
ECE 661 (Fall 2016) - Computer Vision - HW 11

Debasmit Das

December 11, 2016

1 Face Recogntion

This task here is to perform PCA and LDA on face images and then do nearest neighbor
classification.

1.1 Principal Component Analysis (PCA)

To perform Face recognition using PCA, both train and test images need to be converted into
a vectorized format. With the vectorized image, the covariance matrix C is computed.

1.1.1 Estimate Covariance Matrix

If we have N vectorized images, xi being the ith image. where i = 1, 2...N . To compute the
co-variance matrix C, the mean vector of N images will be given as -

m =
1

N

N∑
i=1

xi (1)

and X is such that
X = [x1 −m x2 −m...xN −m] (2)

X need to be normalized to take care of illumination, such that ‖xi‖ = 1 for all i. The covariance

C = 1
N

∑N
i=1 XXT .

The eigen-vectors wl of C corresponding to the K largest eigenvalues will constitute the PCA
feature set, denoted as Wk. Different K’s should be tested. A computation trick is applied to
compute the above eigen-vectors.

1.1.2 Computational Trick Used

If w is an eignevector of C, it must satisfy,

XXTw = λw (3)

Instead of computing eigen-vectors of C, the eigen-vectors of XTX are to be computed first. Let
that eigen-vector be denoted as u. Then, we know that

XTXu = λu. (4)

To get w from u, we pre-multiply the previous equation by X to get

XXTXu = λXu. (5)

So, we need to just use w = Xu.

1

1.1.3 Projecting Data Space

Both the training and test data need to be projected into the eigen space, using yi = WTxi,
where W = [w1 w2...wK]. Then the trained feature is used in nearest neighbor classification.

1.2 Linear Discriminant Analysis (LDA)

The goal of LDA is to find directions in the underlying space that maximally discrimnates
between classes. For that we have to look into the between class scatter SB and the within class
scatter SW .

1.2.1 Defining SB and SW

For multiple classes, the between class scatter is defined as -

SB =
1

|C|

|C|∑
i=1

(mi −m)(mi −m)T (6)

where C is the set of all classes and m is the global mean. The within class scatter is defined as

SW =
1

|C|

|C|∑
i=1

1

|Ci|

|Ci|∑
k=1

(xk −mi)(xk −mi)
T (7)

where subset to images belonging to class i is referred to as Ci and mi is the mean image vector
for each class.

1.2.2 LDA Objective

The objective of LDA is to find LDA eigenvectors w that maximize Fisher Discriminant
Function.

J(w) =
wTSBw

wTSWw
(8)

To solve for the w, Yu and yang’s algorithm is used.

1.2.3 Yu and Yang’s algorithm

Initially we have to carry out eigen decomposition of SB . The eigen values are diagonalized and
need to be sorted in descending order. This will yield a matrix V consisting of the corresponding
eignevectors. The first K eigen vectors constitute matrix Y. Then, a matrix Z = YD−0.5B , where
DB is the upper-leftK×K sub-matrix of the diagonalized eigen-values of SB . Or DB = YTSBY.
In fact , we use the following equation

DB = (YTM)(YTM)T (9)

where M = [m1 −m m1 −m...m|C| −m]. The eigenvector matrix U is computed using eigen
decomposition of ZTSWZ. This is done using the following equation

ZTSWZ = (ZTXW)(ZTXW)T (10)

where XW = [x11 −m1 ...x1k −mk ...x|C|1 −m1 ...x|C|k −mk]
The eigen-vectors with the largest eigen-values are discarded. the matrix of LDA eigen-vectors

W is given as follows -
WT = ÛTZT (11)

We should also normalize W

2

1.2.4 Project train and test images

Both train and test images need to be projected into the eigen-space before classification can
be used.

y = WT (x−m) (12)

1.3 Results and Discussion

We use accuracy as an evaluation metric for comparing LDA and PCA as a function of the
dimension of eigenspace i.e. the number of eigen-vectors. The accuracy is given as follows-
accuracy = (No. of correctly recognized images)/(Total no. of images). The accuracy is plotted
as follows -

