
Homework - 8

Hariharan Seshadri

School of ECE, Purdue University

hseshadr@purdue.edu

This report has the following segments:

1. Introduction

2. Corner Extraction

3. Homography Estimation (Recall)

4. Intrinsic Camera Parameters Estimation

5. Extrinsic Camera Parameters Estimation (Pose of the camera)

6. Non-Linear Least Squares Optimization

7. Reprojection onto “Fixed Image” and error computation

8. Results

9. Ground Truth Analysis for My Dataset

10. Effect of conditioning rotation matrix before and during Non-Linear Optimization

1. Introduction

The goal of this exercise is given a set of images of the calibration (3 or more images from different
angles) , the camera calibration matrix (intrinsic parameters) and the pose of the camera with respect
to the calibration pattern (extrinsic parameters) is to be estimated.

2. Corner Extraction

Corner Extraction requires multiple steps and a post-processing stage.

Canny edge detector is used as a pre-processing step to the Hough Transform. These first find
the strong edges (lines) and any disjoint edges found on the same line will be found in voting in the
parameter space (Hough Space). The two thresholds I used for Canny edge detector were 255*1.5 and
255.

The next step is to use the output of Canny Edge Detector to find lines in the parameter space.
We know that any line in the image plane has a unique ρ and θ where ρ is the shortest (perpendicular)
distance from the origin to the line and θ is the angle made by the perpendicular with the horizontal
positive axis.

Any pixel (x,y) may line on a line given by:

1



ρ = x cosθ + y sin θ

Each pixel will give rise to a sinusoid in the ρ -θ space for positive ρ values andθ varying from 0 to
2Π

Thus, by “voting” (i.e.) thresholding for number of intersections in the ρ -θ space, the lines that
exist in the image plane may be identified. Recall that the point of intersection in the ρ -θ space
actually corresponds to a unique line and the number of intersections at that point of intersection in
the ρ -θ space is the number of pixels that lie on the line.

I used the Probabilistic Hough transform in OpenCV and the function parameters I used were:

1. rho: Distance Resolution in pixels. I used 1 pixel

2. theta: Angle resolution in radians. I used Π/180 radians

3. thresold: Minimum number of pixels required on a line (i.e.) number of intersections in the ρ -θ
space. I used 100 pixels

4. minLineLength: Minimum line length. I used 100 pixels

5. maxLineGap: Maximum allowed gap between points on the same line to link them. I used 600
pixels

An issue I faced was that multiple lines were picked up for the same line in the image plane. So, I
had to use the algorithm in Algorithm 1 to pick the right corners.

2



Algorithm 1 Identifying correct corners and labeling them
Step 1: Initialize corner_points and good_lines to be empty data structures

Step 2: For a given pair of lines, identify the angle between them. If they are less than de-
cision_threshold_1 or greater than 180 - decision_threshold_1, ignore the pair ( I used deci-
sion_threshold_1 = 30 degrees)

Step 3: If the angle is greater than decision_threshold_1 and less than 180 - decision_threshold_1,
identify the corner given by them as the point of intersection of the pair of lines. If there already exists
a corner within a distance of decision_threshold_2 ( I used 15 pixels ), ignore the generated corner.
Else, add the corner to corner_points.

Step 4: If this pair of lines generates a good corner (i.e.) steps 2 and 3 are favourable , then add this
pair of lines to good_lines

Step 5: Repeat from step 2 until all pairs of lines are exhausted

Step 6: Once all the lines have been identified, bin them into horizontal and vertical lines based on
their slopes

Step 7: Sort all horizontal lines based on Y-intercepts and all vertical lines based on X-intercepts

Step 8: Use the sorted horizontal and vertical lines (based on intercepts) to label the corners (given
by the intersection of a horizontal line and a vertical line) in a certain way

The results for Canny edge detector and Hough Transform (post-processed using Algorithm 1 ) are
shown for 3 images.

