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1. Introduction

In this assignment, we perform a 3D scene reconstruction with projective distortion using
two stereo images captured by an uncalibrated camera. Such a 3D reconstruction is called
projective reconstruction. because the reconstruction is projectively distorted visually and
it is related by a 4 × 4 homography to the real scene. If the scene is visually rich and we
have prior knowledge about the objects that appear in the scene, we can remove projective
distortion, affine and similarity distortion successively.

The following steps are performed for the 3D reconstruction :

1. An initial estimate of the fundamental matrix F is found, using the manually selected
correspondences (minimum of 8) between the 2 images by linear least squares
optimization and refine the fundamental matrix F using the Levenberg Marquadt
Method.

2. Using this initial estimate of F, we rectify the images to send the epipoles to infinity
such that e= [

1 0 0
]T and thereby find the Homographies for the two cameras for

this purpose, represented by H,H′.

3. Using the rectified images, the interest points on the rectified images are found using
SURF and canny edge detector.

4. After finding the interest points in the rectified images, we calculate the euclidean
distance geometric error to calculate the cost function and apply the non-linear least
squares optimization to minimize it and refine the fundamental matrix, camera
matrices and the 3D world points.

5. Finally we shall use triangulation to project the point correspondences to world 3D
and compute the 3D Scene structure from the set of correspondences for the given
camera pair (P,P′).

2. Theory and Implementation

Linear Least Squares estimation of the Fundamental Matrix

The Fundamental Matrix F is estimated using the manual correspondences (xi,x′
i) that are

selected by the user.(xi,x′
i) are the pixel locations in homogeneous coordinates in the left

and right image of the same world point selected by the user manually. The Fundamental
Matrix F gives us the algebraic representation of the epipolar geometry which finds the
relation between the corresponding points (xi,x′

i). The algebraic equation is given by

x′T
i Fxi = 0

=⇒ [
u′

iui u′
ivi u′

i v′iui v′ivi v′i ui vi 1
]
f= 0
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From a set of n point matches, we obtain a set of linear equations of the form

A.f=

u′
1u1 u′

1v1 u′
1 v′1u1 v′1v1 v′1 u1 v1 1

...
...

...
...

...
...

...
...

...
u′

nun u′
nvn u′

n v′nun v′nvn v′n un vn 1

f= 0

where,
f= [

f11 f12 f13 f21 f22 f23 f31 f32 f33
]

f33 = 1

xi =
[
ui vi 1

]T x′
i =

[
u′

i v′i 1
]T

Since each correspondence gives us 1 equation by solving, x′T
i Fxi = 0. Since there are 8

unknowns, we need a minimum of 8 such correspondences to use the normalized 8 point
algorithm, which normalizes the data to improve the estimate of the Fundamental Matrix
F. The steps are enumerated below:

1. Normalization : The image coordinates are transformed according to

x̂i =Txi x̂′i =T′x′
i

where T and T′ are normalizing transformations consisting of a translation and
scaling.The normalizing transformations T, for points xi and T′, for points x′

i for the
two images are found such that all the pixel correspondences have 0 mean and are
at a distance of

p
2 from the center C1 = (0,0).

2. Linear Solution : When we have normalized all the points, we stack up all of
them and make a matrix vector equation of the form Â.f̂= 0.The matrix Â has
all the stacked rows similar to the matrix shown above and is composed of the
matches between x̂i and x̂′i. This is solved using SVD to yield the matrix F̂ from f̂
corresponding to the smallest singular value of Â.

3. Constraint enforcement : The rank of matrix F̂ has to be 2. Therefore we may
need to condition the matrix F̂ to make its rank 2. This is done again by using
Singular Value Decomposition.So if F̂=UD̂VT , we set the smallest singular value in
D̂ equal to 0 and then denote it with D̂CE. So we replace F̂ by F̂CE =UD̂CEVT such
that det(F̂CE)= 0

4. Denormalization : Next, we denormalize the fundamental matrix F̂CE by using
the following relation

F=T′TF̂CET

5. Next we compute the epipoles of the left and right images. e is the right null vector
of fundamental matrix F and e′ is the left null vector of fundamental matrix F.

F.e= 0 e′TF= 0

6. Finally we calculate the camera projection matrices in the canonical form as follows:

P= [I|0] P′ = [[e′]xF|e′]
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Initial estimates before rectification and before refining

Initial Fundamental Matrix before images are rectified is given by :

F=
1.61993193122650e−07 −8.41209003027106e−06 −0.00430054597756484

8.50415583183406e−06 −7.34816171971557e−07 −0.0287916342927544
0.00364100843113559 0.0295143317479700 1


Initial First Camera Projection Matrix is given by :

P=
1 0 0 0

0 1 0 0
0 0 1 0


Initial Second Camera Projection Matrix is given by :

P′ =
−1.80523197679284 −14.6332981048719 −495.774364765972 3551.87067873625
−12.9323909255888 −104.831097950199 −3551.87497928223 −495.803156400265
0.0302859784829609 −0.00678071280441858 −104.396385907253 1


Initial epipoles are given by :

e=
 3346.99098369553
−446.780313482016

1

 e′ =
 3551.87067873625
−495.803156400265

1


Final estimates before rectification and after refining

Refined Fundamental Matrix before images are rectified is given by :

F=
2.00548076986446e−07 −1.29984078437012e−05 −0.00130076977575196

1.34181204176223e−05 −5.41186060674474e−07 −0.0377942991379238
0.000417385932814687 0.0383884228246249 1


Refined First Camera Projection Matrix is given by :

P=
1 0 0 0

0 1 0 0
0 0 1 0


Refined Second Camera Projection Matrix is given by :

P′ =
 −14.9486114725145 −21.6540815829875 −408.511137615021 2956.45213307080
−0.844575731781253 −112.141710233451 −2925.19966927627 −75.2934607352063
0.0343340132683272 −0.00891305474721164 −111.087250279651 1


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Refined epipoles are given by :

e=
 2814.37638782766
−56.6493998427590

1

 e′ =
 2956.45213307083
−75.2934607352072

1


Final estimates after rectification

Final Fundamental Matrix after images are rectified is given by :

F=
−5.69457800755607e−26 1.24071872320692e−21 8.04011778842355e−20
−1.32348898008484e−22 7.85821581925376e−23 0.000214584025844281
−3.81164826264435e−21 −0.000214584025844281 −0.00584613578291279


Final Rectification Homography for first image is given by :

H=
 0.3537 −0.1086 131.5316

0.0111 0.5653 0.8599
−0.0004 0.0001 1.0000


Final Rectification Homography for second image is given by :

H′ =
 0.3750 −0.1174 141.4748

0.0145 0.5700 −0.0090
−0.0003 0.0001 1.0000


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Input Images

Figure 1: Input Images
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Extracting Manual Correspondences

Taking the manual correspondences requires the user to click on points of interest that are
present in both images. The advantage of this method is that it uses human knowledge
about the corresponding points of interest that lie on the object of interest to accurately spot
correspondences. Often it is difficult to manually extract 40 corresponding points which is
required to rectify the image accurately.However, since this method uses human knowledge,
we can use even the bare minimum number of points (minimum of 8) required to compute
the fundamental matrix.I found 20 manual correspondences. However, a significant draw-
back is that while humans can identify correspondences easily, human eye cannot pinpoint
the exact position of the correspondences upto a pixel or sub-pixel accuracy. The accuracy
of the correspondences greatly affects the result of the scene reconstruction procedure. In
my approach, I have written a MATLAB Script find_manual_correspondence.m using
which I can just click on the corresponding points of interest on both the images using a
cross-hair cursor which makes locating points easier and accurate.

