
Homework 8

ECE 661
Aziza Satkhozhina

asatkhoz@purdue.edu

Goals

The goal of this homework is to estimate intrinsic and extrinsic camera param-
eters using Zhang’s calibration algorithm.

Detecting corners

Corners are detected using Hough transform. The steps in detecting the corners
are the following:

1) First step is use Canny edge detector to find the edges. I used threshold
value 0.7 in Canny detector.

2) Then, Hough Transform was applied. I used imbuilt Matlab function
hough with RhoResolution parameter set to 0.5. The I found the highest 25
peaks using Threshold value 25. From the peaks, I constructed hough lines
filling the gap between unconnected lines that are less than 150 pixels away
from each other and with minimum length of 70.

3) However, since there are 20 squares on the calibration image, only 18 lines
are needed out of which 10 are horizontal and 8 are vertical lines. To eliminate
extra lines, I first classified each of 25 lines into horizontal or vertical line using
their slope. Then for each class I left lines that have fewest intersections with
other lines within that class since for each class we want lines that are almost
parallel and do not intersect inside the image.

4) Once 18 lines are identified, their intersections were found. I used homo-
geneous coordinates to find the intersections.

l1 = x1 × x2, l2 = x3 × x4 , and xint = l1 × l2, where x1, x2 and x3, x4 are
points that are on lines 1 and 2 respectively.

5) Then, detected corners were labeled using the numbering scheme that
I decided beforehand for consistency. The corners were labeled from top to
bottom and left to right.

1

Calibration

After the corners were detected, the next step was to find the homography
between world coordinates and image pixels. I measured corner coordinates
using the rules where I decided that the top left corner has corrdinates of (0,0).
One side of a square and a distance between the squares in calibration pattern
were 25mm. I used these coordinates to establish Homographies between those
coordinates and corner coordinates of each image in the dataset. So, I found H
where xIM = H · xW for each image. H was found using nullspace of matrix
A as in previous homeworks. The solution for nullspace was found to be an
eigenvector that corresponded to the smallest eigenvalues after using SVD.

Zhang’s algorithm was applied after homographies were found. Zhang’s cal-
ibration algorithm aims to find intrinsic and extrinsic parameters of the camers
which are represented by 3×3 matrix K and extrinsic paramterers R and t. The
algorithm assumes that there is a calibration pattern on Z = 0 and multiple
pictures of calibration pattern are taken from different viewpoints. It is based
on the face that the pixtures of absolute conic are independent of the viewpoint,
therefore it is given by w = K−1K. We can get ~h T1 w

~h1 = ~h T2 w
~h2 and ~h T1 w

~h2 =

0, where w is the image of absolute conic and vectors ~hi are columns of matrix H.
We can define matrix w as a vector b = (w11, w12, w22, w13, w23, w33) and define
~vij = (hi1hj1;hi1hj2 + hi2hj1;hi2hj2;hi3hj1 + hi1hj3;hi3hj2 + hi2hj3;hi3hj3).
We can derive ~v T12b = 0 and (~v11 − ~v22)T b = 0. Since ~v consists of only values
of matrix H, we can stack up the resulting equaions using n images from the
dataset. b is the nullspace solution and can be found using SVD. Nullspace so-
lution is the eigenvector that corresponds to the smallest eigenvalue after using
SVD.

Even though we know found the image of the absolute conic, our goal is
to find parameters of the camera. Instrinsic parameters make the following

matrixK =

 αx s x0
0 αy y0
0 0 1

. The parameters can be found with the following

equations:

x0 = w12−w13−w11w23

w11w22−w12w12

λ = w33 − w2
13+x0(w12w13−w11w23

w11

αx =
√

λ
w11

αy =
√

λw11

w11w22−w2
12

s = −w12α
2
xαy

λ

2

y0 = sx0

αy
− w13α

2
x

λ

Note that intrinsic parameters are the same for all images. Therefore they
found once. However extrinsic parameters are different for each image depending
on the viewpoint of the camera. Therefore they are calculated for each image
separately.

