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1 Introduction

In this homework, we shall perform 3D scene reconstruction using stereo images. The recon-

structions that we shall compute will be related to the world 3D with a projective distortion.

Such reconstruction is called projective reconstruction. Obviously because of this, the recon-

struction is going to look projectively distorted. If the scene is rich, we can remove projective

distortion and then later affine distortion. There are quite a few many steps involved to perform

the reconstruction and we shall explain all of them one by one. First we shall list all the main

steps and then explain them.

1. Estimate the fundamental matrix F using manually selected points on both images through

linear least squares optimization.

2. Using the estimated F , we shall rectify the images to send the epipoles to e = [1 0 0]T .

3. Using the rectified images, we shall find interest points on the rectified images through

canny edge detector.

4. Once the interest points are found on the rectified images, we apply the non-linear least

squares optimization to improve the fundamental matrix, camera matrices and the 3D

world points.

5. Finally we shall use triangulation to project the point correspondences to world 3D.

2 Linear Least Squares Estimation of Fundamental Matrix F

We estimate the fundamental matrix first using manual correspondences that are selected by the

user. We denote the correspondences by
(
xi, x

′T
i

)
. Here x′i is a pixel location in homogeneous

coordinate in the right image and xi is a pixel location in homogeneous coordinate in the left

image. F is the fundamental matrix in homogeneous coordinates. We know from the theory of

epipolar geometry that

x′
T
i Fxi = 0 (1)

We denote eq. (1) using the following form[
x′ix x′iy x′i y′ixi y′iyi y′i xi yi 1

]
f = 0 (2)

where f = [F11 F12 F13 F21 F22 F23 F31 F32 F33] We require 8 correspondences to use the

normalized 8-point algorithm. This algorithm normalizes the data to improve the estimate of

fundamental matrix F. Following are the main steps involved in estimating F.

(i) First we find normalization homographies T1 and T2 for the two images such that all the

pixel correspondences are 0 mean and have a distance of
√

2 from the center i.e. (0, 0).

The homography T1 is used for points xi and homography T2 is used for points x′i.
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(ii) When we have normalized all the points, we stack up all of them in the form of eq. (2)

and make a matrix vector equation of the form Af = 0. The matrix A has all the stacked

rows. This is solved using SVD to yield matrix F.

(iii) The rank of matrix F has to be 2. Therefore we may need to condition the matrix F

to make its rank 2. This is done again by using Singular Value Decomposition. So if

F = UDV T , we set the smallest singular value in D equal to 0 and then denote it with

D̂. F is then set to F = UD̂V T .

(iv) Finally we denormalize the fundamental matrix F by using the following relation

F = T T
2 FT1

(v) Compute the epipoles e and e′ of the left and right images respectively. They are re-

spetively the right and left null vectors of fundamental matrix F .

(vi) Finally we also calculate the camera matrices as follows

P =


1 0 0 0

0 1 0 0

0 0 1 0

 (3)

P ′ =
[
[e′]xF |e′

]
(4)

3 Image Rectification

In order to compute our projectively distorted 3D scene structure, we must refine our estimate

for matrix F . This needs finding large number of pixel correspondences
(
xi, x

′T
i

)
on the two

images. It is often very helpful if we can simply lookup for pixel correspondences along the

same rows (at best) or for each pixel in one image, we may look in a small number of adjoining

rows in the second image. This is done by sending the epipoles in both the images to infinity.

We compute the homographies H1 and H2 to send the epipoles e and e′ to infinity. Following

is procedure that is carried out to do this.

(i) First of all we shift the second image to origin using homography T1. This makes the

application of rotation straight forward which we would need later.

(ii) Find the angle of the epipole w.r.t x-axis and rotate the the entire image so that epipole

goes to x-axis i.e.

e′ =


f

0

1

 (5)
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(iii) Then use the homography G =


1 0 0

0 1 0

−1/f 0 1

 to send the epipole to infinity along x-axis

i.e.

e′ =


f

0

0

 (6)

(iv) Finally translate back the image to its original center point using homography T2.

(v) The homography that shall be applied onto the second image to accomplish all these tasks

is then given by

H2 = T2GRT1 (7)

(vi) The homoraphy for first image is found using a linear least squares minimization procedure

to minimize the sum of squares distances given by∑
i

d
(
H1xi, H2x

′
i

)
(8)

This is done in order to force the corresponding epipolar lines to be on the same rows.