Figure 2: Setup for taking Manual Correspondences
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Figure 3: Points of Interest selected manually

Figure 4: Correspondences between points of interest selected manually

Image Rectification

In order to accurately compute our projectively distorted 3D scene structure, we must
obtain a highly refined estimate of matrix F. For this we need a considerably large number
of pixel correspondences (xi,x′

i) between the two images. For this we need to solve the
’correspondence problem’. It is computationally efficient, if we can simply lookup for
pixel correspondences along the same rows for each pixel in one image (if F is perfectly
estimated).In practical cases estimating F perfectly is not possible, and thus we look for
correspondences in a small number of adjoining rows in the second image, but it still
reduces the search space considerably and hence is much more computationally efficient.
This is done by sending the epipoles in both the images to infinity. We compute the
homographies H and H′ to send the epipoles e and e′ to infinity. The steps are enumerated
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below:

Estimating Homography H’ to send epipole e’ to ∞ along x axis

1. The second image center is shifted to origin using the transformation T1 to make the
application of rotation easier.

2. The angle of the epipole w.r.t positive x-axis is found by using the formula

θ = tan−1
(
− height(image)/2− e2(y)

width(image)/2− e2(x)

)
3. The entire image is rotated by this angle θ so that epipole goes to x-axis

e′ =
 f

0
1


4. Then the Homography G is applied to send the epipole to infinity along the x axis.

G=

 1 0 0
0 1 0
− 1

f 0 1

 e′ =
 f

0
0


5. Finally the image center is translated back to its original center point using the

transformation T2.

6. The overall Homography to be applied onto the second image to accomplish all these
tasks is then given by

H′ =T2GRT1

Estimating Homography H to send epipole e to ∞ along x axis

We want the corresponding epipolar lines to be on the same rows. The homoraphy H for
the first image is found using a linear least squares minimization procedure to minimize
the sum of squares distances given by∑

i
distance(Hxi,H′x′

i)

. This is done in the following steps which are enumerated below:

1. This is done by finding M such that F= [[e′]xM].

M=P′P+

2. We select a,b, c such that they minimize the following sum of squares:∑
i

(ax̂i +bŷi + c− x̂′ i)2 x̂i =H0xi x̂′i =H2x′
i
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3. We find the hollowing Homographies

H0 =H2M HA =
a b c

0 1 0
0 0 1


4. The overall Homography to be applied onto the first image to accomplish all these

tasks is then given by
H=HAH0

2.1 Output of Image Rectification

Figure 5: Input Images

Figure 6: Rectified Images
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Interest Point Detection

After rectification of the images, we look for interest points in the two images using SURF
and Canny Edge Detector. Finding large number of interest points and correspondences
between the stereo images is important for proper 3D Reconstruction. Using rectified
images solves the ’correspondence problem’, or in other words, all the corresponding
interest points are usually on the same rows or within a small number of adjoining rows.
The procedure to find the interest points and the point correspondences is explained below.

SURF Features

Speeded Up Robust Features (SURF) is a local feature detector and descriptor. It is used
for tasks such as object recognition, image registration, classification or 3D reconstruction.
SURF is several times faster and more robust than SIFT.

1. To detect interest points, SURF uses an integer approximation of the determinant
of Hessian blob detector, which can be computed with 3 integer operations on a
previously computed integral image.

S(x,y)=
x∑

i=0

y∑
j=0

I(i, j)

The MATLAB function detectSURFFeatures( ) is used to detect SURF features
and returns a SURFPoints object, points, containing information about SURF fea-
tures detected in the 2-D grayscale input image.

2. The 64 dimensional SURF descriptors for each of the interest points are then com-
puted using the MATLAB Command extractFeatures() which returns the extracted
SURF feature vectors, also known as descriptors, and their corresponding locations,
from the gray scale image. These descriptors are used to find correspondences.
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Output of SURF Feature Detection

Figure 7: Interest Points detected in the 2 Images using SURF Algorithm

Figure 8: Best 40 Visual SURF Features detected in the 2 Images using SURF Algorithm

Canny Edge Detector Features

1. Use canny edge detector to find edges in both the images using the MATLAB com-
mand edge() and specifying ’canny’ while executing the function .

2. The pixels corresponding to edges are used as the interest points.

3. This results in a very large number of pixels (around 10000 points). A subset of
these points are chosen so that we get around 1000 interest points. The points are
chosen at uniform intervals(i.e. every 10 th point is chosen).This is done so that we
do not choose consecutive points lying on the same edge corresponding to edges in
the image. Otherwise we will not be able to do the 3D Reconstruction accurately.

4. My own algorithm of choosing interest points only on Object Of Interest is applied
to only choose interest points on the object and exclude all other background points
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and image boundary points (The algorithm is explained in the section Algorithm to
select Interest Points on Object of Interest

5. At each interest point we extract the 121 dimensional local features in a small
window in its neighbourhood using the MATLAB Command extractFeatures().

Output of Canny Edge Detector Feature Detection

Figure 9: Edges in Image found using Canny Edge Detector

Figure 10: Matching Interest Points selected on the Edges in Images found using Canny
Edge Detector
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Figure 11: Matching Interest Points selected on the Edges in Image found using Canny
Edge Detector
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Finding Correspondences

After the local features from 2 stereo images are found, we need to establish correspon-
dences by comparing the features or descriptors (for SIFT) between image pairs. The
2 methods that are used are SSD (Sum of Squared Differences) and NCC (Normalized
Cross-Correlation).These are required to compare the interest points in two images of the
same scene captured from 2 different viewpoints.The two metrics used are:

Sum of Squared Differences

After finding the features from 2 images we find SSD after summing over the feature
dimensions as shown below:

SSD =∑
i

∑
j
| f1(i, j)− f2(i, j)|2

We compute the SSD for each pair of the features and take the minimal one as the
corresponding features.

Normalised Cross-Correlation

After finding the features from 2 images we find NCC after summing over the feature
dimensions as shown below:

NCC =
∑

i
∑

j ( f1(i, j)−m1)( f2(i, j)−m2)√∑
i
∑

j ( f1(i, j)−m1)2 ∑
i
∑

j ( f2(i, j)−m2)2

where, mi is the mean value of all the features i. The NCC has a value between −1
and 1, 1 being a perfect match. We can threshold to select points that are most likely to
match. We compute the SSD for each pair of the features and take the minimal one as the
corresponding features. The following points are followed to find correspondences :

1. The corresponding interest point of the first image is searched for within a small
number of adjoining rows in the second image.This is done since the image rectifica-
tion is working perfectly and both the rectified images epipoles are at infinity along
the positive x axis.

2. Since for any interest point in the first image, we might have multiple candidates in
the second image, the NCC or SSD metric is used to select the best candidate.