(a) Canny Detector (b) Hough Transform Results

Figure 1: Canny detector and Hough Transform

3



(a) Canny Detector (b) Hough Transform Results

Figure 2: Canny detector and Hough Transform

(a) Canny Detector (b) Hough Transform Results

Figure 3: Canny detector and Hough Transform

3. Homography Estimation (Recall)

After identifying the corner points, the homography between the world plane (real world co-
ordinates) and the image plane (i.e.)

ximage = H xworld

The matrix form of the equations given by correspondences is given by:

A.~h = B

where, ~h contains the 8 unknowns - (h11 to h32) . We explicitly set h33= 1 in this case
and A and B are defined as shown below

Since, each correspondence generates two equations, the two rows in the A and B matrices for one
correspondence will be given as:

4





xworld yworld 1 0 0 0 −xworldximage −yworldximage

0 0 0 xworld yworld 1 −xworldyimage −yworldyimage

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .





h11
h12
h13
h21
h22
h23
h31
h32


=



ximage

yimage

.

.

.

.

.

.



Thus, we need at least 4 correspondence (here, I used all 80) to compute homography which is
given by:

~h = (AtA)-1AtB

Thus, the homography between the world plane and EACH IMAGE PLANE is esimated.

4. Intrinsic Camera Parameters Estimation

The following result will be used in estimating intrinsic parameters of the camera-

Image of absolute conic, W = K-TK-1

Hence, the goal is to estimate the elements of W. Since, any real world plane samples the absolute
conic at two points - the plane’s circular points (1 i 0) and (1 -i 0), and if [−→h 1

−→
h 2
−→
h 3] is the homography

that relates a real world plane to the image plane, the points transform as (−→h 1 + i −→h 2) and (−→h 1 - i
−→
h 2). These points lie on the image of the absolute conic W.

Hence,

(−→h 1 + i −→h 2)TW (−→h 1 + i −→h 2) = 0 and (−→h 1 - i −→h 2)T W (−→h 1 - i −→h 2) = 0.

This gives us two equations -

1) −→h 1
T W −→h 1 - −→h 2

T W −→h 2 = 0

2) −→h 1
T W −→h 2 = 0

Since, W is a 3X3 matrix which is symmetric and homogeneous (hence 5 Degrees of Freedom), we
need a minimum of 5 equations to estimate its values. Or equivalently, we need atleast 3 images (hence
atleast 3 world plane to image plane homographies) of the calibration pattern on a plane to estimate
W. Once, W is estimated, we can use Cholesky decomposition to estimate K.

5. Extrinsic Camera Parameters Estimation

5



From the basic relation between the plane-plane homography H, Intrinsic parameters K , Rotation
Matrix R and translation t :

K[−→r 1
−→r 2
−→
t ] = [ −→h 1h2

−→
h 3]

We hence get,

−→r 1= K-1−→h 1

−→r 2= K-1−→h 2

−→r 3= −→r 1X −→r 2

−→
t = K-1−→h 3

Since, the rotation matrix is an orthonormal matrix, the individual columns must be scaled ac-
cordingly. The scale factor is given by: ξ = 1

||K−1
−→
h1||

. Hecne, the new equations become:

−→r 1= ξK-1−→h 1

−→r 2= ξK-1−→h 2

−→r 3= −→r 1X −→r 2

−→
t = ξK-1−→h 3

We also need to make sure that the condition RTR = I is met, hence we need to “condition” the
rotation matrix. This is done by computing the SVD of the R matrix:

R = UVDTand setting the singular values to 1, hence Rconditioned= UVT

6. Non-Linear Least Squares Optimization

There is scope for further refinement in the intrinsic and extrinsic parameters based on true location
of a pixel in the image plane and the “estimated projection” of the real world point onto the image
plane using K,R and t.

The cost function to be minimized is:

d2geom=
∑

i
∑

j|| −→x i,j- K[Ri|ti] −→xM,i,j||

where, −→x i,j is the jthsalient point in the ithimage , and

−→xM,i,jis the corresponding co-ordinate in the model or calibration pattern.

This can be re-written as:

d2geom=
∑

i
∑

j|| −→x i,j- f(K, −→r i ,
−→
t i, −→xM,i,j) ||

where, −→r i is the Rodrigues representation of the Rotation Matrix Ri. This is important because R
has only 3 degrees of freedom and the Rodrigues vector contains a vector consisting of three elements
which is the unit vector along the axis of rotation and whose magnitude is the angle of rotation.

6



7. Reprojection onto “Fixed Image” and error computation

One of the images was kept as the fixed image. For the given dataset, it was image 11 and for my
dataset it was image 1. To reproject a point from an image into the fixed image, I first estimated the
homography for a given image to the world plane and then the homogrpaphy from world plane to the
fixed image plane.