(vii) The details of the procedure are given in Sec 11.12.12 of Hartley and Zisserman textbook.

Here we shall only explain the procedure at a descriptive level.

(a) Let M = P ′P+

(b) Let H0 = H2M and HA =


a b c

0 1 0

0 0 1


(c) Let x̂i = H0xi and x̂′i = H2x

′
i

(d) Select a, b, c such that they minimize the following sum of squares∑
i

(
x̂i + bŷi + c− x̂′i

)2
(9)

(e) Finally the homography H1 for first image is then given by H1 = HAH0.

4 Interest Point Detection Using Canny Edge Detector

Now that we have rectified the images, we can look for interest poitns in the two images using

Canny Edge Detector. Finding large number of interest points is important. Since these shall

be used to establish correspondences. This is relatively easy with rectified images since all the

interest points are usually on the same rows or within a distance of couple of rows. Following is

the procedure that we have adapted to find the interest points and the point correspondences.
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(i) Use canny edge detector to find edges in both the images.

(ii) Use the pixels corresponding to edges as our interest points.

(iii) Usually this results in a very large number of pixels, and since I am coding in MATLAB,

I shall randomly pick up 1500 pixels corresponding to edges in each point and then prune

them for finding correspondences.

(iv) To find correspondence, for each interest point in one image, we look up for the interest

point in the second image that gives the highest value of NCC score. We also check that

that interest point in the second image should be withing a couple of rows of the interest

point in the first image.

5 Projective Reconstruction using Triangulation and Refine-

ment using Levenberg Marquardt algorithm

This section covers the details about how the final pixel correspondences are converted to points

in world 3D. In general if we back project two corresponding pixels from images of the same

scene into two different rays in world 3D, the two rays may not intersect at all. Therefore we

need to refine the estimate for the fundamental matrix F and also the world 3D points that are

projected back to the images for the calculation of square of the difference with the measured

pixel locations. Following is the geometric distance that we need to minimize

d2geom =
∑
i

(
‖xi − x̂i‖2 + ‖x′i − x̂′i‖2

)
(10)

where x̂i and x̂′i are the projected points in the first and the second image respectively. We shall

use Levenberg Marquardt (LM) Algorithm to perform this non-linear optimization. Following

are important steps involved.

(i) Triangulate the 3D point Xi from the 2D points
(
xi, x

′T
i

)
using the linear triangulation

method. This shall later be used as an initial condition for the nonlinear LM optimization.

(a) For each correspondence
(
xi, x

′T
i

)
, form the matrix

A =


xiP

3T − P 1T

yiP
3T − P 2T

x′iP
′3T − P ′1T

y′iP
′3T − P ′2T


(b) Our goal is to minimize ‖AX‖ subject to ‖X‖ = 1.

(c) This is given by the null vector of A. Hence the world 3D point Xi is given by the

null vector of matrix A.
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(ii) Using this as an initial estimate for our world points, we apply Levenberg Marquardt

Algorithm to minimize the geometric distance given in eq. (10).

(iii) Finally once we have found all the world 3D points, we plot them.

6 Observations

• Setting the manual correspondences accurately is important for good estimate of funda-

mental matrix F .

• The 3D scene that we shall reconstruct would appear to be projectively distorted as

described in class notes. This is because we are using canonical configuration of the camera

and this results in reconstruction upto a projective distortion. We are not removing this

distortion.

• The canny edge detector gives a very large number of edge pixels. This can make the

overall reconstruction process very slow.

• Canny edge detector can lead to spurious correspondences because a lot of pixels on the

edges may appear to be very similar. Specially in case when we have smooth regions on

both sides of the edges. In such cases SIFT or SURF may prove to be better.

• Image rectification seems to be working pretty well since after we rectify the images, the

correspondences appear on rows that are very close to each other.

• LM optimization improves the estimate of fundamental matrix and the world points.

• Note that the accuracy of end results also depend upon the kind of the scene we are trying

to capture. The rich the scene is in structure, the easier it is to find interest points and

make sense out of results.
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7 Results

Now we shall show our results step by step and explaining them as necessary. We shall also

explain the process of rectifying the images, benefit of LM optimization and 3D scene recon-

struction.

