ECE 661 - Homework-1

Vishveswaran Jothi
vjothi@purdue.edu

08-28-2016

1 Problem 1

1.1 Problem Statement

What are all the points in the representational space R^{3} that are the homogeneous coordinates of the origin in the physical space in R^{2} ?

1.2 Solution

The points in the representational space R^{3} that gives the homogeneous coordinates of origin in the physical space in R^{2} are given by

$$
\left[\begin{array}{c}
0 \\
0 \\
w
\end{array}\right]
$$

for all $w \in R \neq 0$
Since the physical space of 2 D is represented as

$$
\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]
$$

where as $x=u / w$ and $y=v / w$. Also, If $u=v=0$ and w can be any non zero number, that represents the origin in 2D physical space.

2 Problem 2

2.1 Problem Statement

Are all the points at infinity in the physical space R^{2} the same? Justify your answer.

2.2 Solution

No. The points at infinity can be represented as $\left[\begin{array}{c}u \\ v \\ w\end{array}\right]$ where \mathbf{u}, v can be any number that $\in \mathrm{R}$ and $\mathrm{w}=0$. So all points at infinity are not same, but can be connected in a single straight line whose
equation is $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

3 Problem 3

3.1 Problem Statement

Argue that the matrix rank of a degenerate conic can never exceed 2.

3.2 Solution

The degenerate conic equation is given by $\mathrm{C}=\mathrm{l} m^{T}+\mathrm{m} l^{T}$. We know that rank of $1 m^{T}=\mathrm{m} l^{T}=1$. since each matrix is made of 'generators'(outer product of two vectors). Also we know that by vector spaces,
$\operatorname{dim}(A+B)=\operatorname{dim}(A)+\operatorname{dim}(B)-\operatorname{dim}(A \cap B)$ where A, B should be matrices formed using basis vectors.
here, $\mathrm{A}=\mathrm{l} \mathrm{m}^{T}$; and $\mathrm{B}=\mathrm{m} l^{T}$;
$\operatorname{dim}(A \cap B)=\operatorname{dimension} /$ rank of null space of $A \cap B$.
therefore, $\operatorname{rank}(\mathrm{A}+\mathrm{B})=\operatorname{rank}(\mathrm{A})+\operatorname{rank}(\mathrm{B})-\operatorname{dim}(\mathrm{N}(\mathrm{A} \cap \mathrm{B}))$
$\operatorname{rank}(\mathrm{A}+\mathrm{B}) \leq \operatorname{rank}(\mathrm{A})+\operatorname{rank}(\mathrm{B})$.
Since $\operatorname{dim}(N(A \cap B))=0$ only if A, B does not have any common null space.
$\operatorname{rank}(\mathrm{A}+\mathrm{B}) \leq 2$
$\operatorname{rank}(\mathrm{C}) \leq 2$

4 Problem 4

4.1 Problem Statement

Derive in just three steps the intersection of two lines l_{1} and l_{2} with l_{1} passing through the points $(0,0)$ and $(2,3)$, and with l_{2} passing through the points $(-3,3)$ and $(-1,2)$. How many steps would take you if the second line pass through $(-4,-5)$ and $(4,5)$?

4.2 Solution

The equation of the line $l_{1}=\mathrm{p} 1 \mathrm{Xp} 2$. where p 1 and p 2 are in representational form $\in R^{3}$

$$
l_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] X\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3 \\
2 \\
0
\end{array}\right]
$$

lllrly,

$$
l_{2}=\left[\begin{array}{c}
-3 \\
3 \\
1
\end{array}\right] X\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right]
$$

The intersection point is given by $l_{1} \mathrm{X} l_{2}$

$$
\text { Intersectionpoint }=\left[\begin{array}{c}
-3 \\
2 \\
0
\end{array}\right] X\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right]=\left[\begin{array}{l}
-6 \\
-9 \\
-8
\end{array}\right]
$$

Intersection point $=(6 / 8,9 / 8)$
If the second line, l_{2} passes through $(-4,-5)$ and $(4,5)$ then

$$
l_{2}=\left[\begin{array}{c}
-4 \\
-5 \\
1
\end{array}\right] X\left[\begin{array}{l}
4 \\
5 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 \\
4 \\
0
\end{array}\right]
$$

The new l_{2} and l_{2} has 0 as their third element also the cross product of first two elements is non-zero. Hence the Intersection point is $(0,0)$. So it will take only two steps to figure it out.

5 Problem 5

5.1 Problem Statement

Consider there are two lines. The first line passing through the points $(0,0)$ and $(2,-2)$.The second line passing through the points $(-3,0)$ and $(0,-3)$. Find the intersection between two lines. Comment on your answer.

5.2 Solution

The equation of the line $l_{1}=\mathrm{p} 1 \mathrm{Xp} 2$. where p 1 and p 2 are in representational form $\in R^{3}$

$$
l_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] X\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

111rly,

$$
l_{2}=\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right] X\left[\begin{array}{c}
0 \\
-3 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
9
\end{array}\right]=\left[\begin{array}{c}
1 / 3 \\
1 / 3 \\
1
\end{array}\right]
$$

The intersection point is infinity, since the ratio of $-\mathrm{a} / \mathrm{b}$ i.e (the negated ratio of first two elements of the resultant vector) is same in both line equations, we can say that they form llel lines.

6 Problem 6

6.1 Problem Statement

As you know, when a point x is on a conic, the tangent to the conic is given by $\mathrm{l}=\mathrm{Cx}$. That raises the question of what Cx corresponds to when x is outside the conic. As you 'll see later in class, when x is outside the conic, Cx is the line that joins the two points of contact if you draw tangents to C from the point x . This line is referred to as polar line. Now consider for our conic a circle of radius 1 that is centered at the coordinates $(-6,-6)$ and let x be the origin of the R^{2} physical plane. Where does the polar line intersect the x and y axes in this case?

6.2 Solution

Given conic is a circle.
Hence the equation of the circle is given by $\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=r^{2}$
$x_{1}=-6 ; y_{1}=-6 ; r=1$
$(x+6)^{2}+(y+6)^{2}=1$
$x^{2}+0 x y+y^{2}+12 x+12 y+71=0$
therefore,

$$
C=\left[\begin{array}{ccc}
1 & 0 & 6 \\
0 & 1 & 6 \\
6 & 6 & 71
\end{array}\right]
$$

Now, equation of the x -axis is given by $l_{2}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]^{T}$. Since x -axis is orthogonal to y -axis it is $\mathrm{y}=0$ and the straight line (x -axis) to goes to infinity, so the third element is also 0 .
lllrly the equation of y -axis is $l_{3}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$
We know that, $\mathrm{l}=\mathrm{Cx}$
so

$$
l_{1}=\left[\begin{array}{ccc}
1 & 0 & 6 \\
0 & 1 & 6 \\
6 & 6 & 71
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
6 \\
6 \\
71
\end{array}\right]
$$

The intersection point on x -axis is given by, $p_{x}=l_{1} X l_{2}$

$$
p_{x}=\left[\begin{array}{c}
6 \\
6 \\
71
\end{array}\right] X\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-71 \\
0 \\
6
\end{array}\right]
$$

$p_{x}=(-71 / 6,0)$
The intersection point on y -axis is given by, $p_{y}=l_{1} X l_{3}$

$$
p_{y}=\left[\begin{array}{c}
6 \\
6 \\
71
\end{array}\right] X\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
71 \\
-6
\end{array}\right]
$$

$p_{y}=(0,-71 / 6)$