3. Ambiguous correspondences are removed by using the following formula

SSDI I

SSDI
> τSSD

where,
SSDI I is the SSD score of the second best correspondence
SSDI is the SSD score of the best correspondence
τSSD is the threshold above which the correspondence is accepted as a valid pair.
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Algorithm to select Interest Points on Object of Interest

Motivation

The motivation to devise this algorithm is as follows:

1. The boundary of the rectified image gives unnecessary interest points when using
the Canny Edge Detector and any other objects or even the background gives unnec-
essary interest points when using the SURF Algorithm. These correspondences are
irrelevant since they do not lie on the object of interest and may often lead to wrong
results and inefficient reconstruction.

2. Since we are going to triangulate these correspondence points into world points
and since we are concerned only about the world points on the Object of Interest, I
devised this algorithm to select only those correspondences that lie on the object of
interest.

Algorithm

The algorithm is very simple and intutive.

1. For the purpose of image rectification, the corners/outer boundary of the object
manual correspondences were taken at the beginning. Out of those, the 7 visible
corner points on the object are selected. Along with that another point aprroximately
close enough to the centroid of the object of interest is selected.

2. The distance between this center and the 7 visible corner points are computed and
the maximum dmax is stored. The threshold is set to be

τdistance = 1.1dmax

. All the interest points on the object of interest will lie within this threshold distance
since we are taking it to be a little higher than the furthest distance of a corner from
the approximate centroid. Equivalently, it can be thought of as drawing a sphere
from this approximate centroid with a radius of τdistance = 1.1dmax and this sphere
will completely surround the object of interest. Hence all points will definitely be
within this sphere.

3. Alternatively, instead of taking another manual correspondence for the approximate
centroid separately, this algorithm can be automated by finding the largest distance
between 2 of the bounding points and lets say that distance is Dmax and let the 2
corresponding boundary points be xbp and ybp. The approximate centroid xcentroid
and the farthest distance between this center and the farthest boundary point dmax
is found as

xcentroid = xbp +ybp

2
dmax = Dmax

2
τdistance = 1.1dmax = 0.55∗Dmax
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4. So the distance between all the interest points and this center xcentroid is calculated
and only those interest points which follows the following condition are retained

dinterest < τdistance

Rest of the interest points are eliminated.

Results of finding Image Correspondences

All correspondences between rectified images found using SURF Algo-
rithm

Figure 12: All correspondences between rectified images found using SURF Algorithm

Figure 13: All correspondences between rectified images found using SURF Algorithm and
using my algorithm to select those correspondences lying on the object of interest
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All correspondences found using Canny Edge Detector

Figure 14: All correspondences between rectified images found using Canny Edge Detector

Figure 15: All correspondences between rectified images found using Canny Edge Detector
and using my algorithm to select those correspondences lying on the object of interest and
selecting best 200 among them

17



Projective 3D Reconstruction using Triangulation and

Refining using Levenberg Marquadt Algorithm

1. The final pixel correspondences are converted to world points in world 3D. In general,
if we back project two corresponding pixels from images of the same scene into
two different rays given by P+x in world 3D, the two rays may be skew lines and
may not intersect at all. This is the reason why we need to refine the estimate for
the fundamental matrix F and also the world 3D points that are projected back to
the images for the calculation of square of the difference with the measured pixel
locations.

2. To get the world 3D points Xi, we triangulate the 2D points (xi,x′
i) using the linear

triangulation method. This step is also used in the nonlinear LM optimization.

(a) For each correspondence (xi,x′
i) we form the matrix

A=


uPT

3 −PT
1

vPT
3 −PT

2
u′P′T

3 −P′T
1

v′P′T
3 −P′T

2


(b) Our goal is to minimize ||AX|| subject to ||X|| = 1.
(c) The solution of this minimization problem is given by the null vector of A.

Hence the world 3D point Xi is given by the null vector of matrix A. This is
found by finding the SVD and then taking the eigenvector corresponding to the
lowest eigenvalue.

3. Using this as an initial estimate for the world points. Let, x̂i and x̂′ i be the projected
points in the first and the second image respectively. We use the Levenberg Marquadt
(LM) Algorithm to perform the non-linear optimization to minimize the following
geometric distance:

d2
geom =∑

i

(
||xi − x̂i||2 +||x′

i − x̂′ i||2
)

4. All the parameters are generated as a linear matrix comprising of the 12 elements of
the refined projection matrix of the second image P′ and then the estimated world
coordinates in the 3 cardinal directions worldx,worldy,worldz. The cost function is
minimized using the Levenberg Marquardt Algorithm to find the optimal parameters.
This is implemented in cost_function.m and optimize_NLS.m.

5. After the optimization is completed we form the refined P′ from the first 12 elements
of the optimal parameters and the form the estimated world coordinates from element
13 to the last element of the optimal parameters in groups of 3, where each group
has the estimated world coordinates worldx,worldy,worldz of a correspondence.

6. Using the refined P′, the 7 boundary points are triangulated to obtain the world
points as implemented in triangulate_points.m.
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3D Visual Inspection

3D Reconstruction using SURF Interest Points

The world points are plotted using the MATLAB command scatter3() in blue and the
boundary corner points are plotted in green and the corresponding corners are joined by red
lines corresponding to the edges of the box with the MATLAB script plot_boundary_lines.m

Figure 16: 3D Scene Reconstruction from 2 different viewpoints using SURF correspon-
dences
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Figure 17: SURF Interest points in images that is being triangulated to 3D world points

Figure 18: Point Correspondences between the images and 3D world points using SURF
correspondences
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3D Reconstruction using Canny Edge Detector Interest Points

The world points are plotted using the MATLAB command scatter3() in blue and the
boundary corner points are plotted in green and the corresponding corners are joined by red
lines corresponding to the edges of the box with the MATLAB script plot_boundary_lines.m

Figure 19: 3D Scene Reconstruction from 2 different viewpoints using Canny Edge Detector
correspondences
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Figure 20: Canny Edge Detector Interest points in images that is being triangulated to 3D
world points

Figure 21: Point Correspondences between the images and 3D world points using Canny
Edge Detector correspondences
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Improvements after optimization using Levenberg Marquadt

The improvements are enumerated below

1. The use of Levenberg Marquardt Algorithm improves the estimate of the Fundamen-
tal Matrix F and Second Camera Projection Matrix P′. If it is not used, then once we
enforce the rank constraint on F, everything breaks down and hence it is absolutely
necessary to do the LM Optimization.

2. I measured the Mean Square Errors before and after the LM Optimization. The
error function includes the difference of the elements of P′ and the estimates of the
World Points.The errors are enumerated below.

(a) Estimation of Fundamental Matrix from manual correspondences :
The Mean Square Error decreased from 0.4904 to 0.1741

(b) Triangulation of SURF Correspondences to find World Points :
The Mean Square Error decreased from 0.1187 to 0.0365

(c) Triangulation of Canny Edge Correspondences to find World Points :
The Mean Square Error decreased from 0.0626 to 0.0299

Observations

1. Selecting the manual correspondences accurately is important for good estimate
of fundamental matrix F and for image rectification. The advantage of taking
manual correspondences is that we utilise human knowledge to select the appropriate
correspondences, but the disadvantage is that human eye is not able to detect the
exact sub-pixel level correspondences.

2. The 3D scene that we reconstructed appears to be projectively distorted, since we are
using uncalibrated cameras. We estimate the fundamental matrix directly from the
images and then construct a canonical configuration for the cameras and compute
the scene structure. This results in reconstruction upto a projective distortion. It is
possible to do affine and similarity restoration, based on how rich the scene is.