Figure 1: Input Image 1

Figure 2: Input Image 2

7



Figure 3: Manually selected interest points on Input Image 1

Figure 4: Manually selected interest points on Input Image 2

Now we shall show the pixel correspondence between the interest points in Fig. 3 and Fig. 4

to first see the correspondences before the rectification is done and later see after rectification

is done.
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Figure 5: Manual Point Correspondences between the two images before image rectification.

Note that since epipoles are at finite locations, interest points don’t appear to be horizontally

aligned.

Figure 6: Rectified Image 1

Figure 7: Rectified Image 2
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Figure 8: Rectified Images displayed side by side along with point correspondences

Note that once we rectify the images, the point correspondences are very close

in row number. We have yet to select a large number of point correspondences

later with canny edge detector. However this is the appropriate place to show how

the epipoles go to infinity along x-axis

Initial Fundamental Matrix before images are rectified is given by

F =


0.000002545830537 0.000017246081557 0.000909294100453

−0.000014110404458 0.000007499340541 −0.010209160424781

−0.000024816877215 0.006022136207114 −0.319278007547744

 (11)

Initial First Camera Matrix is given by

P =


1 0 0 0

0 1 0 0

0 0 1 0

 (12)

Initial Second Camera Matrix is given by

P ′ =


0.0004316768 −0.0009689965 0.11178361271 1.39818781565

0.00006248474 0.00412699751 −0.20757452638 0.25987560446

0.0000087557 −0.00000236433 0.00695571184 −0.00432772621

 (13)

Initial epipoles are given as

e =


−696.8688

50.1456

1.0000

 and e′ =


−323.0768

−60.0490

1.0000

 (14)
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Final Fundamental Matrix after images are rectified is given by

F =


−0.000000000000000 −0.000000000000000 0.000000000000000

0.000000000000000 0.000000000000000 −0.066690020983087

−0.000000000000000 0.057357725258866 1.362867393896769

× 102 (15)

Final Second Camera Matrix is given by

P ′ =


−0.0000000000 0.0000000000 0.0000000000 0.010000000

0.0000000000 −0.0573577252 −1.3628673938 0.000000000

0.0000000000 0.0000000000 −0.0666900209 0.000000000

× 102 (16)

Final epipoles after image rectification are given as

e =


0.061

0

0

 and e′ =


−458.0768

0

0

 (17)

Please note that all the above entities are in homogeneous coordinates. So their absolute value

does not matter a lot. Also note that there is no point of showing the final value of P matrix

since that remains the same.

Next we shall the results of Canny Edge Detector.
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Figure 9: Edges/Interest Points found through Canny Edge Detector in Image 1

Figure 10: Edges/Interest Points found through Canny Edge Detector in Image 2
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Figure 11: Interest Points found through Canny Edge Detector of Image 1 shown on the image

Figure 12: Interest Points found through Canny Edge Detector of Image 2 shown on the image
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Figure 13: Point Correspondences

We can see that most of the point correspondences lie on horizontal lines which means

that there row numbers is pretty close to each other. This is the benefit we get from image

rectification.

Next we shall show the 3D scene reconstruction using triangulation. Of course we use

Levenberg Marquardt algorithm to refine the world points.
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Figure 14: 3D Scene Reconstruction using scatter plot in MATLAB

Figure 15: 3D Scene Reconstruction using scatter plot in MATLAB in another view
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Note that the reconstructed image looks distorted since we haven’t removed the projective

distortion. Besides one has to rotate the 3D scatter plot to get a clear picture of the 3D scene

in mind.

We shall first show the two images side by side like page 267 of Hartley and

Zisserman text.

Figure 16: Two different views of 3D projective scene reconstruction displayed side by side.

We can easily notice that the the 3D reconstruction we have is projectively distorted version of

real 3D scene.
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Figure 17: 3D Scene Point Correspondences with the Image 1

Improvement by the use of Levenberg Marquardt

The improvement that I noticed because of the use of Levenberg Marquardt Algorithm is in the

estimate of F matrix and hence P ′ matrix. If I don’t use Levenberg Marquardt Algorithm, then

once condition the fundamental matrix F to make it rank 2, everything breaks down. Therefore

its absolutely essential to perform non-linear optimization to fine tune the parameters.
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Finally we show the correspondences between points on the images and also between those

points and the 3D world points.