−→x fixed = (Hworld_to_fixed) ( Hworld_to_image)-1 (−→x image) , where −→x fixed and−→x image are homogeneous
coordinate representations.

Once reprojection was done, euclidean error was measured for all 80 points of the image and an
average for one image was obtained.

This was done BEFORE and AFTER non-linear optimization. In order to construct the homogra-
phies after non-linear optimization of K, R, t is used the relation:

Hrefined = Krefined[−→r 1
refined−→r 2

refined−→t refined ]

Once the refined homographies were estimated, reprojection was tried again and the error was
measured.

8. Results

(i) Provided Dataset

K =

 719.86 1.66 320.23
0 720.06 235.8
0 0 1



Krefined=

 720.05 1.90 321.73
0 719.79 238.51
0 0 1



7



For the following images the effect of non-linear optimization has been depicted. Blue corners
indicate the true location of the corner in the “fixed image”, red corners indicate the reprojected corner
BEFORE optimization and green corners indicate the reprojected corner AFTER optimization. We
can visualize the improvement as the green corners are closer to the corresponding blue corners than
the red corners.

(a) Before optimization (b) After optimization

Figure 4: Visual verification of optimization (Reprojection of image 3 points)

The extrinsic parameters for this pose of the camera (Image 3 Dataset 1) are:

[R|t] =

 0.87 0.16 −0.45 −6.15
−0.197 0.97 −0.027 −8.16

0.43 0.13 0.89 48.9



[Rrefined|trefined] =

 0.88 0.16 −0.43 −6.3
−0.19 0.97 −0.03 −8.4
0.42 0.11 0.89 49.08



8



(a) Before optimization (b) After optimization

Figure 5: Visual verification of optimization (Reprojection of image 6 points)

The extrinsic parameters for this pose of the camera (Image 6 Dataset 1) are:

[R|t] =

 0.98 0.13 −0.07 −8.5
−0.13 0.98 −0.03 −8.15
0.06 0.04 0.99 61.9



[Rrefined|trefined] =

 0.98 0.13 −0.069 −8.66
−0.13 0.99 −0.035 −8.4
0.06 0.04 0.99 62.06



9



(a) Before optimization (b) After optimization

Figure 6: Visual verification of optimization (Reprojection of image 9 points)

The extrinsic parameters for this pose of the camera (Image 9 Dataset 1) are:

[R|t] =

 0.88 −0.089 0.44 −5.19
−0.17 0.84 0.5 −9.01
−0.42 −0.52 0.73 58.24



[Rrefined|trefined] =

 0.88 −0.09 0.45 −5.2
−0.17 0.84 0.50 −9.21
−0.42 −0.52 0.73 58.13



10



(a) Before optimization (b) After optimization

Figure 7: Visual verification of optimization (Reprojection of image 12 points)

The extrinsic parameters for this pose of the camera (Image 12 Dataset 1) are:

[R|t] =

 0.88 0.22 −0.41 −6.72
−0.01 0.89 0.45 −11.4
0.46 −0.39 0.79 52.15



[Rrefined|trefined] =

 0.88 0.21 −0.41 −6.8
−0.02 0.89 0.44 −11.7
0.46 −0.38 0.8 52.3



11



Table 1 depicts the reprojection error before and after optimization for the four images ( B.O.E.
= Before Optimization Error and A.O.E. = After Optimization Error )

B.O.E. Mean (pixels) B.O.E. Variance (pixels) A.O.E. Mean (pixels) A.O.E. Variance (pixels)
2.23 0.45 1.17 0.49
1.43 0.68 1.26 0.26
1.03 0.28 0.87 0.2
1.68 0.69 1.03 0.43

Table 1: Comparison of errors before and after optimization - Dataset 1

Average Overall error ( over all 40 images ) before optimization = 1.59 pixels

Average Overall error ( over all 40 images ) after optimization = 1.07 pixels

Improvement = 32.7 %

12



(ii) My Dataset

K =

 585.72 −1.43 316.36
0 582.08 237.59
0 0 1



Krefined=

 577.55 −1.19 314.57
0 576.42 240.78
0 0 1


For the following images the effect of non-linear optimization has been depicted. Blue corners

indicate the true location of the corner in the “fixed image”, red corners indicate the reprojected corner
BEFORE optimization and green corners indicate the reprojected corner AFTER optimization. We
can visualize the improvement as the green corners are closer to the blue corner than the red corner.