3. The canny edge detector gives a very large number of edge pixels. This makes the
overall reconstruction process slower as compared to the SURF.Canny edge Detector
can give bad results if all the interest points that are chosen lie on the same edge.
Then there is not much information change in the descriptors and they look the
same.In my algorithm pixels are chosen such that there is a gap of 10 interests points
between those selected from all the 10000 interest points generated to eliminate
this possibility.By this I finally choose around 1000 interest points before finding
correspondences.

4. I have used my own algorithm to choose only those interest points that lie on the
object of interest, which removes unnecessary world points (on boundaries in case of
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Canny edge detector and on background objects in both SURF and CED) and makes
the overall 3D reconstruction process much more accurate and better. The detailed
algorithm is elaborated in the section Algorithm to select Interest points on the object
of Interest.

5. Image rectification worked very well and after rectification of the images, the cor-
respondences appear on a small range of adjoining rows that are very close to each
other.

6. Levenberg Marquardt optimization improves the estimate of fundamental matrix
and the world points as mentioned in the previous section.

7. The accuracy of the 3D reconstruction depends on the kind of the scene we are trying
to capture. The richer the scene is in structure, the easier it is to find interest points
and the better results it gives.In my case, I had chosen a box object with many
drawings in it and it was visually rich. This was done for the purpose of finding both
corners for SURF and also edges for Canny Edge Detector. I have presented the
final 3D Reconstruction obtained from correspondences from both the Canny Edge
Detector and SURF in a similar format(configuration/orientation) for comparison.
Both seem to be equally good. The difference between the 3D reconstruction model
generated by the SURF and Canny Edge Detector Algorithm can be observed in the
world points plotted in blue. It could be clearly mapped which interest point on the
image maps to which world point in either case.I have also presented the interest
points chosen for both SURF and Canny Edge Detector, alongside for reference.
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Source Code

Main Script

1

Table of Contents
.......................................................................................................................................  1
Load images and find manual correspondences ........................................................................  1
Estimate Fundamental Matrix and refine F using LM Optimization ..............................................  1
Rectify Images ...................................................................................................................  2
Manually select the boundary points of the object of interest ......................................................  2
Manually select the approximate center of the object of interest ..................................................  3
Remove the world points that do not belong to the object of interest ............................................  3
Detect Features using SURF and find correspondences in rectified image ......................................  3
Implementation 1 ................................................................................................................ 3
Implementation 2 ................................................................................................................ 4
Triangulate the SURF Correspondences into World 3D Points ....................................................  4
Traingulate boundary points and plot world points on object of interest ........................................  4
Detect Features using CED and find correspondences in rectified image .......................................  4
Implementation 1 ................................................................................................................ 4
Implementation 2 ................................................................................................................ 5
Triangulate the Canny Edge Detector Correspondences into World 3D Points ................................  5
Triangulate boundary points and plot world points on object of interest ........................................  5

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This is the main script for running the program for 3D Reconstruction
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Load images and find manual correspon-
dences

clc; close all; clear;
image1 = imread('7.jpg');
image2 = imread('8.jpg');
find_manual_correspondence;
figure,showMatchedFeatures(image1, image2, x1(:,1:2), x2(:,1:2),'montage');
title('Showing all selected correspondences');

Estimate Fundamental Matrix and refine F us-
ing LM Optimization

Load manual correspondences

clc; close all; clear;
image1 = imread('7.jpg');
image2 = imread('8.jpg');
load 'correspondences78.mat';
% Converting the physical pixel coordinates to homogeneous coordinates
x1 = [mc_image1 ones(size(mc_image1,1),1)];
x2 = [mc_image2 ones(size(mc_image1,1),1)];
% Find Transformation to normalize the manual correspondences
T1 = find_transformation_to_normalize(x1);
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2

T2 = find_transformation_to_normalize(x2);
% Estimate the Fundamental Matrix using Linear Least Squares Method and
% enforce the rank constraint by conditioning the Fundamental Matrix
F = estimate_Fundamental_Matrix(x1,x2,T1,T2);
F = F/F(3,3);
% Find the epipoles of the 2 cameras
% Find the epipole of the first camera as the right null vector of F
e1 = null(F);
e1 = e1/e1(3);
% Find the epipole of the first camera as the left null vector of F
e2 = null(F');
e2 = e2/e2(3);
% Finding the cross product form of the epipole of the second camera
e2_cross = [0 -e2(3) e2(2);e2(3) 0 -e2(1);-e2(2) e2(1) 0];
% Finding the Projection Matrix
P1 = [eye(3), zeros(3,1)];
P2 = [e2_cross*F,e2];
[P2_refine, F_refine, X_world] = optimize_NLS(@cost_function,x1,x2,P1,P2);
F_refine = F_refine/F_refine(3,3);
% Find the epipole of the first camera as the right null vector of F
e1_refine = null(F_refine);
e1_refine = e1_refine/e1_refine(3);
% Find the epipole of the first camera as the left null vector of F
e2_refine = null(F_refine');
e2_refine = e2_refine/e2_refine(3);

Rectify Images
Find the rectification Homographies for both images

[x1_rectified, x2_rectified, H1, H2, F_rectified, ...
    e1_rectified, e2_rectified] = find_rectification_homographies...
    (image1,image2,x1,x2,e1_refine,e2_refine,F_refine,P1,P2_refine)
% Apply the rectification Homographies with appropriate scaling and
% shifting to rectify both images
[image1_rectified, H1_rectified, xH1] = rectify_images (image1,H1,x1);
[image2_rectified, H2_rectified, xH2] = rectify_images (image2,H2,x2);
% Display the rectified images
figure
imshow(image1_rectified)
figure
imshow(image2_rectified)
% Display the manual correspondences between the rectified images
figure, showMatchedFeatures(image1_rectified, image2_rectified,...
    xH1(:,1:2), xH2(:,1:2), 'montage');
title('Showing all rectified manual correspondences');

Manually select the boundary points of the ob-
ject of interest

figure1 = imshow(image1_rectified,'InitialMagnification', 300);
xir1=ginput;
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% Count number of correspondences selected
n = size(xir1,1);
close all;
% display image and get the correspondence points for the second image
figure2 = imshow(image2_rectified,'InitialMagnification', 300);
xir2=ginput(n);
close all;
figure,showMatchedFeatures(image1,image2,xir1(:,1:2),xir2(:,1:2),'montage');
title('Showing all selected correspondences');

Manually select the approximate center of the
object of interest

figure1 = imshow(image1_rectified,'InitialMagnification', 300);
xirc1=ginput(1);
close all;
% display image and get the correspondence points for the second image
figure2 = imshow(image2_rectified,'InitialMagnification', 300);
xirc2=ginput(1);
close all;
save('bp7.mat','xir1','xir2','xirc1','xirc2');

Remove the world points that do not belong to
the object of interest

Calculate the maximum distance of boundary points from the center which will be the threshold for elim-
inating unnecesssary points that do not belong to the object of interest

load('bp7.mat');
difference = xir1-repmat(xirc1,size(xir1,1),1);
distance = sqrt(difference(:,1).^2+difference(:,2).^2)
threshold_distance1 = 1.1*max(distance);
difference = xir2-repmat(xirc2,size(xir2,1),1);
distance = sqrt(difference(:,1).^2+difference(:,2).^2)
threshold_distance2 = 1.1*max(distance);