R = [~r1~r2~r3] and K−1[~h1~h2~h3] = [~r1~r2~t]

From these equations we can get

~r1 = scale ·K−1~h1

~r2 = scale ·K−1~h2

~r3 = ~r1 × ~r2

~t = scale ·K−1~h3, where scale = 1

||K−1~h1||

Refinement of calibration parameters

Since our corner detection does not give exact locations of the corners, we can
use Levenberg-Marquadt optimization algorithm to further refine the results. I
used Matlab’s lsqnonlin function for LM. The cost function fot the optimization
is the following: cost =

∑
i

∑
j ||~xij − K[Riti]~xM,j ||2, where ~xij is jth pixel

of image i that was estimated using corner detection algorithm, ~xM,j is world
coordinate j , Ri, ti are extrinsic parameters from image i, and K is intrinsic
parameters of the camera. We stack parameters from all images together into
p = [K,R1, t1, R2...] vector and use LM algorithm to refine these parameters.

One thing to note is that matrix R has 9 parameters, but rotation has
only 3 DoF. Therefore, we use polar coordinates, and transform matrix R into
Rodriguez representation.

~w = φ
2sinφ

 r32 − r23
r12 − r31
r21 − r12

 and φ = acos(trace(R)−1
2).

To transform back from Rodriguez, we use

R = I + sin(φ)
φ Wx + 1−cosφ

φ W 2
x , where Wx =

 0 −wz wy
wz 0 −wx
−wy wx 0

3

Conditioning Rotational matrix

We need to make sure that our rotational matrix R is orthogonal. Therefore we
need to find R for given Q:

minR||R−Q||2F where || · ||F is the Frobenius norm. The solution for a given
problem is use SVD [U,D, V] = svd(Q) and set R to UV T .

Incorporating Radial Distortion

So far, we assumed that we have a pinhole camera. However, pinhole model
breaks down for short focal-length cameras. Therefore, we need to compensate
for the radial distortion that is introduced by using this model. In previous
steps we predicted pixel coordinates x̂ = K[R|t]xW . We can compensate for
radial distortion by using this as our predicted pixel:

x̂rad = x̂+ (x̂− x0)[k1r
2 + k2r

4] and ŷrad = ŷ + (ŷ − y0)[k1r
2 + k2r

4],

where k1 and k2 are parameters for radial distortion and r2 = (x̂ − x0)2 +
(ŷ − y0)2.

Results

Intrinsic parameters for the given dataset, before LM:

K =

 744.9667 0.5500 329.9118
0 745.3404 232.5847
0 0 1

.

Intrinsic parameters for the given dataset, after LM, without radial distor-
tion:

K =

 904.9858 0.9448 332.7354
0 906.6334 237.1124
0 0 1

.

Intrinsic parameters for the given dataset, after LM, with radial distortion:

K =

 910.8388 0.8261 337.4781
0 913.0800 236.3815
0 0 1

.

k1 = −0.2046 and k2 = 0.6363.

4

Intrinsic parameters for my dataset, after LM, with radial distortion:

K =

 1359.1 2 659
0 1352.7 491.5
0 0 1

.

k1 = −0.0955 and k2 = −0.0694.

Output images for the provided dataset

Output images for Created dataset

In the figure 15, you can notice that R is almost an identity matrix, which proves
that extrinsic parameters are calculated correctly! The translation was mostly
in Z direction. The measured distance was 52mm, and t-vector has 59.8mm.

reprojection. Image4. Green points are the
are projected corners.

error = 3.4771, variance of error = 7.4339

error = 1.2352, variance of error = 1.0476

5

Figure 1: Provided dataset: 1) Edge images. 2) Hough lines. 3) Detected
corners.

6

Figure 2: Provided dataset: 1) Edge images. 2) Hough lines. 3) Detected
corners.

7

Figure 3: Provided dataset: 1) Edge images. 2) Hough lines. 3) Detected
corners.

8

Figure 4: Provided dataset: 1) Edge images. 2) Hough lines. 3) Detected
corners.

9

Figure 5: Extrinsic parameters for Image1: [R|t] = 0.7987 −0.1836 0.6564 −58.4803
0.1954 0.9843 0.0329 −124.1388
−0.6530 0.0746 0.8141 687.6628

.