Figure 18: Point Correspondence between images and 3D world points
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8 Source Code

Following are the codes of all the functions we have used.

Main Script

1 close all; clear;

2 path load = ['/Users/zeeshannadir/purdue/ECE661/Fall 2014/hw 9/'];

3

4 im1 = imread([path load '5.jpg']);

5 im2 = imread([path load '6.jpg']);

6

7 % Downsample the 16 Megapixel images

8 factor = 6;

9 im1 = DownSampling(im1,factor);

10 im2 = DownSampling(im2,factor);

11

12 % show the images

13 figure;

14 imshow(im1); axis on; f1 = gcf;

15 figure;

16 imshow(im2); axis on; f2 = gcf;

17 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Important Parameters ...

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 Total Corresp = 8; % Total no. of manual correspondences needed

19 T ncc = 0.70; % Threshold for NCC

20 W ncc = 11; % Window for NCC

21 r ncc = 0.99; % Ratio for getting rid of false correspondences

22 thresh F = 1e−16;% Threshold for numerical purposes since we may not get ...

x'ˆT F x exactly equal to 0

23 % ...

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24

25 % Get the 8 corresponding points on each of the two images

26 %[x1 y1 x2 y2] = Select Correspondences (f1,f2, Total Corresp);

27 load ('Correspondences3.mat');

28 % Form vectors of correspondence points

29 x1 = [x1 y1 ones(Total Corresp,1)];

30 x2 = [x2 y2 ones(Total Corresp,1)];

31

32 [T1] = Normalize Points (x1);

33 [T2] = Normalize Points (x2);

34

35 % Plot the correspondences

36 Plot Correspondences (im1,im2,x1,x2)

37

38 % First we find the fundamental matrix using linear least squares method
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39 F = Find Fundamental Matrix LLS (x1,x2,T1,T2);

40

41 % epipoles are given by e 1 and e 2

42 e 1 = null(F); % Right Null Vector

43 e 2 = null(F.'); % Left Null Vector

44 % Find matrix form of e 2

45 e 2 x = [0 −e 2(3) e 2(2);e 2(3) 0 −e 2(1);−e 2(2) e 2(1) 0];

46

47 % Compute Camera Projection Matrices

48 P1 = [1 0 0 0;0 1 0 0;0 0 1 0];

49 P2 = [e 2 x*F , e 2];

50

51 % Apply Non−Linear least squares estimation to improve the estimate

52 % of F and P2 so far

53 [P2 F X] = nonLinearLeastSquaresOpt (@error fun , x1, x2, P1, P2);

54

55 % Recalculate the epipoles

56 e 1 = null(F); % Right Null Vector

57 e 2 = null(F.'); % Left Null Vector

58

59 % Rectify the Images

60 % I should also plot correspondences within the rectify images function

61 [im1 rect im2 rect F x1 new x2 new H1 H2] = Rectify Images ...

(e 1,e 2,x1,x2,im1,im2,P1,P2,F);

62 figure;

63 imshow([im1 rect im2 rect]);

64

65 % Convert the rectified images to Gray scale for NCC criterion

66 im1 rect gray = single(rgb2gray(im1 rect));

67 im2 rect gray = single(rgb2gray(im2 rect));

68

69 Plot Correspondences (im1 rect,im2 rect,x1 new,x2 new)

70

71 [Edges1]=cannyEdgeDetector(im1 rect,0.05);

72 [Edges2]=cannyEdgeDetector(im2 rect,0.05);

73

74 % Make Descriptor function gives interest points along with a window around

75 % the interest points so that we could apply the NCC criterion later

76 [interest points1] = Make Descriptor(Edges1,im1 rect gray,W ncc,1);

77 [interest points2] = Make Descriptor(Edges2,im2 rect gray,W ncc,2);

78

79 Plot Interest points(im1 rect,interest points1);

80 Plot Interest points(im2 rect,interest points2);

81

82

83 % Establish Correspondence

84 [C] = Establish Correspondence NCC (interest points1,interest points2);

85 [x1 final x2 final] = Get Final InterestPoints Using NCC (C, ...