Detect Features using SURF and find corre-
spondences in rectified image

Detect SURF Features and the interest points

[SURF_features1,SURF_interest_points1]=find_SURF_features(image1_rectified);
[SURF_features2,SURF_interest_points2]=find_SURF_features(image2_rectified);
% Find correspondence between the interest points in the two rectified
% images using SSD

Implementation 1
[x1_SURF,x2_SURF] = detect_correspondences(image1_rectified, ...
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    image2_rectified,SURF_features1,SURF_features2,...
    SURF_interest_points1.Location,SURF_interest_points2.Location,...
    0.7,5,xirc1,threshold_distance1);

Implementation 2
[x1_SURF,x2_SURF] = detect_correspondences_SSD(image1_rectified,...
    image2_rectified,SURF_features1,SURF_features2,...
   SURF_interest_points1,SURF_interest_points2,xirc1, threshold_distance1);

Triangulate the SURF Correspondences into
World 3D Points

[P1_SURF,P2_refine_SURF, F_refine_SURF, X_world_SURF] = ...
    triangulate_world_points(x1_SURF,x2_SURF);

Traingulate boundary points and plot world
points on object of interest

Triangulate the boundary points into World 3D points

[X_bound_OI] = triangulate_points(xir1,xir2,P1_SURF,P2_refine_SURF);
% Plot World 3D points of the SURF Interest Points
scatter3(X_world_SURF(:,1),X_world_SURF(:,2),X_world_SURF(:,3),...
    'MarkerEdgeColor','k','MarkerFaceColor','b');
hold on;
% Plot the boundary and edges
scatter3(X_bound_OI(:,1),X_bound_OI(:,2),X_bound_OI(:,3),...
    'MarkerEdgeColor','k','MarkerFaceColor','g');
plot_boundary_lines;
hold off;

Detect Features using CED and find correspon-
dences in rectified image

Detect Canny Edge Detector Features and the interest points

[CED_features1, CED_interest_points1] = find_CED_features...
    (image1_rectified,0.2,xirc1,threshold_distance1);
[CED_features2, CED_interest_points2] = find_CED_features...
    (image2_rectified,0.2,xirc2,threshold_distance2);
% Find correspondence between the interest points in the two rectified
% images using SSD

Implementation 1
[x1_CED,x2_CED] = detect_correspondences(image1_rectified, ...
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    image2_rectified,CED_features1,CED_features2,CED_interest_points1,...
    CED_interest_points2,0.7,5,xirc1,threshold_distance1);

Implementation 2
[x1_CED,x2_CED] = find_correspondences(image1_rectified,...
    image2_rectified,CED_features1,CED_features2,CED_interest_points1,...
    CED_interest_points2);

Triangulate the Canny Edge Detector Corre-
spondences into World 3D Points

[P1_CED,P2_refine_CED, F_refine_CED, X_world_CED] = ...
    triangulate_world_points(x1_CED,x2_CED);

Triangulate boundary points and plot world
points on object of interest

Triangulate the boundary points into World 3D points

[X_bound_OI] = triangulate_points(xir1,xir2,P1_CED,P2_refine_CED);
% Plot World 3D points of the Canny Edge Detector Interest Points
scatter3(X_world_CED(:,1),X_world_CED(:,2),X_world_CED(:,3),...
    'MarkerEdgeColor','k','MarkerFaceColor','b');
hold on;
% Plot World 3D points of boundary points and the edges
scatter3(X_bound_OI(:,1),X_bound_OI(:,2),X_bound_OI(:,3),...
    'MarkerEdgeColor','k','MarkerFaceColor','g');
plot_boundary_lines;
hold off;
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Estimating Fundamental Matrix
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function estimates the Fundamental Matrix using the normalized 8
% point algorithm and conditions it to enforce the rank constraint.
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [F] = estimate_Fundamental_Matrix(x1,x2,T1,T2)
    n_correspondences = size(x1,1);
    % Normalize the correspondences
    x1_n = (T1*x1')';
    x2_n = (T2*x2')';
    % Stacking up the equations for all the correspondences
    A = zeros(n_correspondences,9);
    for i=1:n_correspondences
        A(i,:) = [x2_n(i,1)*x1_n(i,1) x2_n(i,1)*x1_n(i,2) x2_n(i,1) ...
                  x2_n(i,2)*x1_n(i,1) x2_n(i,2)*x1_n(i,2) x2_n(i,2) ...
                  x1_n(i,1) x1_n(i,2) 1];
    end
    % Solving for initial estimate of Fundamental Matrix using Linear Least
    % squares by finding SVD of A and choosing the last eigenvector
    [U_lls D_lls V_lls] = svd(A);
    f = V_lls(:,end);
    F_unconditioned = reshape(f,3,3)';
    % Conditioning the Fundamental Matrix to enforce the rank constraint
    [U D V] = svd(F_unconditioned)
    D(end,end) = 0;
    F_conditioned = U*D*V';
    % Denormalizing the Fundamental Matrix
    F = T2'*F_conditioned*T1;
end
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Optimize using Levenberg Marquardt Method
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function is used to refine the parameters and also triangulate image
% pixel correspondences generated by the SURF and Canny Edge Detector to
% world 3D points
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [P2_refine F_refine X_world] = optimize_NLS...
    (cost_function, x1, x2, P1, P2)
    % Unroll the P2 matrix and add it to first 12 elements of parameters
    p = P2';
    parameters = p(:)';
    n_correspondences = size(x1,1);
    % Triangulate the correspondence to the world 3D points and add the
    % estimates as parameters vector
    X_world = zeros(n_correspondences,3);
    for i = 1:n_correspondences
        A = find_A(P1,P2,x1(i,:),x2(i,:));
        [U,D,V] = svd(A);
        x_w = V(:,end);
        x_w = x_w./x_w(4);
        X_wn = [x_w(1) x_w(2) x_w(3)];
        parameters = [parameters X_wn];
    end
    % Applying the Levenberg Marquardt algorithm to find the optimal
    % parameters and refine the estimates of the world 3D points
    options = optimoptions('lsqnonlin','Algorithm','levenberg-marquardt'...
        ,'TolX',0.00000000001,'TolFun',0.00000000001);
    optimal_parameters = lsqnonlin(cost_function,parameters,[],[],...
                                    options,x1,x2);
    % Regenerate the refined camera projection matrix from the optimal
    % parameters
    P2_refine = reshape(optimal_parameters(1:12),4,3)';
    t = P2_refine(:,4);
    e_cross = [0 -t(3) t(2); t(3) 0 -t(1); -t(2) t(1) 0];
    M = P2_refine(:,1:3);
    % Find the refined fundamental matrix from the optimal parameters
    F_refine = e_cross*M;
    % Regenerate the estimates of world points from the optimal parameters
    X_world = reshape(optimal_parameters(13:end),3,n_correspondences)';
    error_before_refine = cost_function(parameters,x1, x2)';
    % Find the mean square error before applying LM Optimization
    ms_error_before_refine = mean(error_before_refine.^2)
    % Find the mean square error after applying LM Optimization
    error_after_refine = cost_function(optimal_parameters,x1, x2)';
    ms_error_after_refine = mean(error_after_refine.^2)
end
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Rectification of images by applying Homography

