Computer Vision
 ECE 661 Homework 1

Rohan Sarkar (sarkarr@purdue.edu)
August 30, 2016

1. Question 1 Solution

Let us consider the points in the representational space \mathbb{R}^{3} to be of the form $\left(\begin{array}{c}u \\ v \\ w\end{array}\right)$. Now, $x=\frac{u}{w}=0$ and $y=\frac{v}{w}=0 \Longrightarrow u=0, v=0$ and $w \in \mathbb{R} \backslash 0$ or $w \neq 0$
\Longrightarrow So all the points forming the equivalence class represented by $\left(\begin{array}{c}0 \\ 0 \\ w\end{array}\right)=w\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \in \mathbb{R}^{3}$ where $w \in \mathbb{R} \backslash 0$ or $w \neq 0$, represent the origin $\binom{0}{0} \in \mathbb{R}^{2}$

2. Question 2 Solution

No, all points at infinity in the physical plane \mathbb{R}^{2} are not the same. Let us consider the point in the physical plane \mathbb{R}^{2}. This point can be represented in the representational space \mathbb{R}^{3} to be of the form $\left(\begin{array}{c}u \\ v \\ w\end{array}\right)$. Assuming, $w \in \mathbb{R} \backslash 0$ or $w \neq 0$ Now, $x=\frac{u}{w}$ and $y=\frac{v}{w}$
\Longrightarrow As $w \rightarrow 0$ then the physical points in \mathbb{R}^{2} are $x=$ infinity, $y=$ infinity which means the x and y coordinates of the physical point moves moves away from the origin towards infinity in a particular direction. However, the direction in which the point approaches infinity in the physical space \mathbb{R}^{2} is different for different points and is controlled by the u and v values.
For e.g, the point represented by $\left(\begin{array}{c}1 \\ 0 \\ w \rightarrow 0\end{array}\right)$ approaches infinity in \mathbb{R}^{2} along the x axis.
For e.g, the point represented by $\left(\begin{array}{c}0 \\ 1 \\ w \rightarrow 0\end{array}\right)$ approaches infinity in \mathbb{R}^{2} along the y axis.

3. Question 3 Solution

The Degenerate Conic C is represented by $C=l m^{T}+m l^{T}$, where l and m are the 2 lines of the degenerate conic represented in the representational space \mathbb{R}^{3} as $l=\left(\begin{array}{l}l_{1} \\ l_{2} \\ l_{3}\end{array}\right)$ and $m=\left(\begin{array}{c}m_{1} \\ m_{2} \\ m_{3}\end{array}\right)$.
Now $l m^{T}=\left(\begin{array}{c}l_{1} \\ l_{2} \\ l_{3}\end{array}\right)\left(\begin{array}{lll}m_{1} & m_{2} & m_{3}\end{array}\right)=\left(\begin{array}{lll}l_{1} m_{1} & l_{1} m_{2} & l_{1} m_{3} \\ l_{2} m_{1} & l_{2} m_{2} & l_{2} m_{3} \\ l_{3} m_{1} & l_{3} m_{2} & l_{3} m_{3}\end{array}\right)$

Outer Product of l and m generates the matrix whose $i^{\text {th }}$ column is $m_{i}\left(\begin{array}{l}l_{1} \\ l_{2} \\ l_{3}\end{array}\right)$. So the columns are linearly dependent since they are vector $\left(\begin{array}{c}l_{1} \\ l_{2} \\ l_{3}\end{array}\right)$ multiplied by scalars m_{i} and hence $\left(\begin{array}{l}l_{1} \\ l_{2} \\ l_{3}\end{array}\right)$ forms the basis. Hence rank of $l m^{T}$ is 1 .

Similarly $m l^{T}=\left(\begin{array}{c}m_{1} \\ m_{2} \\ m_{3}\end{array}\right)\left(\begin{array}{lll}l_{1} & l_{2} & l_{3}\end{array}\right)=\left(\begin{array}{lll}m_{1} l_{1} & m_{1} l_{2} & m_{1} l_{3} \\ m_{2} l_{1} & m_{2} l_{2} & m_{2} l_{3} \\ m_{3} l_{1} & m_{3} l_{2} & m_{3} l_{3}\end{array}\right)$
Outer Product of m and l generates the matrix whose $i^{t h}$ column is $l_{i}\left(\begin{array}{l}m_{1} \\ m_{2} \\ m_{3}\end{array}\right)$. So the columns are linearly dependent since they are vector $\left(\begin{array}{c}m_{1} \\ m_{2} \\ m_{3}\end{array}\right)$ multiplied by scalars l_{i} and hence $\left(\begin{array}{c}m_{1} \\ m_{2} \\ m_{3}\end{array}\right)$ forms the basis. Hence rank of $m l^{T}$ is 1 .