interest points1, interest points2, r ncc, T ncc, F, thresh F);
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86

87 Plot Correspondences (im1 rect,im2 rect,x1 final,x2 final);

88

89 [T1] = Normalize Points (x1 final);

90 [T2] = Normalize Points (x2 final);

91

92 % First we find the fundamental matrix using linear least squares method

93 F = Find Fundamental Matrix LLS (x1 final,x2 final,T1,T2);

94

95 % epipoles are given by e 1 and e 2

96 e 1 = null(F); % Right Null Vector

97 e 2 = null(F.'); % Left Null Vector

98 % Find matrix form of e 2

99 e 2 x = [0 −e 2(3) e 2(2);e 2(3) 0 −e 2(1);−e 2(2) e 2(1) 0];

100

101 % Compute Camera Projection Matrices

102 P1 = [1 0 0 0;0 1 0 0;0 0 1 0];

103 P2 = [e 2 x*F , e 2];

104

105 [P2 F X] = nonLinearLeastSquaresOpt (@error fun , x1 final, x2 final, P1, P2);

106 %scatter3(X(:,1),X(:,2),X(:,3));

107 PlotWorldPoints(X,x1 final,x2 final,P1,P2,F,thresh F);

Function for normalizing the interest points to be used in normalized 8 point algorithm.

1 function [T] = Normalize Points (x)

2 mean x = mean(x(:,1));

3 mean y = mean(x(:,2));

4 % First find current distance to the mean

5 temp std = 0;

6 for i = 1:size(x,1)

7 temp std = temp std + sqrt((x(i,1)−mean x)ˆ2+(x(i,2)−mean y)ˆ2);

8 end

9 % Now normalize all the points using mean and distance

10 temp std = temp std/size(x,1);

11 scale = sqrt(2)/temp std;

12 xtr = −scale*mean x;

13 ytr = −scale*mean y;

14 T = [scale 0 xtr;0 scale ytr;0 0 1];

15 end

Fundamental matrix estimation using linear least squares method

1 function [F] = Find Fundamental Matrix LLS (x 1,x 2,T1,T2)

2 total corresp = size(x 1,1);

3

4 % Find the normalized correspondences
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5 x 1 t = (T1 * x 1.').';

6 x 2 t = (T2 * x 2.').';

7

8 A = zeros(total corresp,9); % A is the total corresp x 9 vector

9 for i=1:1:total corresp

10 A(i,:) = [x 2 t(i,1)*x 1 t(i,1) x 2 t(i,1)*x 1 t(i,2) x 2 t(i,1) ...

11 x 2 t(i,2)*x 1 t(i,1) x 2 t(i,2)*x 1 t(i,2) ...

12 x 2 t(i,2) x 1 t(i,1) x 1 t(i,2) 1];

13 end

14 % Perform SVD on A

15 [U D V] = svd(A);

16 % % F is the last column vector in V

17 F = reshape (V(:,end),3,3).';

18 % Condition the F matrix

19 [U1 D1 V1] = svd(F);

20 D1(end,end) = 0; % Make it a rank 2 by zeroing the last singular value

21 F = U1 * D1 * V1.' ;

22 F = T2.' * F * T1;

23 end

Non linear least squares optimization to fine tune the parameters of the fundamental matrix

and finding the world points. Note that we are finding the initial condition for LM algorithm

using eq. (11) within the non-linear least squares minimization. This is just to find the initial

condition. The optimization procedure to find tune the 3D world points and the fundamental

matrix is Lavenberg Marquardt Algorithm.

1 function [P2 F X] = nonLinearLeastSquaresOpt (error fun handle , x1, x2, P1, P2)

2 % Create a vector of all the parameters

3 %total parameters are 12 + 3*total correspondences

4 p = [reshape(P2.',1,12)];

5 total corresp = size(x1,1);

6 X = zeros(total corresp,4); % Create a matrix of world points that shall be ...

optimized over

7 X temp = zeros(total corresp,4);

8 for i = 1:size(x1,1)

9 A = getA (P1,P2,x1(i,:),x2(i,:));

10 [U,D,V] = svd(A);

11 Xn = give physical( V(:,4) ); % give physical function converts from ...

homog. to physical

12 X temp(i,:) = Xn.';

13 p = [p Xn(1:3).'];