Figure 1: Comparing Performance of PCA and LDA

From the figure, we see that LDA for few eigen-vectors does not perform as well as PCA but
as the no. of eigen-vectors increases LDA performs better than PCA and reaches 100 percent
accuracy faster. PCA takes close to 10 dimensional eigen-space to reach 100 percent accuracy
while for LDA it is a 6 dimensional space. So computationally speaking, PCA is good for low-
dimensional representation while LDA is good for better discriminative performance. This is
mainly because PCA is an unsupervised method and LDA is a supervised method and therefore
LDA models the class separability.

2 Object Detection

Here, we use the Viola-Jones detector or the cascaded Adaboost for object detection. The
object in our case is a car. In each cascade of our framework we have a desired a target false
positive and true detection rate.

3

2.1 AdaBoost Classifier

AdaBoost stands for adaptive boosting where we aggregate weak classifiers to form a strong
classifier. To do so we use the following steps.

2.1.1 Haar Feature Extraction

To build weak classifiers, the Haar features need to be extracted. Haar filters are box features
and can therefore use integral images for fast operation. The integral image is calculated as
follows-

II(x, y) =
∑

xi≤x,yi≤y

I(xi, yi) (13)

There will be different kind of Haar features, such as [0, 1] and [1, 0]T . To get all possible
horizontal and vertical features we have extend each feature. The 1 × 2 feature is extended to
1× 4, 1× 6, 1× 8 ..., horizontally. and similarly vertically. Together we will get around 166000
features.

2.1.2 Build Weak Classifier

If we assume that the final strong classifier is built with T weak classifiers, one weak classifier
is denoted as ht. To find the best T weak classifiers, all the features are evaluated T times. To
find the t weak classifier, all the features are evaluated one by one.

For each feature it is applied to all the training data to find the best threshold that can classify
the training data with optimal classification rate. Before the threshold is calculated, the current
feature is first sorted ascendingly accroding to feature’s value for each example. The threshold
is then calculated as follows-

e = min(S+ + (T− − S−), S− + (T+ − S+)) (14)

where T+ is the total sum of positive example weights. T− is the total sum of negative example
weights. S+ is the sum of positive weights below the current example and S− is the sum of
negative weights below the current example. The feature with minimum error is used as the
threshold is classify all the training images. The weight for each training image is initially
equally assigned and updated in each iteration t for finding the best weak classifier. The feature
with the smallest error is then selected as a weak classifier ht.

After the tth weak classifier is obtained, the weight for each training image is updated as
following -

wt+1,i = wt,iβ
1−ei
t (15)

where ei = 0 when correctly classified and ei = 1, otherwise. βt = εt
1−εt . The error is calculated

using the following εt = min
∑
i wt,i|ht(xi) − yi|, where xi is a training image and yi is the

corresponding label.

2.1.3 Build Strong Classifier

These T classifiers constitute a strong classifier. When performing the validation or testing
process, this strong classifier is used as -

C(x) =

{
1, if

∑T
t=1 αtht(x) ≥ 1

2

∑T
t=1 αt

0, otherwise
(16)

where αt = log 1
β

4

2.2 Cascaded Adaboost Classifier

To integrate adaboost with cascaded algorithm, the process of building one strong classifier is
repeated for several cascaded stages. At the beginning of each stage, the features for this stage
are updated according to the false recognized negative training images. Only those correctly
recognized negative images and all the positive images are used in this stage. Then, a strong
classifier is constructed following AdaBoost process. Instead of integrating T weak classifiers as
a strong classifier, an additional condition is applied to determine the number of weak classifiers
used. In this case, if the false positive rate under a certain strong classifier is smaller than 0.5,
this strong classifier is considered as good enough and this stage is completed then. The false
positive rate and false negative rate is calculated as the following.

false positive rate = No. of misclassified negative images/No. of negative images (17)

false negative rate = No. of misclassified positive images/No. of positive images (18)

2.3 Results and Discussion

We discuss both training and testing results in separate sections.