10

Figure 6: Extrinsic parameters for Image2: [R|t] = 0.8161 −0.0402 0.6620 −49.4124
−0.0006 0.9976 −0.0791 −97.0220
0.6632 0.0682 0.8140 628.1957

.

11

Figure 7: Extrinsic parameters for Image3: [R|t] = 0.8793 0.1664 −0.5626 −75.6946
−0.1980 0.9861 −0.0453 −84.8582
0.5523 0.1165 0.8887 640.6205

.

12

Figure 8: Extrinsic parameters for image 4: [R|t] = 0.8419 0.4412 −0.4584 −98.4077
−0.4242 0.9260 0.1255 −53.5081
0.4742 0.0322 0.9142 716.8074

.

13

Figure 9: Provided dataset corner reprojection. Image1. Green points are the
original corners and red points are projected corners.

(a) Before LM mean error = 1.1464, variance of error = 0.7386

(b) After LM mean error = 0.8301, variance of error = 0.4798

14

Figure 10: Provided dataset corner reprojection. Image2. Green points are the
original corners and red points are projected corners.

(a) Before LM mean error = 1.2354, variance of error = 0.7119

(b) After LM mean error = 0.7575, variance of error = 0.4302

15

Figure 11: Provided dataset corner reprojection. Image3. Green points are the
original corners and red points are projected corners.

(a) Before LM mean error = 2.0047, variance of error = 1.9417

(b) After LM mean error = 0.7987, variance of error = 0.4699

16

Figure 12: Provided dataset corner reprojection. Image4. Green points are the
original corners and red points are projected corners.

(a) Before LM mean error = 0.9370, variance of error = 0.4920

(b) After LM mean error = 0.6376, variance of error = 0.2379

17

Figure 13: My dataset: 1) Edge images. 2) Hough lines and Detected corners.

18

Figure 14: My dataset: 1) Edge images. 2) Hough lines and Detected corners.

19

Figure 15: Extrinsic parameters for Image2: [R|t] = 1 −0.007 −0.0155 −84.4837
0.0075 0.9967 0.1861 −106.4158
0.0152 −0.1861 0.9967 598.3001

.

20

Figure 16: Extrinsic parameters for Image3: [R|t] = 0.9989 0.0353 −0.0790 −95.7507
−0.0295 0.9905 0.2583 −101.6290
0.0813 −0.2576 0.9898 526.3244

.

21

Figure 17: Extrinsic parameters for image 4: [R|t] = 0.9986 −0.0106 −0.0784 −79.3633
0.0255 0.9592 0.4190 −116.4901
0.0749 −0.4196 0.9579 520.9872

.

22

Figure 18: Provided dataset corner reprojection. Image1. Green points are the
original corners and red points are projected corners.

(a) Before LM mean error = 2.1984, variance of error = 3.2451

(b) After LM mean error = 1.296, variance of error = 1.0705

23

Figure 19: Provided dataset corner reprojection. Image1. Green points are the
original corners and red points are projected corners.

Figure 20: Provided dataset corner reprojection. Image1. Green points are the
original corners and red points are projected corners.

%%%
% close all; warning off;
% %define and initialize world coordinates that were measured with the
ruler
xW = zeros(80,2);
for j = 1:8
 for i = 1:10
 xW((j-1)*10+i,:) = [(j-1)* 25 (i-1)*25];
 end
end

nimg = 20;
rad_dist = 1;

allH = []; V = []; xIM = [];
for k =1:20
 filename = strcat('Dataset2/Pic_',int2str(k),'.jpg');
 %calculate the coordinates of the corners in the image
 [imcoord] = get_corners(filename);
 xIM{k} = imcoord;
 %solve Ah = 0, and find h which is the homography
 A =
getA(xW(:,1),xW(:,2),double(imcoord(:,1)),double(imcoord(:,2)));
 [U,D,T] = svd(A);
 h = T(:,9);
 H = [h(1:3)'; h(4:6)'; h(7:9)'];
 allH{k} = H;
 %store V matrix for calculating the intrinsic parameters
 v12 = getv(H,1,2);
 v11 = getv(H,1,1);
 v22 = getv(H,2,2);
 V = [V
 v12
 (v11-v22)];
end