Now we know that

$$
\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)
$$

The rank of a matrix can be defined as the dimension of the space that its column vectors span or the number of independent columns. Let (a_{1}, \cdots, a_{n}) denote the column vectors of A and (b_{1}, \cdots, b_{n}) denote the column vectors of B and $\left(r_{1}, \cdots, r_{n}\right)$ denote the column vectors of $A+B$. The column vectors r_{i} can be written as a linear combination of a_{i} and b_{i}

$$
r_{i}=c_{j} a_{i}+c_{k} b_{i} \quad i=1, \cdots, n \quad c_{j}, c_{k}=\text { constants }
$$

\Longrightarrow the columns of the matrix $A+B$ is a linear combination of the rows of the matrices A and B. So the maximum number of independent columns in $A+B$ is bounded by the sum of the number of independent columns in A and B.
\Longrightarrow the dimension of the space spanned by $A+B$ cannot be greater than the sum of the dimensions of the spaces spanned by A and B .
\Longrightarrow the rank is the number of independent columns in the matrix and this thus proves the identity.

Applying this,

$$
\begin{gathered}
\operatorname{rank}(C)=\operatorname{rank}\left(l m^{T}+m l^{T}\right) \leq \operatorname{rank}\left(m^{T}\right)+\operatorname{rank}\left(m l^{T}\right) \\
\operatorname{rank}\left(\operatorname{lm^{T}}\right)+\operatorname{rank}\left(m l^{T}\right)=1+1=2 \\
\Rightarrow \operatorname{rank}(C) \leq 2
\end{gathered}
$$

4. Question 4 Solution

a. The points in the physical space $\binom{x}{y}$ in \mathbb{R}^{2} can be represented in Homogeneous Co-ordinates, as $\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)$ in the representational space in \mathbb{R}^{3}.
Line passing through $\binom{0}{0}$ and $\binom{2}{3}$ is given by $l_{1}=x_{1} \times x_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \times\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)=\left(\begin{array}{c}-3 \\ 2 \\ 0\end{array}\right)$
Line passing through $\binom{-3}{3} \&\binom{-1}{2}$ is given by $l_{2}=x_{3} \times x_{4}=\left(\begin{array}{c}-3 \\ 3 \\ 1\end{array}\right) \times\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)=\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)$
The point of intersection of l_{1} and l_{2} is given by $x_{i n t}=l_{1} \times l_{2}=\left(\begin{array}{c}-3 \\ 2 \\ 0\end{array}\right) \times\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)=\left(\begin{array}{c}-6 \\ -9 \\ -8\end{array}\right)$
The point of intersection in the physical plane \mathbb{R}^{2} is given by $x=\frac{-6}{-8}=\frac{3}{4}$ and $y=\frac{-9}{-8}=\frac{9}{8}$
b.

Method 1 (1 step)
By observation, this problem can be solved in one step.
By observation the points $\binom{4}{5} \&\binom{-4}{-5}$ are symmetric about the origin and hence the line connecting these 2 points must pass through the origin. According to the question, the line l_{1} passes through the origin. \Rightarrow The point of intersection is the origin $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
Method 2 (2 steps)
The line passing through $\binom{4}{5} \&\binom{-4}{-5}$ is given by $l_{3}=x_{5} \times x_{6}=\left(\begin{array}{c}4 \\ 5 \\ 1\end{array}\right) \times\left(\begin{array}{c}-4 \\ -5 \\ 1\end{array}\right)=\left(\begin{array}{c}10 \\ -8 \\ 0\end{array}\right)$
Now the point x_{1} is the origin $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ that lies on the line l_{1} according to the question and $l_{1}^{T} x_{1}=0$.
Also we see, $l_{3}^{T} x_{1}=\left(\begin{array}{lll}10 & -8 & 0\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=0 \Rightarrow x_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ is the point of intersection since 2 intersecting lines can interesect only once.

Method 3 (3 steps)
Also we could try in the conventional method,

Line passing through $\binom{0}{0}$ and $\binom{2}{3}$ is given by $l_{1}=x_{1} \times x_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \times\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)=\left(\begin{array}{c}-3 \\ 2 \\ 0\end{array}\right)$
The line passing through $\binom{4}{5} \&\binom{-4}{-5}$ is given by $l_{3}=x_{5} \times x_{6}=\left(\begin{array}{l}4 \\ 5 \\ 1\end{array}\right) \times\left(\begin{array}{c}-4 \\ -5 \\ 1\end{array}\right)=\left(\begin{array}{c}10 \\ -8 \\ 0\end{array}\right)$
The point of intersection of l_{1} and l_{3} is given by $x_{i n t}=l_{1} \times l_{3}=\left(\begin{array}{c}-3 \\ 2 \\ 0\end{array}\right) \times\left(\begin{array}{c}10 \\ -8 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 4\end{array}\right)$ $\Longrightarrow\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ is the point of intersection by the concept of equivalence class.
The point of intersection in the physical plane \mathbb{R}^{2} is given by $x=\frac{0}{1}=0$ and $y=\frac{0}{1}=0$

