Computer Vision ECE 661 Homework 1

Rohan Sarkar (sarkarr@purdue.edu)

August 30, 2016

Question 1 Solution 1.

Let us consider the points in the representational space \mathbb{R}^3 to be of the form $\begin{pmatrix} u \\ v \\ w \end{pmatrix}$.

Now, $x = \frac{u}{w} = 0$ and $y = \frac{v}{w} = 0 \implies u = 0$, v = 0 and $w \in \mathbb{R} \setminus 0$ or $w \neq 0$

$$\implies \text{So all the points forming the equivalence class represented by } \begin{pmatrix} 0 \\ 0 \\ w \end{pmatrix} = w \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in \mathbb{R}^3$$

where $w \in \mathbb{R} \setminus 0$ or $w \neq 0$, represent the origin $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbb{R}^2$

Question 2 Solution

No, all points at infinity in the physical plane IR² are not the same. Let us consider the point in the physical plane IR². This point can be represented in the representational space

$$\mathbb{R}^3$$
 to be of the form $\begin{pmatrix} u \\ v \\ w \end{pmatrix}$. Assuming, $w \in \mathbb{R} \setminus 0$ or $w \neq 0$ Now, $x = \frac{u}{w}$ and $y = \frac{v}{w}$

 \implies As $w \to 0$ then the physical points in \mathbb{R}^2 are x = infinity, y = infinity which means the x and y coordinates of the physical point moves moves away from the origin towards infinity in a particular direction. However, the direction in which the point approaches infinity in the physical space \mathbb{R}^2 is different for different points and is controlled by the uand v values.

For e.g, the point represented by $\begin{pmatrix} 1 \\ 0 \\ w \to 0 \end{pmatrix}$ approaches infinity in \mathbb{R}^2 along the x axis. For e.g, the point represented by $\begin{pmatrix} 0 \\ 1 \\ w \to 0 \end{pmatrix}$ approaches infinity in \mathbb{R}^2 along the y axis.

Question 3 Solution 3.

The Degenerate Conic *C* is represented by $C = lm^T + ml^T$, where l and m are the 2 lines of the degenerate conic represented in the representational

space
$$\mathbb{R}^3$$
 as $l = \begin{pmatrix} l_1 \\ l_2 \\ l_3 \end{pmatrix}$ and $m = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}$.

$$\text{space } \mathbb{R}^3 \text{ as } l = \begin{pmatrix} l_1 \\ l_2 \\ l_3 \end{pmatrix} \text{ and } m = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}.$$

$$\text{Now } lm^T = \begin{pmatrix} l_1 \\ l_2 \\ l_3 \end{pmatrix} \begin{pmatrix} m_1 & m_2 & m_3 \end{pmatrix} = \begin{pmatrix} l_1 m_1 & l_1 m_2 & l_1 m_3 \\ l_2 m_1 & l_2 m_2 & l_2 m_3 \\ l_3 m_1 & l_3 m_2 & l_3 m_3 \end{pmatrix}$$

Outer Product of l and m generates the matrix whose i^{th} column is $m_i \begin{pmatrix} l_1 \\ l_2 \\ l_2 \end{pmatrix}$. So the

columns are linearly dependent since they are vector $\left(egin{array}{c} l_1 \\ l_2 \\ l_3 \end{array}\right)$ multiplied by scalars m_i and

hence
$$\begin{pmatrix} l_1 \\ l_2 \\ l_3 \end{pmatrix}$$
 forms the basis. Hence rank of lm^T is 1. Similarly $ml^T = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} \begin{pmatrix} l_1 & l_2 & l_3 \end{pmatrix} = \begin{pmatrix} m_1l_1 & m_1l_2 & m_1l_3 \\ m_2l_1 & m_2l_2 & m_2l_3 \\ m_3l_1 & m_3l_2 & m_3l_3 \end{pmatrix}$

Outer Product of m and l generates the matrix whose i^{th} column is $l_i \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}$. So the

columns are linearly dependent since they are vector $\left(egin{array}{c} m_1 \\ m_2 \\ m_3 \end{array}
ight)$ multiplied by scalars l_i and

hence
$$\left(egin{array}{c} m_1 \\ m_2 \\ m_3 \end{array}
ight)$$
 forms the basis. Hence rank of ml^T is 1.