2.3.1 Training Results

The number of classifiers used in each stage is summarized as follows in the table. -

Table 1: No. of classifiers in each stage of the cascade

Stage 1 2 3 4 5 6 7 8 9 10
No. of

Classifiers
29 21 20 19 18 15 13 12 10 8

Next, we also visualize the accumulated false positive rate in the training process

Figure 2: Accumulated False Positive Rate during training for cascade stages

5

2.3.2 Testing Results

We look at the testing results. We plot the accumulated false positive rate and false negative
rate as the function of the number of stages on the test data.

Figure 3: Accumulated False Positive Rate and False negative rate as a function of the stages
for test data

So we see that the False Positive Rate decreases as expected. The False negative rate however
rises. This is because of the fact that True Positive Rate decreases. Since False Negative Rate
is 1− True Positive Rate, False Negative Rate increases.

Code

The script is in MATLAB 2016a and is self-explanatory

Face Recognition

Main Script of PCA

% This is the main method for PCA

%Number of persons or the no. of classes

Npers=30;

%Number of trials per person

Ntrials=21;

%Path for training images

trPath = ’Face/train/’;

tePath = ’Face/test/’;

% load training images

[trainImg, ~, ~] = loadImg(trPath, Npers, Ntrials);

% load testing images

6

[testImg, ~, ~] = loadImg(tePath, Npers, Ntrials);

% load trained w

[w, Neig] = myPCA(trainImg); % Taking the number of eigen values and

% test using different number of eigenvectors, from small to large

accPCA = zeros(1, Neig);

TrainDataY=zeros(Npers*Ntrials,1);

for i=1:Npers*Ntrials

TrainDataY(i,1)=ceil(i/Ntrials);

end

for i=1: Neig

partEig=w(:,1:i);

% project training images

trainProj = zeros(i, Npers*Ntrials);

for j = 1:Npers*Ntrials

trainProj(:,j) = partEig’ * trainImg(:,j);

end

% project testing images

testProj = zeros(i, Npers*Ntrials);

for j = 1:Npers*Ntrials

testProj(:,j) = partEig’ * testImg(:,j);

end

TrainDataX=trainProj’;

TestDataX=testProj’;

%Training a K-Nearest neighbour K=1

mdl=fitcknn(TrainDataX, TrainDataY, ’NumNeighbors’,1, ’distance’, ’euclidean’);

TestDataPred=mdl.predict(TestDataX);

%Testing using nearest neighbour and calculating accuracy

Diff=TestDataPred-TrainDataY;

accPCA(1,i)=nnz(~Diff);

end

% compute accuracy for different dim of eigen space

accPCA = accPCA / (Npers*Ntrials);

plot(accPCA);

PCA subroutine

function [normW, Neig]= myPCA(imgVec)

%Function to find PCA on image vectors

% Compute covariance matrix for sorting eigen values

[V,D]= eig(imgVec’*imgVec);

eigV = diag(D);

[~,idx] = sort(-1.0 .* eigV); % Thos is done for sorting

eigV = eigV(idx);

V = V(:,idx);

7

% For each image, we get the no. of eigenvectors which have

% eigen values greater than 1

Neig=0;

for i=1:size(imgVec,2)

if eigV(i) > 1

Neig = Neig + 1;

end

end

% We have to compute the weight matrix

w=imgVec*V;

%Next we normalize w

[r,c]=size(w);

normW=zeros(r,c);

for i=1:c

normW(:,i)=w(:,i)/norm(w(:,i));

end

end

Main Script of LDA

% This is the main method for LDA

%Number of persons or the no. of classes

Npers=30;

%Number of trials per person

Ntrials=21;

%Path for training images

trPath = ’Face/train/’;

tePath = ’Face/test/’;

% load training images

[~,trainImg, meanTrain] = loadImg(trPath, Npers, Ntrials);

% load testing images

[~,testImg, meanTest] = loadImg(tePath, Npers, Ntrials);

% get trained data

[vecU, Z] = myLDA(trainImg,meanTrain,Npers,Ntrials);