1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function is used to rectify the images by applying the Rectification
% Homographies generated in function find_rectification_homographies
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [image_rectified, H_rectified, xH] = rectify_images (image,H,x)
    % Computing dimensions and boundary points of image
    height_original = size(image,1);width_original = size(image,2);
    image = single(image);
    bp(:,1) = [1;1;1];
    bp(:,2) = [width_original;1;1];
    bp(:,3) = [1;height_original;1];
    bp(:,4) = [width_original;height_original;1];
    % Apply the rectification Homography to compute where the original
    % boundary is mapped in the rectified image
    bpr = H*bp;
    for i =1:4
        bpr(:,i) = bpr(:,i)/bpr(3,i);
        bpr(:,i) = bpr(:,i)/bpr(3,i);
    end
    bpr = round(bpr)';
    % Find the minimum and maximum coordinates to calculate the height and
    % width of the rectified image
    t_min = min(bpr);
    t_max = max(bpr);
    height_projected = t_max(2)-t_min(2);
    width_projected = t_max(1)-t_min(1);
    % Scaling the image to preserve the original aspect ratio
    H_scale = [width_original/width_projected 0 0;
               0 height_original/height_projected 0;
               0 0 1];
    % Compute the new Homography after scaling the image and applying this
    % new Homography to the original points
    H = H_scale*H;
    bpr = H*bp;
    for i =1:4
        bpr(:,i) = bpr(:,i)/bpr(3,i);
        bpr(:,i) = bpr(:,i)/bpr(3,i);
    end
    bpr = round(bpr)';
    % Finding the offsets in x and y axes
    t_min = min(bpr);
    offset_x = t_min(1);
    offset_y = t_min(2);
    % Shifting the image by the offset
    T = [1 0 -offset_x+1; 0 1 -offset_y+1;0 0 1];
    % Computing the new Homography for rectifying the image
    H_rectified = T*H;
    H_rect_inv = pinv(H_rectified);
    image_rectified  = zeros(height_original,width_original,3);
    % Apply the computed rectification homography after scaling and
    % shifting to the original image to get the rectified image
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    for i = 1:height_original
        for j = 1:width_original
            point = H_rect_inv*[i;j;1];
            point = point/point(3);
            % Checking if the point generated lies within the original
            % image and then applying bilinear interpolation to get the
            % corresponding RGB Value at that pixel
            if (point(1)>1 && point(1)<height_original &&...
                    point(2)>1 && point(2)<width_original)
                image_rectified(i,j,:) = bilinear_interpolation...
                    (image,[point(1);point(2)],0.00001);
            end
        end
    end
    % Find all the rectified manual points
    image_rectified = uint8(image_rectified);
    xH = (H_rectified*x')';
    for i =1:size(xH,1)
        xH(i,:) = xH(i,:)/xH(i,3);
    end
end
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Cost Function for LM Optimization

1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function is the cost function used for the Levenberg Marquadt
% Optimization to refine the parameters and also to triangulate
% correspondence to World 3D for 3D Reconstruction
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function error = cost_function(parameters,xref1, xref2)
    n_correspondences = size(xref1,1);
    % Retrieve the Projection Matrices from Parameters
    P1 = [eye(3), zeros(3,1)];
    P2 = reshape(parameters(1:12),4,3)';
    % Retrieve the estimated World Points from Parameters
    X_world = reshape(parameters(13:end),3,n_correspondences)';
    X_world = [X_world, ones(n_correspondences,1)];
    % Project the world points onto the two images and find pixel
    % coordinates
    xp1 = P1*X_world';
    xp2 = P2*X_world';
    for i =1:n_correspondences
        xp1(:,i) = xp1(:,i)/xp1(3,i);
        xp2(:,i) = xp2(:,i)/xp2(3,i);
    end
    % unroll all the pixel coordinates
    xp1 = xp1';xp1 = xp1(:,1:2);
    xp2 = xp2';xp2 = xp2(:,1:2);
    % Find the error function between the actual points and the projected
    % points in both the images and concatenate them to form the error
    % function
    error1 = xp1 - xref1(:,1:2);
    error2 = xp2 - xref2(:,1:2);
    error1 = error1';error1 = error1(:)';
    error2 = error2';error2 = error2(:)';
    error = [error1 error2];
end

Published with MATLAB® R2013a

34



Normalization of Interest Points
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function find the transformation that normalizes the interest points
% for using the normalized 8 point algorithm
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [T] = find_transformation_to_normalize(x)
    % Find mean of the interest points
    mu = mean(x);
    % Find the distance of the interest points from their mean
    difference = x-repmat(mu,size(x,1),1);
    distance = sqrt(difference(:,1).^2+difference(:,2).^2);
    % Normalize all the interest points using the mean and distance
    distance_mean = mean(distance);
    scale = sqrt(2)/distance_mean;
    x_translate = -scale*mu(1);
    y_translate = -scale*mu(2);
    % Find the transformation for normalizing points
    T = [scale 0 x_translate; 0 scale y_translate ; 0 0 1]
end
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Finding Rectification Homographies
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function finds the homographies for rectification of the two images
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x1_rectified, x2_rectified, H1, H2, F_rectified,...
    e1_rectified,e2_rectified] = ...
    find_rectification_homographies(image1,image2,x1,x2,e1,e2,F,P1,P2)
    % Find the dimensions of the images
    height = size(image1,1); width = size(image1,2);
    % Find the number of manual correspondences
    n_correspondences = size(x1,1);
    % Find angle of epipole w.r.t x axis for rotating image
    angle = atan(-(e2(2)-height/2)/(e2(1)-width/2));
    f = cos(angle)*(e2(1)-width/2)-sin(angle)*(e2(2)-height/2);
    G = [1 0 0;0 1 0;-1/f 0 1];
    % Rotation Matrix to rotate the image so that epipole goes to x axis
    R = [cos(angle) -sin(angle) 0;sin(angle) cos(angle) 0; 0 0 1];
    % Homography to translate the second image center to origin
    T = [1 0 -width/2;0 1 -height/2;0 0 1];
    H2 = G*R*T;
    image_center = [width/2;height/2;1];
    center_rectified = H2*image_center;
    center_rectified = center_rectified/center_rectified(3);
    % Homography to translate second image center back to original center
    T2 = [1 0 width/2-center_rectified(1);
          0 1 height/2-center_rectified(2);
          0 0 1];
    % Overall Homography for rectification of second image
    H2 = T2*H2;
    % Finding the overall Homography for rectification of first image
    % as described in textbook
    % Find M
    M = P2*pinv(P1);
    % Find H0
    H0 = H2*M;
    % Project the manual correspondences and find pixel coordinates
    x1_hat = (H0*x1')';
    x2_hat = (H2*x2')';
    for i =1:n_correspondences
        x1_hat(i,:) = x1_hat(i,:)/x1_hat(i,3);
        x2_hat(i,:) = x2_hat(i,:)/x2_hat(i,3);
    end
    % Solve for a,b,c for H_A using Linear Least Squares that minimizes
    % function
    A = x1_hat;
    b = x2_hat(:,1);
    x = pinv(A)*b;
    HA = [x(1) x(2) x(3); 0 1 0; 0 0 1];
    H1 = HA*H0;
    center_rectified = H1*image_center;
    center_rectified = center_rectified/center_rectified(3);
    % Homography to translate first image center back to original center
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    T1 = [1 0 width/2-center_rectified(1);
          0 1 height/2-center_rectified(2);
          0 0 1];
    % Overall Homography for rectification of first image
    H1 = T1*H1;
    F_rectified = inv(H2')*F*inv(H1);
    % Find the pixel coordinates rectified manually selected points
    x1_rectified = (H1*x1')';
    x2_rectified = (H2*x2')';
    for i =1:n_correspondences
        x1_rectified(i,:) = x1_rectified(i,:)/x1_rectified(i,3);
        x2_rectified(i,:) = x2_rectified(i,:)/x2_rectified(i,3);
    end
    % Find the epipole of the first camera as the right null vector of F
    e1_rectified = null(F_rectified);
    e1_rectified = e1_rectified/e1_rectified(3);
    % Find the epipole of the second camera as the left null vector of F
    e2_rectified = null(F_rectified');
    e2_rectified = e2_rectified/e2_rectified(3);
end
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Finding SURF Features and interest points