14 end

15

16 options = ...

optimset('Algorithm','levenberg−marquardt','MaxFunEvals',1000,'MaxIter',1000);
17 p updated = lsqnonlin(error fun handle,p,[],[],options,x1,x2);

18
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19 P2 = reshape(p updated(1:12),4,3)';

20 t = P2(:,4); %is this e2? it is

21 ex = [0 −t(3) t(2); t(3) 0 −t(1); −t(2) t(1) 0];

22 M = P2(:,1:3);

23 F = ex*M;

24

25 % return the world 3D points

26 counter = 13;

27 for i=1:1:total corresp

28 X(i,:) = [p updated(counter:counter+2) 1];

29 counter = counter+3;

30 end

31 end

32

33 function [A] = getA (P1,P2,x1,x2)

34 A = [ (x1(1)*P1(3,:) − P1(1,:));

35 (x1(2)*P1(3,:) − P1(2,:));

36 (x2(1)*P2(3,:) − P2(1,:));

37 (x2(2)*P2(3,:) − P2(2,:)) ];

38 end

Function for image rectification is given as follows

1 function [im1 rect im2 rect F x1 new x2 new H1 H2] = Rectify Images ...

(e1,e2,x1,x2,im1,im2,P1,P2,F)

2 [h w temp] = size(im1);

3 total points = size(x1,1);

4 % Convert e2 from homogenous to physical coordinates.

5 e2 = give physical(e2);

6 angle = atan (−(e2(2)−h/2)/(e2(1)−w/2));
7 f = cos(angle)*(e2(1) − w/2) − sin(angle)*(e2(2) − h/2);

8 R = [cos(angle) −sin(angle) 0;sin(angle) cos(angle) 0;0 0 1];

9 T = [1 0 −w/2;0 1 −h/2;0 0 1];

10 G = [1 0 0;0 1 0;−1/f 0 1];

11 H2 = G*R*T;

12

13 % Preserves the center after applying homography

14 center point = [w/2 h/2 1].';

15 new center = give physical( H2 * center point );

16 T2 = [1 0 w/2 − new center(1);0 1 h/2 − new center(2);0 0 1];

17 H2 = T2 * H2;

18

19

20 % Now compuate the homography for first image

21 M = P2 * ( P1.' * (P1 * P1.')ˆ−1 );

22 H0= H2 * M;

23

24 x 1 hat = ones(size(x1));
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25 x 2 hat = ones(size(x2));

26

27 for i=1:1:total points

28 x 1 hat(i,:) = give physical((H0 * (x1(i,:).')).');

29 x 2 hat(i,:) = give physical((H2 * (x2(i,:).')).');

30 end

31

32 % Perform the Linear Least Squares Estimation for HA

33 A = zeros(total points,3);

34 b = zeros(total points,1);

35 for i=1:1:total points

36 A(i,:) = [x 1 hat(i,1) x 1 hat(i,2) 1];

37 b(i) = x 2 hat(i,1);

38 end

39 x = (A.' * A )ˆ−1 * A.' * b; % Least squares estimate step

40 HA = [x(1) x(2) x(3);0 1 0;0 0 1];

41 H1 = HA * H0;

42 % Preserves the center after applying homography

43 center point = [w/2 h/2 1].';

44 new center = give physical( H1 * center point );

45 T1 = [1 0 w/2 − new center(1);0 1 h/2 − new center(2);0 0 1];

46 H1 = T1 * H1;

47

48 % Update the fundamental matrix accordingly

49

50 [im1 rect H1]= applyHomography (H1,im1);

51 [im2 rect H2]= applyHomography (H2,im2);

52 F = (H2.')ˆ−1 * F * (H1)ˆ−1;
53

54 % update the interest points on the new plane

55 x1 new = zeros(size(x1));

56 x2 new = zeros(size(x2));

57

58 for i=1:1:total points

59 temp = give physical(H1 * x1(i,:).');

60 x1 new(i,:) = temp;

61 end

62 for i=1:1:total points

63 temp = give physical(H2 * x2(i,:).');

64 x2 new(i,:) = temp;

65 end

66

67 end

Canny Edge Detector Function

1 function [BW] = cannyEdgeDetector(im,thresh)

2 img = rgb2gray(im);
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3 BW = edge(img,'canny',thresh);

4 figure

5 imshow(BW)

6 end

Function for making the descriptors require for each of the interest points to be used later

in NCC criterion.