% test using different number of eigenvalues

Neig = 30;

accLDA = zeros(1, Neig);

TrainDataY=zeros(Npers*Ntrials,1);

for i=1:Npers*Ntrials

TrainDataY(i,1)=ceil(i/Ntrials);

end

for i = 1:Neig

% compute part eigenvector U

partVecU = vecU(:,1:i);

8

W = Z * partVecU;

% normalize W

for j = 1:i

W(:,j) = W(:,j) / norm(W(:,j));

end

% project training images

trainProj = zeros(i, Npers*Ntrials);

for j = 1:Npers*Ntrials

trainProj(:,j) = W’ * (trainImg(:,j)-meanTrain);

end

% project testing images

testProj = zeros(i, Npers*Ntrials);

for j = 1:Npers*Ntrials

testProj(:,j) = W’ * (testImg(:,j)-meanTest);

end

TrainDataX=trainProj’;

TestDataX=testProj’;

%Training a Nearest neighbour

mdl=fitcknn(TrainDataX, TrainDataY, ’NumNeighbors’,1, ’distance’, ’euclidean’);

TestDataPred=mdl.predict(TestDataX);

%Testing using nearest neighbour and calculating accuracy

Diff=TestDataPred-TrainDataY;

accLDA(1,i)=nnz(~Diff);

end

% compute accuracy for different dim of eigen space

accLDA = accLDA / (Npers*Ntrials);

plot(accLDA);

LDA subroutine

function [vecU, Z] = myLDA(imgVec, mean, Npers, Ntrials)

%myLDA Summary of this function goes here

% Detailed explanation goes here

% define image size

imgSize = 128*128;

% compute mean for each class

sumImg = zeros(imgSize,Npers*Ntrials);

for i = 1:Npers*Ntrials

% This is for selecting index for each class

classIdx = floor((i-1)/Ntrials) + 1;

sumImg(:,classIdx) = sumImg(:,classIdx) + imgVec(:,i);

end

meani = sumImg / Ntrials;

% build mi-m after subtracting from mean

9

meani_m = zeros(imgSize, Npers);

for i = 1:Npers

meani_m(:,i) = meani(:,i) - mean;

end

% compute SB i.e the between class variance

SB = meani_m * meani_m’;

% ensure SB is not singular using Yu and Wang’s method

[vecSB,valSB] = eig(meani_m’ * meani_m);

[~,idx] = sort(-1 .* diag(valSB));

V = meani_m * vecSB;

Nfeatures = 30;

% build Y, DB, Z

Y = V(:,1:Nfeatures);

DB = Y’ * meani_m * meani_m’ * Y;

Z = Y * DB^(-0.5);

% build xk-mi

xk_meani = zeros(imgSize, Ntrials);

for i = 1:Npers*Ntrials

classIdx = floor((i-1)/Ntrials) + 1;

xk_meani(:,i) = imgVec(:,i) - meani(:,classIdx);

end

% compute the intermediate variable

Zt_xk_meani = Z’ * xk_meani;

% eigendecompostion to get U

[vecU,valU] = eig(Zt_xk_meani*Zt_xk_meani’);

% diagnolize eigenvalues of U

DU = diag(valU);

end

Subroutine for loading Images

function [normImgVec, imgVec, meanImg] = loadImg(filePath, Npers, Ntrial)

%get image dimensions

[r,c] = size(rgb2gray(imread([filePath,’01_01.png’])));

%define output vectors

imgVec = zeros(r*c,Npers*Ntrial); %each column is an image

%load images as feature vectors

for i = 1:Npers

for j = 1:Ntrial

img = imread([filePath,num2str2digit(i),’_’,num2str2digit(j),’.png’]);

[r,c] = size(rgb2gray(img));

oneVec = reshape(rgb2gray(img)’,r*c,1);

imgVec(:,(i-1)*Ntrial+j) = oneVec;

end

10

end

%compute ensemble mean of all images

meanImg = mean(imgVec,2);