[U,D,T] = svd(V);
b = T(:,6); %B11 B12 B22 B13 B23 B33

%intrinsic parameters
y0 = (b(2)*b(4)-b(1)*b(5))/(b(1)*b(3)-b(2)^2);
lambda = b(6)-(b(4)^2+y0*(b(2)*b(4)-b(1)*b(5)))/b(1);
alphax = sqrt(lambda/b(1));
alphay = sqrt(lambda*b(1)/(b(1)*b(3)-b(2)^2));
s = -b(2)*alphax^2*alphay/lambda;
x0 = s*y0/alphay-b(4)*alphax^2/lambda;

%extrinsic parameters
K = [alphax s x0; 0 alphay y0; 0 0 1];
p = zeros(1,5+6*nimg);
p(1:5) = [alphax s x0 alphay y0];
if(rad_dist)

 p = zeros(1,7+6*nimg);
 p(1:5) = [alphax s x0 alphay y0];
 p(6:7) = [0 0];
 cnt = 7;
else
 p = zeros(1,5+6*nimg);
 p(1:5) = [alphax s x0 alphay y0];
 cnt = 5;
end

ydata=[];
K_inv = inv(K);
R_beforeLM = [];
R_afterLM = [];
t_beforeLM = [];
t_afterLM = [];
for k = 1:nimg
 H = allH{k};
 t = K_inv*H(:,3);
 mag = norm(K_inv*H(:,1));
 if(t(3)<0)
 mag = -mag;
 end
 r1 = K_inv*H(:,1)/mag;
 r2 = K_inv*H(:,2)/mag;
 r3 = cross(r1,r2);
 R = [r1 r2 r3];
 t = t/mag;
 [U,D,V] = svd(R);
 R = U*V';
 R_beforeLM{k}=R;
 t_beforeLM{k}=t;

 phi = acos((trace(R)-1)/2);
 w = phi/(2*sin(phi))*([R(3,2)-R(2,3) R(1,3)-R(3,1) R(2,1)-
R(1,2)])';
 p(cnt+1:cnt+3) = w;
 p(cnt+4:cnt+6) = t;
 cnt = cnt + 6;
 y=xIM{k};
 y=y';
 ydata=[ydata y(:)'];
end
x = xW';
xdata = x(:)';
options = optimoptions('lsqcurvefit','Algorithm','levenberg-
marquardt');
p1 = lsqnonlin(@myfun1,p,[],[],options,xdata,ydata,rad_dist,nimg);

alphax = p1(1);
s = p1(2);
x0 = p1(3);

alphay = p1(4);
y0 = p1(5);
K1 = [alphax s x0; 0 alphay y0; 0 0 1];

if(rad_dist)
 k1 = p1(6);
 k2 = p1(7);
 cnt = 7;
else
 cnt = 5;
end

for k = 1:nimg
 w = p1(cnt+1:cnt+3);
 t_afterLM{k} = p1(cnt+4:cnt+6)';
 cnt = cnt + 6;
 wx = [0 -w(3) w(2); w(3) 0 -w(1); -w(2) w(1) 0];
 phi = norm(w);
 R_afterLM{k} = eye(3)+sin(phi)/phi*wx + (1-cos(phi))/phi*wx^2;
end

%%%
function err = myfun1(p,xW,xIM,rad_dist,nimg)

alphax = p(1);
s = p(2);
x0 = p(3);
alphay = p(4);
y0 = p(5);
K = [alphax s x0; 0 alphay y0; 0 0 1];

if(rad_dist == 1)
 k1 = p(6);
 k2 = p(7);
 K1 = [alphax 0 x0; 0 alphay y0; 0 0 1];
 cnt = 7;
else
 cnt = 5;
end

xproj = zeros(1,nimg*160);
n1=1;

for k = 1:nimg
 w = p(cnt+1:cnt+3);
 t = p(cnt+4:cnt+6)';
 cnt = cnt + 6;
 wx = [0 -w(3) w(2); w(3) 0 -w(1); -w(2) w(1) 0];
 phi = norm(w);
 R = eye(3)+sin(phi)/phi*wx + (1-cos(phi))/phi*wx^2;
 n2=1;

