ECE661: Homework 1

Fall 2016

Turn in typed solutions via Blackboard. Additional instructions can be found at [I]

1. What are all the points in the representational space \mathcal{R}^{3} that are the homogeneous coordinates of the origin in the physical space \mathcal{R}^{2} ?
2. Are all points at infinity in the physical plane \mathcal{R}^{2} the same? Justify your answer.
3. Argue that the matrix rank of a degenerate conic can never exceed 2.
4. Derive in just 3 steps the intersection of two lines l_{1} and l_{2} with l_{1} passing through the points $(0,0)$ and $(2,3)$, and with l_{2} passing through the points $(-3,3)$ and $(-1,2)$. How many steps would take you if the second line passed through $(-4,-5)$ and $(4,5)$?
5. Consider that there are two lines. The first line is passing through points $(0,0)$ and $(2,-2)$. The second line is passing through points $(-3,0)$ and $(0,-3)$. Find the intersection between these two lines. Comment on your answer.
6. As you know, when a point x is on a conic, the tanget to the conic at that point is given by $l=C x$. That raises the question of what $C x$ corresponds to when x is, say, outside the conic. As you'll see later in class, when x is outside the conic, $C x$ is the line that joins the two points of contact if you draw tangents to C from the point x. This line is referred to as the polar line. Now consider for our conic a circle of radius 1 that is centered at the coordinates $(-6,-6)$ and let x be the origin of the \mathcal{R}^{2} physical plane. Where does the polar line intersect the x and y axes in this case?
[I] http://web.ics.purdue.edu/~sakbar/ECE661