1 function [D] = Make Descriptor ( C Points, f, W, label)

2 %% First Define Descriptor Structure

3 D(1).m = uint32(0); % row number of interest point

4 D(1).n = uint32(0); % column number of interest point

5 D(1).feat = zeros(W,W); % feature window around the interest point

6 D(1).avg = 0; % Mean value of the window

7

8 % −−−−−−−−−−− Make an Array of the location points from the logical matrix ...

C points −−−−−−−−−−
9 height = size(C Points,1);

10 width = size(C Points,2);

11 Total Interest Points = 1500;

12

13 % label is used to identify if the image is the left or right

14 % this is just to fool the algorithm and get rid of the edges

15 % that show up due to applying homography because we do zero filling

16 temp = logical(zeros(size(C Points)));

17 if (label==1)

18 temp(37:249,415:761) = C Points(37:249,415:761);

19 end

20 if (label == 2)

21 temp(51:235,554:798) = C Points(51:235,554:798);

22 end

23 C Points = temp;

24

25 Loc = find(C Points(:)==1);

26 total points = length(Loc);

27 temp = randperm(total points);

28

29 for j=1:1:Total Interest Points

30 i = temp(j);

31 [ D(j).m D(j).n]=Find Location(Loc(i),height);

32 end

33 % since there are thousands of interest points, we randomly select 1000

34 for i=1:1:Total Interest Points

35 x = D(i).n;

36 y = D(i).m;

37 for n= −(W−1)/2 : 1 : (W−1)/2
38 for m = −(W−1)/2 : 1 : (W−1)/2
39 % if ( (x+n ≥ 1) && (x+n ≤ width) && (y+m ≥ 1) && (y+m ≤height))
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40 D(i).feat(m+(W−1)/2 + 1,n+(W−1)/2 + 1) = f (y+m,x+n);

41 %else

42 % D(i).feat(m+(W−1)/2 + 1,n+(W−1)/2+1) =0;

43 %end

44 end

45 end

46 D(i).avg = mean(mean(D(i).feat));

47 end

48 end

Function for establishing correspondence using NCC criterion

1 function [C] = Establish Correspondence NCC (D 1,D 2)

2 % Final interest points

3 x1=[];

4 x2=[];

5

6 C = zeros(length(D 1),length(D 2));

7

8 for i=1:1:size(C,1)

9 i

10 for j=i:1:size(C,2)

11 C(i,j) = ( sum(sum( (D 1(i).feat − D 1(i).avg) .* (D 2(j).feat − ...

D 2(j).avg) )) ) / ...

12 sqrt ( (sum(sum( (D 1(i).feat − D 1(i).avg).ˆ2))) * (sum(sum( ...

(D 2(j).feat − D 2(j).avg).ˆ2))) );

13

14 end

15 end

16 end

Function that prunes all the correspondences and checks for NCC criterion and the constrain

x′TFx = 0 and returns the correspondences that pass this crteria.

1 function [x1 x2]= Get Final InterestPoints Using NCC ...

(C,D 1,D 2,r ncc,T ncc,F,thresh F)

2 x1=[];

3 x2=[];

4 last = size(C,2);

5 for i = 1:1:size(C,1)

6 i

7 [b1,i1] = max(C(i,:));

8 [b2,i2] = max(C(i,[(1:i1−1) i1+1:last]));

9 if (i2 ≥ i1)

10 i2 = i2+1;

11 end

12 if (b1 < T ncc)
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13 % DO NOTHING;

14 elseif ( (b2/b1) > r ncc )

15 % DO NOTHING;

16

17 % elseif ...