 for i = 1:80
 x = K*[R t]*[xW(n2:n2+1) 0 1]';
 xproj(n1:n1+1) = [x(1)/x(3) x(2)/x(3)];
 if(rad_dist == 1)

xp = [xproj(n1:n1+1) 1];
xworld = inv(K1)*xp';
r2 = xworld(1)^2 + xworld(2)^2;
xp1 = xworld(1) + xworld(1)*(k1*r2+k2*r2^2);
xp2 = xworld(2) + xworld(2)*(k1*r2+k2*r2^2);
x = K1*[xp1 xp2 1]';
xproj(n1:n1+1) = [x(1)/x(3) x(2)/x(3)];

 end
 n1 = n1+2;
 n2 = n2+2;
 end
end

err = xIM - xproj;

%%%
function [x] = intersect(line1, line2)

A = [line1.point1 1];
B = [line1.point2 1];

l1 = cross(A,B);

A = [line2.point1 1];
B = [line2.point2 1];

l2 = cross(A,B);

x = cross(l1,l2);

x = double([x(1)/x(3) x(2)/x(3)]);

%use homogenous coordinates
%%%
function [A] = getA(xW,yW,xIM,yIM)

A = [];
for i = 1:length(xW)
 B = [xW(i) yW(i) 1 0 0 0 -xW(i)*xIM(i) -
yW(i)*xIM(i) -xIM(i);
 0 0 0 xW(i) yW(i) 1 -xW(i)*yIM(i) -
yW(i)*yIM(i) -yIM(i)];

 A = [A; B];

end
%%%

function v = getv(H,i,j)

v = [H(1,i)*H(1,j), H(1,i)*H(2,j)+H(2,i)*H(1,j), H(2,i)*H(2,j),
H(3,i)*H(1,j)+H(1,i)*H(3,j) ,H(3,i)*H(2,j)+H(2,i)*H(3,j),
H(3,i)*H(3,j)];
end

%%%

function [] = reproject(R,t,K,xIM,k)
%fixed image is image 11 for provided dataset

filename = strcat('Dataset2/Pic_',int2str(2),'.jpg');
img = rgb2gray(imread(filename));
img = imresize(img,0.4);
r = R{2};
Pfixed = K*[r(:,1:2) t{2}]; %4x3
xtrue = xIM{2};

%K is fixed
r = R{k};
P = K*[r(:,1:2) t{k}];
x0 = K(1,3);
y0 = K(2,3);

xim = xIM{k};
xim = [xim ones(size(xim,1),1)];
xyz = inv(P)*xim';
xest = Pfixed*xyz;
xest = xest';
figure
imshow(img)
for i = 1:80
 xest(i,:) = xest(i,:) / xest(i,3);
 hold on
 plot(uint64(xtrue(i,1)),uint64(xtrue(i,2)),'g.','MarkerSize',12);
 hold on
 plot(uint64(xest(i,1)),uint64(xest(i,2)),'r.','MarkerSize',12);
end
xest = xest(:,1:2);
hold off
err = abs(xtrue(:)-xest(:));
mean(err)
var(err)

%**
% if(rad_dist)
% K1 = K; K1(1,2) = 0;
% for i = 1:80
% xp = [xest(i,:) 1];
% xworld = inv(K1)*xp';
% r2 = xworld(1)^2 + xworld(2)^2;

% xp1 = xworld(1) + xworld(1)*(k1*r2+k2*r2^2);
% xp2 = xworld(2) + xworld(2)*(k1*r2+k2*r2^2);
% x = K1*[xp1 xp2 1]';
% xest(i,:) = [x(1)/x(3) x(2)/x(3)];
% end
% end
%
% figure
% imshow(img)
% for i = 1:80
% hold on
% plot(uint64(xest(i,1)),uint64(xest(i,2)),'r.','MarkerSize',15);
% end
% xest = xest(:,1:2);
% hold off
% err = abs(xtrue(:)-xest(:));
% mean(err)
% var(err)
% %**8*
%
%

end

%%%

function [corner] = get_corners(filename)

gr_truth = imresize(imread(filename),0.4);

gr_truth_gray = rgb2gray(gr_truth);
gr_truth_edge = edge(gr_truth_gray,'canny',0.7);%for provided dataset
0.7
figure
imshow(gr_truth_edge)