%normalize images

% This standardization is required for eigen decomposition

normImgVec = zeros(r*c, Npers*Ntrial);

for i = 1:Npers*Ntrial

normImgVec(:,i) = (imgVec(:,i) - meanImg) / norm(imgVec(:,i) - meanImg);

end

end

Subroutine for Converting Image numbers to strings

function str = num2str2digit(num)

% This function is used for converting

% indices in images to strings

if num<10

str = [’0’,num2str(num)];

else

str = num2str(num);

end

end

Car Detection

Main Script for Training

clc

clear all

% Get features from stored data file

featFile = load(’features_adaboost_train.mat’);

feat=featFile.features_adaboost.features;

Npos=featFile.features_adaboost.Npos;

Nneg=featFile.features_adaboost.Nneg;

S=10;

idx=1:Npos+Nneg;

for i=1:S

idx=myCascade(feat,Npos,idx,i);

if length(idx)==Npos

break;

end

end

11

Script for Cascading

function [idx] = myCascade(featuresAll, Npos, idxPrev, stage)

%update negative no.

Nneg = length(idxPrev) - Npos;

Ntotal = Npos + Nneg;

%update features

feats = featuresAll(:,idxPrev);

% Initialize weights to equally probability

weight = zeros(Ntotal,1);

% Initialize labels for both positive and negative examples

label = zeros(Ntotal,1);

for i=1:Ntotal

if i <= Npos

weight(i) = 0.5 / Npos;

label(i) = 1;

else

weight(i) = 0.5 / Nneg;

end

end

% This is the adaboost process

T=40;

strongClaResult = zeros(Ntotal, 1);

alpha = zeros(T,1);

ht = zeros(4,T);

hRes = zeros(Ntotal, T);

% The adaboost iterative process

for t = 1:T

% normalize weights

weight = weight ./ sum(weight);

% get the best weak classifier and the detection result

h = getClassifier(feats, weight, label, Npos);

% store result

ht(1,t) = h.currentMin;

ht(2,t) = h.p;

ht(3,t) = h.featureIdx;

ht(4,t) = h.theta;

hRes(:,t) = h.bestResult;

% get min error

err = h.currentMin;

% get trust fact alphat = 0.5 * ln((1-et)/et)

alpha(t) = log((1-err)/err);

% update weight

weight = weight .* (err/(1-err)) .^ (1-xor(label,h.bestResult));

12

% strong classifier

strongCla = hRes(:,1:t) * alpha(1:t,:);

threshold = min(strongCla(1:Npos));

for i = 1:Ntotal

if strongCla(i) >= threshold

strongClaResult(i) = 1;

else

strongClaResult(i) = 0;

end

end

% compute positive accuracy

posAccuracy(t) = sum(strongClaResult(1:Npos)) / Npos;

% compute negative accuracy

negAccuracy(t) = sum(strongClaResult(Npos+1:end)) / Nneg;

%This is when the adaboost stops searching for features

if posAccuracy(t)==1 && negAccuracy(t) <= 0.5

break;

end

end

% Presenting update for the next cascaded iteration

% sort negative, if there is false deteciton, there will be 1 at the end

[sortedNeg, idxNeg] = sort(strongClaResult(Npos+1:end));

% get false detection negative index

for i = 1:Nneg

if sortedNeg(i) > 0

idxNeg = idxNeg(i:end);

break;

end

end

% get sample index for next cascaded iteration

idx = [1:Npos, Npos+idxNeg’];

% polarity, theta for each classifier

save([’ht_’,num2str(stage),’.mat’],’ht’,’-mat’, ’-v7.3’);

% alpha for each weak classifier

save([’alpha_’,num2str(stage),’.mat’],’alpha’,’-mat’, ’-v7.3’);

% indices for classifier h’s feature

%save([’idxForNext’,num2str(stage),’.mat’],’idx’,’-mat’, ’-v7.3’);

% threshold for whole strong classifier --- may not be used

save([’threshold_’,num2str(stage),’.mat’],’threshold’,’-mat’, ’-v7.3’);

end

Script for Haar features

function [feats, Npos, Nneg] = getHaar(filePath)