1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function finds the SURF Features and the valid interest points
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ref_features,  ref_valid_points] = find_SURF_features(ref_image)
    % Convert RGB to Gray scale image
    ref_image_gray = rgb2gray(ref_image);
    % Detect SURF Features
    ref_points = detectSURFFeatures(ref_image_gray);
    % Select the best 200 Features among them
    ref_points = ref_points.selectStrongest(200);
    % Extract the corresponding features and the valid interest points
    [ref_features,  ref_valid_points] = extractFeatures(ref_image_gray,...
        ref_points);
    % Display the features
    figure; imshow(ref_image);
    hold on; plot(ref_points.selectStrongest(200)); hold off;
    % Display the best 40 Visual SURF features
    figure;
    subplot(5,8,3); title('Best 40 Features');
    for i=1:40
        scale = ref_points(i).Scale;
        image = imcrop(ref_image,[ref_points(i).Location-10*scale ...
            20*scale 20*scale]);
        subplot(5,8,i);
        imshow(image);
        hold on;
        rectangle('Position',[5*scale 5*scale 10*scale 10*scale],...
        'Curvature',1,'EdgeColor','g');
    end
    hold off;
end
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Finding Canny Edge Detector Features and interest points

1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function finds the Canny Edge Detector Features and the
% valid interest points on the edges detected
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [CED_features, CED_interest_points] = find_CED_features...
    (image, canny_threshold,xirc,distance_threshold)
    % Convert to gray scale image
    imagec = rgb2gray(image);
    % Find the edges in the image using Canny Edge Detector
    edgec = edge(imagec,'canny',canny_threshold);
    % Display edges
    figure
    imshow(edgec);
    % Find the interest points by pointing out the 1s in the images which
    % signify the edges
    [row,col,v] = find(edgec);
    % Put the interest point in (x,y) format
    ipc = [col row];
    % Use own algorithm (described in report) to choose only points on the
    % object of interest by eliminating those points which lie outside the
    % maximum distance threshold from the center of the object of interest
    difference = ipc-repmat(xirc,size(ipc,1),1);
    distance = sqrt(difference(:,1).^2+difference(:,2).^2);
    index = find(distance < distance_threshold);
    ipc = ipc(index,:);
    % Since this gives plenty of interest points, points are chosen with a
    % uniform gap so that consecutive points on the same edge are not
    % chosen for better and accurate results
    index = 1000:10:size(ipc,1);
    ip_ced = ipc(index,:);
    % Extract the 121 dimensional Canny Edge Detector Feature Vector in a
    % local windoe around the interest points detected
    [CED_features, CED_interest_points] = extractFeatures(imagec,ip_ced);
end
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Correspondence detection using SSD (Implementation 1)

1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function is used to find the correspondences between the interest
% points generated using SURF or Canny Edge Detector between the rectified
% images using SSD
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x1_c,x2_c] = detect_correspondences(rect_image1, rect_image2,...
    f1,f2,x1,x2,local_t,global_t,xirc1,threshold)
    x1_c = [];x2_c = [];
    % Establishing the SSD Metric
    SSD_metric = zeros(size(x1,1),size(x2,1));
    for i = 1:size(x1,1)
        for j = 1:size(x2,1)
            SSD_metric(i,j) = sum((f1(i,:)-f2(j,:)).^2);
        end
    end
    % Find the global mean
    global_mu = mean(SSD_metric(:));
    for i = 1:size(x1,1)
        % Finding mean for a particular row or a correspondence
        min1 = min(SSD_metric(i,:));
        % Checking if it fulfils the global criterion for being a suitable
        % correspondence
        if (min1 <= global_t*global_mu)
            % Replace the best minimum with inf to find second best minimum
            [~,id] = min(SSD_metric(i,:));
            SSD_metric(i,id) = inf;
            % Find second minimum
            min2 = min(SSD_metric(i,:));
            % Check if it fulfils the local criterion for being a suitable
            % correspondence
            if(min1/min2<local_t)
                x1_c = [x1_c;x1(i,:)];
                x2_c = [x2_c;x2(id,:)];
                SSD_metric(:,id) = inf;
            end
        else
            continue;
        end
    end
    % Since image rectification is working we seach for nearby 50 rows of
    % the image and search for the correspondences only among these 50
    % adjoining rows
    [index, val] = find(abs(x1_c(:,2)-x2_c(:,2))<50);
    x1_c = x1_c(index,:);
    x2_c = x2_c(index,:);
    % Use own algorithm (described in report) to choose only correspondence
    % on the object of interest by eliminating those points which lie
    % outside the maximum distance threshold from the center of the object
    % of interest
    difference = x1_c(:,1:2)-repmat(xirc1,size(x1_c,1),1);
    distance = sqrt(difference(:,1).^2+difference(:,2).^2);
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    index = find(distance<threshold);
    x1_c = x1_c(index,:);
    x2_c = x2_c(index,:);
    % Plot the correspondences between rectified images
    figure, showMatchedFeatures(rect_image1, rect_image2, ...
    x1_c, x2_c, 'montage');
    title('Showing all matches');
end
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Correspondence detection using SSD (Implementation 2)
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function is used to find the correspondences between the interest
% points generated using SURF or Canny Edge Detector between the rectified
% images using SSD
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x1,x2] = detect_correspondences_SSD(rect_image1,...
    rect_image2,features1,features2,interest_points1,interest_points2,...
    xirc1,threshold)
% Establishing the SSD Metric
index_pairs = matchFeatures(features1, features2,'Metric','SSD');
[val,index] = unique(index_pairs(:,2));
index_pairs = index_pairs(index,:);
x1 = interest_points1(index_pairs(:,1)).Location;
x2 = interest_points2(index_pairs(:,2)).Location;
% Since image rectification is working we seach for nearby 50 rows of the
% image and search for the correspondences only among these 50 adjoining
% rows
[index, val] = find(abs(x1(:,2)-x2(:,2))<50);
x1 = x1(index,:);
x2 = x2(index,:);
% Use own algorithm (described in report) to choose only correspondences on
% the object of interest by eliminating those points which lie outside the
% maximum distance threshold from the center of the object of interest
difference = x1(:,1:2)-repmat(xirc1,size(x1,1),1);
distance = sqrt(difference(:,1).^2+difference(:,2).^2);
index = find(distance<threshold);
x1 = x1(index,:);
x2 = x2(index,:);
% Displaying the matched features
figure, showMatchedFeatures(rect_image1, rect_image2, ...
    x1, x2, 'montage');
title('Showing all matches');
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Triangulate World Points for 3D Reconstruction
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function is used to triangulate the detected correspondences in SURF
% and Canny Edge Detector into the world 3D points for 3D reconstruction
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [P1,P2_refine, F_refine, X_world] = triangulate_world_points(x1,x2)
x1 = double([x1(:,1),x1(:,2),ones(size(x1,1),1)]);
x2 = double([x2(:,1),x2(:,2),ones(size(x2,1),1)]);
% Find Transformation to normalize the manual correspondences
T1 = find_transformation_to_normalize(x1);
T2 = find_transformation_to_normalize(x2);
% Estimate the Fundamental Matrix using Linear Least Squares Method and
% enforce the rank constraint by conditioning the Fundamental Matrix
F = estimate_Fundamental_Matrix(x1,x2,T1,T2);
F = F/F(3,3);
% Find the epipoles of the 2 cameras
% Find the epipole of the first camera as the right null vector of F
e1 = null(F);
e1 = e1/e1(3);
% Find the epipole of the first camera as the left null vector of F
e2 = null(F');
e2 = e2/e2(3);
% Finding the cross product form of the epipole of the second camera
e2_cross = [0 -e2(3) e2(2);e2(3) 0 -e2(1);-e2(2) e2(1) 0];
% Finding the Projection Matrix
P1 = [eye(3), zeros(3,1)];
P2 = [e2_cross*F,e2];
[P2_refine, F_refine, X_world] = optimize_NLS(@cost_function, x1, x2, P1, P2);
F_refine = F_refine/F_refine(3,3);
% Find the epipole of the first camera as the right null vector of F
e1_refine = null(F_refine);
e1_refine = e1_refine/e1_refine(3);
% Find the epipole of the first camera as the left null vector of F
e2_refine = null(F_refine');
e2_refine = e2_refine/e2_refine(3);
end
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Triangulate Boundary Points for 3D Reconstruction