[H, T, R] = hough(gr_truth_edge,'RhoResolution',1); %for provided
dataset 0.5

P = houghpeaks(H,25,'Threshold',10); %for provided dataset 25 and 15
lines = houghlines(gr_truth_edge,T,R,P,'FillGap',350,'MinLength',100);
%for provided dataset 150 and 70

% figure, imshow(gr_truth_gray), hold on
line_param = zeros(length(lines),2); %slope, y-intersect,
hor = []; ver = [];
% figure
% imshow(gr_truth_gray)
for k = 1:length(lines)
 xy = [lines(k).point1; lines(k).point2];

 %find the equation of the line y = mx + b
 %find slope m
 line_param(k,1) = (xy(1,2)-xy(2,2))/(xy(1,1)-xy(2,1));
% plot_line(lines,k,size(gr_truth_edge));
 if(abs(line_param(k,1))>1.5)
 ver = [ver k];
 else
 hor = [hor k];
 end

 if(abs(line_param(k,1)) == inf)
 line_param(k,2) = inf;
 else
 line_param(k,2) = xy(1,2) - line_param(k,1)*xy(1,1);
 end
end

corner = [];
for i = 1:length(lines)
 n_c{i} = [];
end
%***

%get rid of extra lines
lines_hor = lines(hor);
ehor = zeros(1,length(hor));
for i= 1:length(lines_hor)
 for j = i+1:length(lines_hor)
 [pt]= intersect(lines_hor(i), lines_hor(j));
 if(pt(1)>1 && pt(1)<size(gr_truth,2) && pt(2)>1 &&
pt(2)<size(gr_truth,1))
 ehor(i) =ehor(i)+ 1;
 ehor(j) = ehor(j)+1;
 end
 end
end
lines_ver = lines(ver);
ever = zeros(1,length(ver));
for i= 1:length(lines_ver)
 for j = i+1:length(lines_ver)
 [pt]= intersect(lines_ver(i), lines_ver(j));
 if(pt(1)>1 && pt(1)<size(gr_truth,2) && pt(2)>1 &&
pt(2)<size(gr_truth,1))
 ever(i) = ever(i) +1;
 ever(j) = ever(j) +1;
 end
 end
end

[ever ind1] = sort(ever,'ascend');
[ever ind2] = sort(ehor,'ascend');
lines = lines([hor(ind2(1:10)) ver(ind1(1:8))]);

%***

%plot the lines
figure
imshow(gr_truth_gray)
for k = 1:length(lines)
 xy = [lines(k).point1; lines(k).point2];
 %find the equation of the line y = mx + b
 %find slope m
 line_param(k,1) = (xy(1,2)-xy(2,2))/(xy(1,1)-xy(2,1));
 if(abs(line_param(k,1)) == inf)
 line_param(k,2) = inf;
 hold on
 y = 1:size(gr_truth,1);
 x = xy(1,1)*ones(1,length(y));
 plot(x,y,'Color','green')
 else
 line_param(k,2) = xy(1,2) - line_param(k,1)*xy(1,1);
 f = @(x) line_param(k,1)*x + line_param(k,2);
 x = 1:size(gr_truth,2);
 y = uint64(f(x));
 hold on
 plot(x,y,'Color','green');
 end
end

%***

%find the corners
for i= 1:length(lines)
 for j = i+1:length(lines)
 [pt]= intersect(lines(i), lines(j));
 if(pt(1)>1 && pt(1)<size(gr_truth,2) && pt(2)>1 &&
pt(2)<size(gr_truth,1))
 corner = [corner; pt];
% hold on
% plot(pt(1),pt(2),'r*')
 n_c{i} = [n_c{i} size(corner,1)];
 n_c{j} = [n_c{j} size(corner,1)];
 end
 end
end

%make sure you have 80 corners
if(size(corner,1)~=80)
 disp(length(lines))
 disp(size(corner,1));
 fprintf('Error with the number of corners\n');
end

