangle
% with four specified corner points based on integral image
% Author: Rih-Teng Wu
% Rec: sum of pixels withing the rectangle
% img_int: integral image
% corner: four specified corner points

One = img_int(corner(1,1),corner(1,2)); % corner 1
Two = img_int(corner(2,1),corner(2,2)); % corner 2
Three = img_int(corner(3,1),corner(3,2)); % corner 3
Four = img_int(corner(4,1),corner(4,2)); % corner 4

Rec = Four + One - (Two+Three);

end

Code performCascade.m
function [Strong] =
performCascade(feature_all,N_pos,new_idx,stage,thres_pos,thres_FP,T)
% This function output the strong classfier based on AdaBoost method
% Author: Rih-Teng Wu
% Strong: output structure that contains information of the aggregated
% weak classifiers
% feature_all: training features for all training images
% N_pos: number of remaining positive samples
% new_idx: the data index after passing the previous strong classifier
% stage: indicate the current stage of building strong classifer
% thres_pos: acceptable positive detection rate
% thres_FP: acceptable False-Positive rate
% T: maximum number of weak classifiers in each stage

% ==== calculate remaining samples
N_img = length(new_idx); % number of total remaining images
N_neg = N_img - N_pos;

% ==== update feature
feature = feature_all(:,new_idx);

% ==== initial weights and labels
weights = zeros(N_img,1);
labels = zeros(N_img,1); % 1: positive; 0: negative

for i = 1:N_img
 if i <= N_pos
 weights(i) = 1/2/N_pos;
 labels(i) = 1;
 else
 weights(i) = 1/2/N_neg;
 end
end

% ==== Initial parameters
Strong_result = zeros(N_img,1); % classification result of the strong
classifier
alpha = zeros(T,1); % alpha value for each weak classifier
h = zeros(4,T); % selected feature, threshold, polarity,
alpha for each weak classifier (used for testing later on)
h_result = zeros(N_img,T); % classification result of each weak
classifier
accuracy_pos = []; % accuracy of positive examples for each
strong classifier
FP_neg = []; % False positive of negative examples for
each strong classifier

for t = 1:T
 t
 % ==== normalize weights
 weights = weights./sum(weights);

 % ==== get best weak classifier
 best_weak = getBestWeak(feature,weights,labels,N_pos);

 % ==== get the parameters of best weak classifier
 error = best_weak.minError;
 h(1,t) = best_weak.feature;
 h(2,t) = best_weak.theta;
 h(3,t) = best_weak.p;
 h_result(:,t) = best_weak.classification;

 % ==== compute beta
 beta = error/(1-error);
 alpha(t,1) = log(1/beta);
 h(4,t) = alpha(t,1);

 % ==== update weights
 weights = weights.*beta.^(1-xor(labels,h_result(:,t)));

 % ==== compute strong classifier result
 strong_temp = h_result(:,1:t)*alpha(1:t,1);
 % ==== instead of set the threshold to 0.5*sum(alpha(1:t,1));
 % ==== we adjust the threshold to make all positive examples are
 % ==== correctly classified
 threshold = min(strong_temp(1:N_pos));

 for i = 1:N_img
 if strong_temp(i) >= threshold
 Strong_result(i) = 1;
 else
 Strong_result(i) = 0;
 end
 end

 % ==== calculate accuracy of positive examples and False positive
 acc_temp = sum(Strong_result(1:N_pos))/N_pos;
 accuracy_pos = [accuracy_pos; acc_temp];

 FP_temp = sum(Strong_result(N_pos+1:end))/N_neg;
 FP_neg = [FP_neg; FP_temp];

 accuracy_pos(t)
 FP_neg(t)

 % ==== stopping criteria
 if (accuracy_pos(t) >= thres_pos) && (FP_neg(t) <= 0.5)
 break;
 end
end

% ==== get remaining positive and negative examples
% ==== if use thres_pos other than 1, this part need to be modified

[sort_neg,sort_neg_idx] = sort(Strong_result(N_pos+1:end),'ascend');

% ==== output
if sum(sort_neg)>0

 for i = 1:N_neg
 if sort_neg(i)>0
 remain_neg_idx = sort_neg_idx(i:end);
 Strong.UpdatedIndex = [1:1:N_pos,remain_neg_idx'+N_pos];
 break;
 end
 end
else
 Strong.UpdatedIndex = [1:1:N_pos];
end