$$rank(A+B) \le rank(A) + rank(B)$$

The rank of a matrix can be defined as the dimension of the space that its column vectors span or the number of independent columns. Let (a_1, \dots, a_n) denote the column vectors of A and (b_1, \dots, b_n) denote the column vectors of B and (r_1, \dots, r_n) denote the column vectors of A + B. The column vectors r_i can be written as a linear combination of a_i and b_i

$$r_i = c_j a_i + c_k b_i$$
 $i = 1, \dots, n$ $c_j, c_k = constants$

- \implies the columns of the matrix A + B is a linear combination of the rows of the matrices Aand B. So the maximum number of independent columns in A + B is bounded by the sum of the number of independent columns in A and B.
- \implies the dimension of the space spanned by A+B cannot be greater than the sum of the dimensions of the spaces spanned by A and B.
- ⇒ the rank is the number of independent columns in the matrix and this thus proves the identity.

Applying this,

$$rank(C) = rank(lm^{T} + ml^{T}) \le rank(lm^{T}) + rank(ml^{T})$$

$$rank(lm^{T}) + rank(ml^{T}) = 1 + 1 = 2$$

$$\implies rank(C) \le 2$$

4. Question 4 Solution

a. The points in the physical space $\begin{pmatrix} x \\ y \end{pmatrix}$ in \mathbb{R}^2 can be represented in Homogeneous

Co-ordinates, as $\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$ in the representational space in \mathbb{R}^3 .

Line passing through $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ is given by $l_1 = x_1 \times x_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \\ 0 \end{pmatrix}$

Line passing through $\begin{pmatrix} -3 \\ 3 \end{pmatrix}$ & $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$ is given by $l_2 = x_3 \times x_4 = \begin{pmatrix} -3 \\ 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$

The point of intersection of l_1 and l_2 is given by $x_{int} = l_1 \times l_2 = \begin{pmatrix} -3 \\ 2 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -6 \\ -9 \\ -8 \end{pmatrix}$

The point of intersection in the physical plane \mathbb{R}^2 is given by $x = \frac{-6}{-8} = \frac{3}{4}$ and $y = \frac{-9}{-8} = \frac{9}{8}$

Method 1 (1 step)

By observation, this problem can be solved in one step.

By observation the points $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$ & $\begin{pmatrix} -4 \\ -5 \end{pmatrix}$ are symmetric about the origin and hence the line connecting these 2 points must pass through the origin. According to the question, the line l_1 passes through the origin. \Longrightarrow The point of intersection is the origin $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Method 2 (2 steps)

The line passing through $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$ & $\begin{pmatrix} -4 \\ -5 \end{pmatrix}$ is given by $l_3 = x_5 \times x_6 = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} \times \begin{pmatrix} -4 \\ -5 \\ 1 \end{pmatrix} = \begin{pmatrix} 10 \\ -8 \\ 0 \end{pmatrix}$

Now the point x_1 is the origin $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ that lies on the line l_1 according to the question and $l_1^T x_1 = 0$.

Also we see, $l_3^T x_1 = \begin{pmatrix} 10 & -8 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 0 \implies x_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ is the point of intersection since 2 intersecting lines can intersect only once.

Method 3 (3 steps)

Also we could try in the conventional method,

Line passing through
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ is given by $l_1 = x_1 \times x_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \\ 0 \end{pmatrix}$

The line passing through
$$\begin{pmatrix} 4 \\ 5 \end{pmatrix}$$
 & $\begin{pmatrix} -4 \\ -5 \end{pmatrix}$ is given by $l_3 = x_5 \times x_6 = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} \times \begin{pmatrix} -4 \\ -5 \\ 1 \end{pmatrix} = \begin{pmatrix} 10 \\ -8 \\ 0 \end{pmatrix}$

The point of intersection of
$$l_1$$
 and l_3 is given by $x_{int} = l_1 \times l_3 = \begin{pmatrix} -3 \\ 2 \\ 0 \end{pmatrix} \times \begin{pmatrix} 10 \\ -8 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$

$$\Longrightarrow \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right)$$
 is the point of intersection by the concept of equivalence class.