(a) Before optimization (b) After optimization

Figure 8: Visual verification of optimization (Reprojection of image 3 points)

The extrinsic parameters for this pose of the camera (Image 3 Dataset 2) are:

[R|t] =

 0.94 −0.15 −0.28 3
0.18 0.97 0.07 −15.9
0.27 −0.12 0.95 72.16



[Rrefined|trefined] =

 0.94 −0.15 −0.29 3.22
0.18 0.98 0.066 −16.1
0.27 −0.11 0.95 70.9



13



(a) Before optimization (b) After optimization

Figure 9: Visual verification of optimization (Reprojection of image 6 points)

The extrinsic parameters for this pose of the camera (Image 6 Dataset 2) are:

[R|t] =

 0.89 0.1 0.51 −6.58
−0.21 0.96 0.16 −11.02
−0.48 −0.25 0.83 61.56



[Rrefined|trefined] =

 0.85 0.1 0.5 −6.45
−0.21 0.96 0.16 −11.38
−0.47 −0.24 0.84 61.05



14



(a) Before optimization (b) After optimization

Figure 10: Visual verification of optimization (Reprojection of image 9 points)

The extrinsic parameters for this pose of the camera (Image 9 Dataset 2) are:

[R|t] =

 0.93 −0.014 0.35 −8.29
−0.023 0.99 0.105 −9.69
−0.34 −0.10 0.93 49.3



[Rrefined|trefined] =

 0.93 −0.015 0.34 −8.29
−0.02 0.99 0.103 −9.96
−0.34 −0.1 0.93 48.82



15



(a) Before optimization (b) After optimization

Figure 11: Visual verification of optimization (Reprojection of image 12 points)

The extrinsic parameters for this pose of the camera (Image 12 Dataset 2) are:

[R|t] =

 0.89 0.03 0.46 −10.3
−0.11 0.98 0.14 −9.83
−0.45 −0.18 0.87 47.97



[Rrefined|trefined] =

 0.88 0.029 0.46 −10.2
−0.108 0.98 0.14 −10.5
−0.45 −0.17 0.87 47.3



16



Table 2 depicts the reprojection error before and after optimization for the four images ( B.O.E.
= Before Optimization Error and A.O.E. = After Optimization Error )

B.O.E. Mean (pixels) B.O.E. Variance (pixels) A.O.E. Mean (pixels) A.O.E. Variance (pixels)
1.06 0.22 1.05 0.21
1.65 0.68 0.98 0.23
1.54 0.67 0.92 0.26
1.33 0.49 1.13 0.36

Table 2: Comparison of errors before and after optimization - Dataset 2

Average Overall error ( over all 40 images ) before optimization = 1.76 pixels

Average Overall error ( over all 40 images ) after optimization = 1.04 pixels

Improvement = 40.9 %

17



9. Ground Truth Analysis for My Dataset

Figure 12: Fixed Image for Dataset-2

[R|t] =

 0.98 −0.0015 0.14 −2.86
−0.017 0.99 0.13 −10.8
−0.14 −0.13 0.98 52.5


[Rrefined|trefined] =

 0.99 −0.0012 0.14 −2.72
−0.016 0.99 0.12 −11.03
−0.14 −0.12 0.99 51.6

.
Here, R =

0.99 −0.0012 0.14
−0.016 0.99 0.12
−0.14 −0.12 0.99

and t =
−2.72
−11.03

51.6

What I get along the t makes sense as I was approximately 20.5 inches ( 52.07 cm ) from the
pattern. This is along the Z-axis and this is reflected in tz= 51.6. The tx and ty too make sense as I
was a little off with respect to the origin in both directions.

10. Effect of conditioning rotation matrix before and during Non-Linear Optimization

I tried two cases: Conditioning BEFORE Optimization and Conditioning DURING Optimization.
In both cases, I did not see any change with respect to the mean errors.

Another observation I made was that, when I DID NOT condition the rotation matrix at all, after
optimization was performed, my overall error INCREASED by around 10%

18