Strong.numberOfweak = t; % number of weak classifiers in each stage
Strong.parameters = h; % parameters used to test
end

Code getBestWeak.m
function [best_weak] = getBestWeak(feature,weights,labels,N_pos)
% This function output the best weak classifer based on sorting method
% Author: Rih-Teng Wu
% best_weak: output structure that contains information of the best
% weak classifier
% feature: training features for the remaining training images
% weights: the updated weights from the previous weak classifier
% labels: the target labels
% N_pos: number of remaining positive samples

N_feat = size(feature,1); % number of features
N_img = size(feature,2); % number of remaining images

% ==== calculte T_plus and T_minus
T_plus = repmat(sum(weights(1:N_pos)),[N_img 1]);
T_minus = repmat(sum(weights(N_pos+1:end)),[N_img 1]);

% ==== iterate over all features
best_weak.minError = inf; % initial minimum error

for i = 1:N_feat
 feat_temp = feature(i,:);

 % ==== sorting in ascending order
 [sort_feat,sort_idx] = sort(feat_temp,'ascend');
 sort_weight = weights(sort_idx);
 sort_label = labels(sort_idx);

 % ==== calculate S_plus and S_minus
 S_plus = cumsum(sort_weight.*sort_label); % sum of positive weights for
all threshold
 S_minus = cumsum(sort_weight) - S_plus; % sum of negative weights for
all threshold

 % ==== determin threshold
 err_1 = S_plus + (T_minus - S_minus);
 err_2 = S_minus + (T_plus - S_plus);
 min_error_temp = min(err_1,err_2);
 [min_error, min_idx] = min(min_error_temp);

 % ==== get cloassification result
 classify_result = zeros(N_img,1);

 if err_1(min_idx) <= err_2(min_idx)
 p = -1;
 classify_result(min_idx+1:end) = 1; % label 1 to the examples above
current example
 classify_result(sort_idx) = classify_result;
 else
 p = 1;
 classify_result(1:min_idx) = 1; % label 1 to the examples below
current example
 classify_result(sort_idx) = classify_result;

 end

 % ==== get best weak classifier
 if min_error < best_weak.minError
 best_weak.minError = min_error;
 best_weak.p = p;
 best_weak.feature = i;
 best_weak.classification = classify_result;
 % ==== get threshold value for best feature
 if min_idx == 1
 best_weak.theta = sort_feat(1) - 0.01; % 0.01 is just a constant
to make sure every feature value is larger than theta
 elseif min_idx == N_feat
 best_weak.theta = sort_feat(N_feat) + 0.01; % 0.01 is just a
constant to make sure every feature value is smaller than theta
 else
 best_weak.theta = mean([sort_feat(min_idx),sort_feat(min_idx-
1)]);
 end
 end
end

end

Code AdaBoostTesting.m
function [result] =
AdaBoostTesting(feature_p,feature_n,f_idx,theta,p,alpha,num_weak)
% This function output the classification result in each stage based on
AdaBoost
% testing
% Author: Rih-Teng Wu
% result: the output of predicted labels, # of positives, # of negatives
% feature_p: features of positive test samples
% feature_n: features of negative test samples
% f_idx: best features
% theta: the threshold for feature
% p: the polarity for inequality
% alpha: alpha values for weak classifiers
% num_weak: number of weak classifier in this stage

feature_all = [feature_p feature_n];
N_pos = size(feature_p,2);
N_neg = size(feature_n,2);
N_img = N_pos + N_neg;

weak_result = zeros(N_img,num_weak);
% ==== get weak classifier results
for i = 1:num_weak
 feat_temp = feature_all(f_idx(i),:);

 for j = 1:N_img
 if p(i)*feat_temp(j) <= p(i)*theta(i)
 weak_result(j,i) = 1;
 end
 end
end

% ==== get strong classifier result
strong_temp = weak_result*alpha';
threshold = 0.5*sum(alpha);
Strong_result = zeros(N_img,1);

for i = 1:N_img
 if strong_temp(i) >= threshold
 Strong_result(i) = 1;
 end
end

% ==== output
result.predict = Strong_result;
result.N_pos = N_pos;
result.N_neg = N_neg;

end