(epipolar constraint(D 1(i).n,D 1(i).m,D 2(i).n,D 2(i).m,F,thresh F)==0)

18 % Since image rectifying is working well, we just define a row

19 % threshold. When the interest points are within threshold, we accept

20 % the correspondence

21

22 elseif (abs(D 1(i).m − D 2(i).m) > 50)

23 % DO NOTHING;

24 else

25 x1 = [x1;double(D 1(i).n) double(D 1(i).m) 1];

26 x2 = [x2;double(D 2(i1).n) double(D 2(i1).m) 1];

27 end

28 end

29 end

30

31 function [c] = epipolar constraint (a,b,c,d,F,thresh)

32 x1=double([a b 1].');

33 x2=double([c d 1].');

34 result = x2.' * F * x1;

35 if (result < thresh)

36 c = 1;

37 else

38 c=0;

39 end

40 c=1;

41 end

Function for the plotting the points in world 3D.

1 function [] = PlotWorldPoints (X,x1 orig,x2 orig,P1,P2,F,thresh F)

2 x world = [];

3 for i=1:1:size(X,1)

4 x 1 = give physical(P1 * X(i,:).');

5 x 2 = give physical(P2 * X(i,:).');

6 x world = [x world;X(i,:)];

7 end

8 figure;

9 scatter3(x world(:,1),x world(:,2),x world(:,3),'o','Linewidth',2);

10 disp(['Total points in world 3D = ' num2str(size(x world,1))]);

11 end
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Following is the function that applies homography

1 function [Y H new] = applyHomography(H,X)

2 % This function applies a homography H onto the image X

3 % And returns the result in Y

4 % The important thing is that there may be scaling and shifting needed

5 % Rather than doing that explicitly,it combines that into a new homography H new

6 % And returns that new homography for keeping record

7 X = single (X);

8 [height orig width orig temp] = size(X);

9

10 % First find the boundary of the resulting image

11 a = [1 1];

12 b = [size(X,2) 1];

13 c = [1 size(X,1) ];

14 d = [size(X,2) size(X,1)];

15

16 [i]=give physical ( H * [a.';1] ); a (1) = round(i(1)); a (2) = round(i(2));

17 [i]=give physical ( H * [b.';1] ); b (1) = round(i(1)); b (2) = round(i(2));

18 [i]=give physical ( H * [c.';1] ); c (1) = round(i(1)); c (2) = round(i(2));

19 [i]=give physical ( H * [d.';1] ); d (1) = round(i(1)); d (2) = round(i(2));

20

21 tx1 = min([a (1) b (1) c (1) d (1)]);

22 tx2 = max([a (1) b (1) c (1) d (1)]);

23

24 ty1 = min([a (2) b (2) c (2) d (2)]);

25 ty2 = max([a (2) b (2) c (2) d (2)]);

26

27 % compute the height and width of projected image into the world plane

28 height = (ty2−ty1);
29 width = (tx2−tx1);
30 disp(['total height = ' num2str(height)]);

31 disp(['total width = ' num2str(width)]);

32

33 H scale = [width orig/width 0 0;0 height orig/height 0;0 0 1];

34 H = H scale * H;

35

36 [i]=give physical ( H * [a.';1] ); a (1) = round(i(1)); a (2) = round(i(2));

37 [i]=give physical ( H * [b.';1] ); b (1) = round(i(1)); b (2) = round(i(2));

38 [i]=give physical ( H * [c.';1] ); c (1) = round(i(1)); c (2) = round(i(2));

39 [i]=give physical ( H * [d.';1] ); d (1) = round(i(1)); d (2) = round(i(2));

40

41 tx1 = min([a (1) b (1) c (1) d (1)]);

42 tx2 = max([a (1) b (1) c (1) d (1)]);

43

44 ty1 = min([a (2) b (2) c (2) d (2)]);

45 ty2 = max([a (2) b (2) c (2) d (2)]);

46
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47

48 tx = tx1; % now we have the proper offsets that could be added

49 ty = ty1; % now we have the proper offsets that could be added

50

51 T=[1 0 −tx+1;0 1 −ty+1;0 0 1];

52 H new = T * H;

53 H inv = H newˆ−1;
54

55 Y = zeros(height orig,width orig,3);

56 for m = 1:1:height orig

57 m

58 for n=1:1:width orig

59 [s]=give physical ( H inv * [n;m;1] );

60 temp = biLinear(s(1),s(2),X);

61 % check if bilinear didn't return zero, it may return zero if the index

62 % where we want to interpolate is outside the domain of image plane

63 Y(m,n,:) = temp; % note all three channels (rgb) are copied at once

64 end

65 end

66

67 Y = uint8(Y);

68 end
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