The point of intersection in the physical plane \mathbb{R}^2 is given by $x = \frac{0}{1} = 0$ and $y = \frac{0}{1} = 0$

5. Question 5 Solution

Line passing through
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$ is given by $l_1 = x_1 \times x_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$

Line passing through
$$\begin{pmatrix} -3 \\ 0 \end{pmatrix}$$
 & $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ is given by $l_2 = x_3 \times x_4 = \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 9 \end{pmatrix}$

The point of intersection of
$$l_1$$
 and l_2 is given by $x_{int} = l_1 \times l_2 = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} \times \begin{pmatrix} 3 \\ 3 \\ 9 \end{pmatrix} = \begin{pmatrix} 18 \\ -18 \\ 0 \end{pmatrix}$

The point of intersection in the physical plane ${\rm I\!R}^2$ is given by:

 $x = \frac{18}{0}$ = infinity and $y = \frac{-18}{0}$ = infinity \Longrightarrow the lines l_1 and l_2 never intersect.

Comments: For a line in the representational space, $l = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, the slope is given by the

ratio of a and b. For lines l_1 and l_2 , this ratio is 1 and hence the lines are parallel and will intersect at infinity.

From the mathematical solution presented above, we can see that the point of intersection $\begin{pmatrix} 18\\-18\\0 \end{pmatrix}$ is an ideal point.

- \implies This means in the physical space, \mathbb{R}^2 the abscissa = infinity and ordinate = infinity.
- \implies The point of intersection is at infinity in \mathbb{R}^2 , along the direction having a slope of -1 which is controlled by the values 18 and -18.

6. Question 6 Solution

The implicit representation of the circle in the physical plane IR² is:

$$(x - (-6))^{2} + (y - (-6))^{2} = 1^{2}$$

$$\implies (x + 6)^{2} + (y + 6)^{2} = 1$$

$$\implies x^{2} + 12x + 36 + y^{2} + 12y + 36 = 1$$

$$\implies x^{2} + y^{2} + 12x + 12y + 71 = 0$$

We substitute $x = x_1/x_3$ and $y = x_2/x_3$ in the equation. The implicit representation in Homogeneous Coordinates in the representational space in \mathbb{R}^3 is:

$$\implies \left(\frac{x_1}{x_3}\right)^2 + \left(\frac{x_2}{x_3}\right)^2 + 12\left(\frac{x_1}{x_3}\right) + 12\left(\frac{x_2}{x_3}\right) + 71 = 0$$

$$\implies x_1^2 + x_2^2 + 12x_1x_3 + 12x_2x_3 + 71x_3^2 = 0$$

Rewriting this as a Vector Matrix product, we get:

$$\begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 6 \\ 0 & 1 & 6 \\ 6 & 6 & 71 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

The HC representation of the circle is given by:

$$C = \left(\begin{array}{ccc} 1 & 0 & 6 \\ 0 & 1 & 6 \\ 6 & 6 & 71 \end{array}\right)$$

According to the problem x is the origin in \mathbb{R}^2 physical space. $\Longrightarrow x = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ in \mathbb{R}^3

The polar line l is given by:

$$l = Cx = \begin{pmatrix} 1 & 0 & 6 \\ 0 & 1 & 6 \\ 6 & 6 & 71 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \\ 71 \end{pmatrix}$$

In the representational space, the X axis is $l_x = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and Y axis is $l_y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

The x-intercept is given by
$$l \times l_x = \begin{pmatrix} 6 \\ 6 \\ 71 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -71 \\ 0 \\ 6 \end{pmatrix} \implies x_{intercept} = -\frac{71}{6}$$

The y-intercept is given by
$$l \times l_y = \begin{pmatrix} 6 \\ 6 \\ 71 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 71 \\ -6 \end{pmatrix} \implies y_{intercept} = -\frac{71}{6}$$

 \implies The polar line l cuts the x-axis at $(-\frac{71}{6},0)$ and the y-axis at $(0,-\frac{71}{6})$