%label the corners same way as I did the
%if n_l(i) is 10 then line i is vertical , if 8 then it's horizontal
%neded to sort the linesâ€” Ð �Ñƒ, â€” Ð³Ð¾Ð²Ð¾Ñ - Ñ �
Ð¿Ñ€ÐµÐ´Ð¿Ð¾Ð»Ð°Ð³Ð°ÑŽ, Ñ‡Ñ‚Ð¾ Ñ‚Ð¾Ñ‚ ÐºÐ¾Ñ‚Ð¾Ñ€Ñ‹Ð¹ Ñ �Ð²Ð¾ÐµÐ¹
Ð³Ð¾Ð»Ð¾Ð²Ð¾Ð¹ Ñ€Ð°Ð·Ð±Ð¸Ð» Ð»Ð¾Ð±Ð¾Ð²Ð¾Ðµ Ñ �Ñ‚ÐµÐºÐ»Ð¾, Ð
Ð¿Ð¾Ð»ÑƒÑ‡Ð¸Ñ‚ÑŒ Ð¾ÐºÐ¾Ð»Ð¾ 5 Ð»ÐµÑ‚ Ð·Ð° Ð¿Ð¾Ð²Ñ€ÐµÐ¶Ð´ÐµÐ½Ð¸Ðµ
Ñ‡ÑƒÐ¶ÐµÐ³Ð¾ Ð¸Ð¼ÑƒÑ‰ÐµÑ �Ñ‚Ð²Ð° Ð¸ Ð¿Ð¾Ð¿Ñ‹Ñ‚ÐºÑƒ
Ð²Ð¾Ñ€Ð¾Ð²Ñ �Ñ‚Ð²Ð°... Ð�
Ð² ÐºÑƒÑ �Ñ‚Ñ‹, Ð¼Ð¾Ð¶ÐµÑ‚ Ð¸ 8 Ñ�
Ð¿Ð¾Ð¿Ñ‹Ñ‚ÐºÑƒ ÑƒÐ±ÐµÐ¶Ð°Ñ‚ÑŒ Ñ � Ð¼ÐµÑ�Ñ‚Ð°

hor = [];
ver = [];

for i = 1:length(lines)
 if(length(n_c{i}) ==8)
 hor = [hor i];
 else
 ver = [ver i];
 end
end

xs = zeros(length(ver),1); %for each vertical line sort
for i = 1:length(ver)
 %sort according to smallest x
 ind = n_c{ver(i)}; %these are corners that are on that line
 xs(i) = min(corner(ind,1)); %this is the smallest y for that
vertical line
end

[d ind] = sort(xs,'ascend'); %sort vertical lines according to the
smalles x
ver = ver(ind); %vertical lines are sorted

labels = zeros(80,1);
cnt = 0;
ys = zeros(10,1); %for each vertical line sort
for i = 1:length(ver)
 ind = n_c{ver(i)}; %these are corners that are on that line
 ys = corner(ind,2);
 [d sind] = sort(ys,'ascend');
 for j = 1:length(sind) %1 to 10
 cnt =cnt + 1;
 labels(cnt) = ind(sind(j));
 end
end

corner = corner(labels,:);

%
%***

% %plot the lines
% figure
% imshow(gr_truth_gray)
% for k = 1:length(lines)
% xy = [lines(k).point1; lines(k).point2];
% %find the equation of the line y = mx + b
% %find slope m
% line_param(k,1) = (xy(1,2)-xy(2,2))/(xy(1,1)-xy(2,1));
% if(abs(line_param(k,1)) == inf)
% line_param(k,2) = inf;
% hold on
% y = 1:size(gr_truth,1);
% x = xy(1,1)*ones(1,length(y));
% plot(x,y,'Color','green')
% else
% line_param(k,2) = xy(1,2) - line_param(k,1)*xy(1,1);
% f = @(x) line_param(k,1)*x + line_param(k,2);
% x = 1:size(gr_truth,2);
% y = uint64(f(x));
% hold on
% plot(x,y,'Color','green');
% end
% end

%***

for i = 1:length(labels)
 hold on
 text(corner(i,1),corner(i,2),int2str(i),'Color','r');
end

%%%

	Blank Page
	Blank Page
	Blank Page