13

% This is is for getting the features from all images

%The size of the images are fixed

r=20; % The no. of rows

c=40; % The no. of columns

%Setting the File paths

posFilePath = [filePath ’positive/’];

negFilePath = [filePath ’negative/’];

disp(posFilePath);

posImg = loadImagesAdaboost(posFilePath, r, c);

negImg = loadImagesAdaboost(negFilePath, r, c);

% get total number of images

Nimg = size(posImg,3) + size(negImg,3);

Npos = size(posImg,3);

Nneg = size(negImg,3);

Nfeats=166000;

feats=zeros(Nfeats, Nimg);

for i=1:Nimg

intImg=zeros(r+1,c+1);

disp(i);

if i<=size(posImg,3)

intImg(2:r+1,2:c+1) = cumsum(cumsum(posImg(:,:,i)),2);

else

intImg(2:r+1,2:c+1) = cumsum(cumsum(negImg(:,:,i-size(posImg,3))),2);

end

feats(:,i)=computeFeature(intImg);

end

features_adaboost.features = feats;

features_adaboost.Npos = Npos;

features_adaboost.Nneg = Nneg;

% For saving test image features

save(’features_adaboost_test.mat’, ’features_adaboost’, ’-mat’, ’-v7.3’);

% For saving training image features

% save(’features_adaboost_train.mat’, ’features_adaboost’, ’-mat’, ’-v7.3’);

end

Script for Loading Images

function imgs = loadImagesAdaboost(filePath, r, c)

% get the images in ’filePath’

files = dir([filePath ’*.png’]);

imgs=zeros(r,c,length(files));

for i=1:length(files)

img=imread([filePath files(i).name]);

imgs(:,:,i)=double(rgb2gray(img));

14

end

end

Script for Computing Haar Features

function feat = computeFeature(I, r, c)

feat=zeros(166000,1);

%extract Horizontal features

cnt = 1;

for h = 1:20

for w = 1:20

for i = 1:21-h

for j = 1:41-2*w

rect1=[i,j,w,h];

rect2=[i,j+w,w,h];

feat(cnt)=sumBox(I, rect2)-sumBox(I, rect1);

cnt=cnt+1;

end

end

end

end

for h = 1:10

for w = 1:40

for i = 1:21-2*h

for j = 1:41-w

rect1=[i,j,w,h];

rect2=[i+h,j,w,h];

feat(cnt)=sumBox(I, rect1)-sumBox(I, rect2);

cnt=cnt+1;

end

end

end

end

Script for Integral Image technique

function [boxSum] = sumBox(I, box4)

%Given 4 corners in the integral image we have

% to calculate the sum of pixels inside the box.

row_s=box4(1);

col_s=box4(2);

w=box4(3);

h=box4(4);

A = I(row_s, col_s);

B = I(row_s, col_s + w);

C = I(row_s+h, col_s);

D = I(row_s+h, col_s+w);

15

boxSum = A + D - (B+C);

end

Script for getting strong classifier from weak classifier

function h = getClassifier(features, weight, label, Npos)

% This function is used for getting the classifier

% To define parameters

Nfeatures = size(features,1);

Nimgs = size(features,2);

h.currentMin = inf;

tPos = repmat(sum(weight(1:Npos,1)), Nimgs,1);

tNeg = repmat(sum(weight(Npos+1:Nimgs,1)), Nimgs,1);

% search each feature as a classifier

for i = 1: Nfeatures

% get one feature for all images

oneFeature = features(i,:);

% sort feature to thresh for postive and negative

[sortedFeature, sortedIdx] = sort(oneFeature, ’ascend’);

% sort weights and labels

sortedWeight = weight(sortedIdx); sortedLabel = label(sortedIdx);

% select threshold

sPos = cumsum(sortedWeight .* sortedLabel);

sNeg = cumsum(sortedWeight) - sPos;

errPos = sPos + (tNeg - sNeg);

errNeg = sNeg + (tPos - sPos);

% choose the threshold with small error

allErrMin = min(errPos, errNeg);

[errMin, idxMin] = min(allErrMin);