5. Question 5 Solution

Line passing through $\binom{0}{0}$ and $\binom{2}{-2}$ is given by $l_{1}=x_{1} \times x_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \times\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{l}2 \\ 2 \\ 0\end{array}\right)$
Line passing through $\binom{-3}{0} \&\binom{0}{-3}$ is given by $l_{2}=x_{3} \times x_{4}=\left(\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right) \times\left(\begin{array}{c}0 \\ -3 \\ 1\end{array}\right)=\left(\begin{array}{l}3 \\ 3 \\ 9\end{array}\right)$
The point of intersection of l_{1} and l_{2} is given by $x_{i n t}=l_{1} \times l_{2}=\left(\begin{array}{l}2 \\ 2 \\ 0\end{array}\right) \times\left(\begin{array}{l}3 \\ 3 \\ 9\end{array}\right)=\left(\begin{array}{c}18 \\ -18 \\ 0\end{array}\right)$
The point of intersection in the physical plane \mathbb{R}^{2} is given by:
$x=\frac{18}{0}=$ infinity and $y=\frac{-18}{0}=$ infinity \Longrightarrow the lines l_{1} and l_{2} never intersect.
Comments: For a line in the representational space, $l=\left(\begin{array}{c}a \\ b \\ c\end{array}\right)$, the slope is given by the ratio of a and b. For lines l_{1} and l_{2}, this ratio is 1 and hence the lines are parallel and will intersect at infinity.

From the mathematical solution presented above, we can see that the point of intersection $\left(\begin{array}{c}18 \\ -18 \\ 0\end{array}\right)$ is an ideal point.
\Longrightarrow This means in the physical space, \mathbb{R}^{2} the abscissa $=$ infinity and ordinate $=$ infinity.
\Longrightarrow The point of intersection is at infinity in \mathbb{R}^{2}, along the direction having a slope of -1 which is controlled by the values 18 and -18 .

6. Question 6 Solution

The implicit representation of the circle in the physical plane \mathbb{R}^{2} is:

$$
\begin{aligned}
& (x-(-6))^{2}+(y-(-6))^{2}=1^{2} \\
& \Longrightarrow(x+6)^{2}+(y+6)^{2}=1 \\
& \Longrightarrow x^{2}+12 x+36+y^{2}+12 y+36=1 \\
& \Rightarrow x^{2}+y^{2}+12 x+12 y+71=0
\end{aligned}
$$

We substitute $x=x_{1} / x_{3}$ and $y=x_{2} / x_{3}$ in the equation. The implicit representation in Homogeneous Coordinates in the representational space in \mathbb{R}^{3} is:

$$
\begin{gathered}
\Rightarrow\left(\frac{x_{1}}{x_{3}}\right)^{2}+\left(\frac{x_{2}}{x_{3}}\right)^{2}+12\left(\frac{x_{1}}{x_{3}}\right)+12\left(\frac{x_{2}}{x_{3}}\right)+71=0 \\
\Longrightarrow x_{1}^{2}+x_{2}^{2}+12 x_{1} x_{3}+12 x_{2} x_{3}+71 x_{3}^{2}=0
\end{gathered}
$$

Rewriting this as a Vector Matrix product, we get:

$$
\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 6 \\
0 & 1 & 6 \\
6 & 6 & 71
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=0
$$

The HC representation of the circle is given by :

$$
C=\left(\begin{array}{ccc}
1 & 0 & 6 \\
0 & 1 & 6 \\
6 & 6 & 71
\end{array}\right)
$$

According to the problem x is the origin in \mathbb{R}^{2} physical space. $\Rightarrow x=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ in \mathbb{R}^{3} The polar line l is given by:

$$
l=C x=\left(\begin{array}{ccc}
1 & 0 & 6 \\
0 & 1 & 6 \\
6 & 6 & 71
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
6 \\
6 \\
71
\end{array}\right)
$$

In the representational space, the X axis is $l_{x}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and Y axis is $l_{y}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
The x -intercept is given by $l \times l_{x}=\left(\begin{array}{c}6 \\ 6 \\ 71\end{array}\right) \times\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{c}-71 \\ 0 \\ 6\end{array}\right) \Longrightarrow x_{\text {intercept }}=-\frac{71}{6}$
The y-intercept is given by $l \times l_{y}=\left(\begin{array}{c}6 \\ 6 \\ 71\end{array}\right) \times\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}0 \\ 71 \\ -6\end{array}\right) \Longrightarrow y_{\text {intercept }}=-\frac{71}{6}$
\Longrightarrow The polar line l cuts the x-axis at $\left(-\frac{71}{6}, 0\right)$ and the y-axis at $\left(0,-\frac{71}{6}\right)$