1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function is used to triangulate the boundary points into the world
% 3D points for marking the boundary of the object of interest during the
% process of 3D reconstruction
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [X_world] = triangulate_points(xir1,xir2,P1,P2)
    % The manually selected boundary points are first converted to
    % homogeneous coordinates
    n = size(xir1,1);
    xir1h = [xir1,ones(n,1)];
    xir2h = [xir2,ones(n,1)];
    X_world = zeros(n,3);
    % The boundary points are triangulated with the refined camera
    % projection matrices and the corresponding world 3D coordinates are
    % generated
    for i = 1:n
        A = find_A(P1,P2,xir1h(i,:),xir2h(i,:));
        [U,D,V] = svd(A);
        x_w = V(:,end);
        x_w = x_w./x_w(4);
        X_world(i,:) = [x_w(1) x_w(2) x_w(3)];
    end
end
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Plot Edges between Boundary Points for 3D Reconstruction
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This script is used to draw the edges of the box in the 3D Reconstruction
% between the boundary points
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bpl = [X_bound_OI(1,:);X_bound_OI(2,:)]
plot3(bpl(:,1),bpl(:,2),bpl(:,3),'r-','Linewidth',3);
bpl = [X_bound_OI(1,:);X_bound_OI(4,:)]
plot3(bpl(:,1),bpl(:,2),bpl(:,3),'r-','Linewidth',3);
bpl = [X_bound_OI(1,:);X_bound_OI(5,:)]
plot3(bpl(:,1),bpl(:,2),bpl(:,3),'r-','Linewidth',3);
bpl = [X_bound_OI(2,:);X_bound_OI(3,:)]
plot3(bpl(:,1),bpl(:,2),bpl(:,3),'r-','Linewidth',3);
bpl = [X_bound_OI(3,:);X_bound_OI(4,:)]
plot3(bpl(:,1),bpl(:,2),bpl(:,3),'r-','Linewidth',3);
bpl = [X_bound_OI(4,:);X_bound_OI(6,:)]
plot3(bpl(:,1),bpl(:,2),bpl(:,3),'r-','Linewidth',3);
bpl = [X_bound_OI(5,:);X_bound_OI(6,:)]
plot3(bpl(:,1),bpl(:,2),bpl(:,3),'r-','Linewidth',3);
bpl = [X_bound_OI(3,:);X_bound_OI(7,:)]
plot3(bpl(:,1),bpl(:,2),bpl(:,3),'r-','Linewidth',3);
bpl = [X_bound_OI(6,:);X_bound_OI(7,:)]
plot3(bpl(:,1),bpl(:,2),bpl(:,3),'r-','Linewidth',3);

Published with MATLAB® R2013a

45



Selecting Manual Correspondences
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This script is for manually selecting and recording the correspondences
% between the images by clicking on the corresponding pixels directly on
% the image. (The cross hair allows easy selection of the points)
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display image and get the correspondence points for the first image
figure1 = imshow(image1,'InitialMagnification', 300, 'Border','tight');
mc_image1=ginput;
% Count number of correspondences selected
nc_image1 = size(mc_image1,1);
close all;
% display image and get the correspondence points for the second image
figure2 = imshow(image2,'InitialMagnification', 300, 'Border','tight');
mc_image2=ginput(nc_image1);
close all;
% display the correspondences manually selected
subplot(1,2,1)
imshow(image1, 'Border','tight');
hold on
plot(mc_image1(:,1),mc_image1(:,2),'b.', 'MarkerSize', 15);
title('First Image Correspondences')
hold off
subplot(1,2,2)
imshow(image2, 'Border','tight');
hold on
plot(mc_image2(:,1),mc_image2(:,2),'r.', 'MarkerSize', 15);
title('Second  Image Correspondences')
hold off
save 'correspondences78.mat';
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Find A for Triangulation

1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function is used for stacking up the eauations for triangulation of
% image pixel coordinates to world 3D for 3D Reconstruction
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [A] = find_A (P1,P2,x1,x2)
    A = [ (x1(1)*P1(3,:) - P1(1,:));
          (x1(2)*P1(3,:) - P1(2,:));
          (x2(1)*P2(3,:) - P2(1,:));
          (x2(2)*P2(3,:) - P2(2,:)) ];
 end
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Bilinear Interpolation
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function finds the image intensity value at non-integral coordinates
% for a RGB Image
% Author : Rohan Sarkar
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function value =  bilinear_interpolation(image,coord,bi_threshold)
    coord_base = floor(coord);
    del_coord = coord-coord_base;
    % Find the RGB values at the 4 neighbourhood points with integral
    % coordinates
    A = image(coord_base(1),coord_base(2),:);
    B = image(coord_base(1),(coord_base(2)+1),:);
    C = image((coord_base(1)+1),coord_base(2),:);
    D = image((coord_base(1)+1),(coord_base(2)+1),:);
    % Find the distance of the point from the neighbouring points alog x
    % and y axis
    du = del_coord(1);
    dv = del_coord(2);
    % Predict the RGB Values at the non-integral point using bilinear
    % interpolation
    if ((du<bi_threshold) && (dv<bi_threshold))
        value = A;
    else
        if (dv<bi_threshold)
            value = (1-du).*A+(du).*C;
        else
            if (du<bi_threshold)
                value = (1-dv).*A+(dv).*B;
            else
                value = (1-du)*(1-dv).*A+(1-du)*(dv).*B+...
                    (du)*(1-dv).*C+(du)*(dv).*D;
            end
        end
    end
end
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