% result

result = zeros(Nimgs,1);

if errPos(idxMin) <= errNeg(idxMin)

p = -1; % Setting the polarity to negative

result(idxMin+1:end) = 1;

result(sortedIdx) = result;

else

p = 1; % Setting the polarity to positive

result(1:idxMin) = 1;

result(sortedIdx) = result;

end

% get best parameters

if errMin < h.currentMin

h.currentMin = errMin;

if idxMin==1

h.theta = sortedFeature(1) - 0.5;

16

elseif idxMin==Nfeatures;

h.theta = sortedFeature(Nfeatures) + 0.5;

else

h.theta = (sortedFeature(idxMin)+sortedFeature(idxMin-1))/2;

end

h.p = p;

h.featureIdx = i;

h.bestResult = result;

end

end % end of search each feature

end

Main Script for Testing

% This is the script for testing

clc

clear all

% Obtaining Test features

testFeatureFile = load(’features_adaboost_test.mat’);

testFeatures = testFeatureFile.features_adaboost.features;

Npos = testFeatureFile.features_adaboost.Npos;

Nneg = testFeatureFile.features_adaboost.Nneg;

S = 10; % This is the no. of stages

% for computing accuracy for each stage

fp = zeros(S,1);

fn = zeros(S,1);

% test for each stage

for i = 1:S

% load classifier infor

htFile = load([’ht_’ num2str(i) ’.mat’]);

ht = htFile.ht;

alphaFile = load([’alpha_’ num2str(i) ’.mat’]);

alpha = alphaFile.alpha;

strongThFile = load([’threshold_’ num2str(i) ’.mat’]);

strongTh = strongThFile.threshold;

% get t for each stage that is the no. of classifiers for each stage

t = 0;

for j = 1:size(ht,2)

if ht(:,j)==0

break;

end

t = t + 1;

end

% build polarity

p = ht(2,1:t);

% build each weak classifier threshold

theta = ht(4,1:t);

17

% build selected features

fIdx = ht(3,1:t);

% build alpha

alpha = alpha(1:t,1);

% do classification

result = adaBoostClassify(testFeatures, alpha, p, theta, fIdx, t);

% compute false postive rate and false negative rate

fn(i) = (Npos - sum(result(1:Npos))) / Npos;

fp(i) = sum(result(Npos+1:end)) / Nneg;

end

%This is for checking cumulative FPR and TPR for cascaded stage.

noStage = 10;

fp_rate = zeros(noStage,1);

for i=1:noStage

fp_rate = fp(1:i);

for j=2:i

if fp_rate(j)==0

fp_rate(j)=fp_rate(j-1);

break;

end

end

falsepos_acc = cumprod(fp_rate);

end

fn_rate = zeros(noStage,1);

for i=1:noStage

fn_rate = fn(1:i);

for j=2:i

if fn_rate(j)==0

fn_rate(j)=fn_rate(j-1);

break;

end

end

end

falseneg_acc=(1-cumprod(1-fn_rate));

% Plot the accumulated FNR and FPR after that

Script for Classification

function [result] = adaBoostClassify(featuresAll, alpha, p, th, fIdx, T)

% th is the threshold and p is the polarity

%Summary of this function goes here

% Detailed explanation goes here

% get number of test images

Nimgs = size(featuresAll,2);

% result for each weak classifier

weakResult = zeros(Nimgs,T);

% classify using every weak classiier

for t = 1:T

% get classifier feature

18

feature = featuresAll(fIdx(t),:);

% do classification for each test image

for i = 1:Nimgs

if p(t)*feature(i) <= p(t)*th(t)

weakResult(i,t) = 1; %else it will be negative class

end

end

end

% build strong classifier by weighted average of weak classifiers

strongCla = weakResult(:,1:T) * alpha(1:T,:);

% compute strong classifier thershold

strongTh = 0.5 * sum(alpha(1:T,1));

% get final classification result

result = zeros(Nimgs,1);

for i = 1:Nimgs

if strongCla(i) >= strongTh

result(i) = 1;

end

end

end

19

