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1 Character Recognition

In order to recognize the characters in a set of test images using a training image, my implemen-
tation follows the following steps for each of the images:

1. Segment the foreground using Otsu’s algorithm as shown in Section 2. The foreground
represents the letters on the image. The output of this process is a mask with non-zero
pixels corresponding to the foreground pixels.

2. Perform component labeling as shown in Section 3 in order to label the different disconnected
components in the foreground mask. The output of this process is an image whose pixel
values are labels (integers). Each unique label correspond to a component (which is actually
a letter) in the image.

3. Clean the components as shown in Section 4 by removing the very big components which
represent the background, not the actual characters, as well as the very small components
(likely to be noise).

4. Perform Harris corner detection to find the sharpest N (I use N = 9) corners in each com-
ponent as shown in Section 5.

5. Construct a shape vector for each single component (character) in the image as shown in
Section 6.

6. If this is the training image, keep the shape vectors for the matching process. If this is a
test image, find the best component match of the shape vector of each component in the
test image as shown in Section 7.

2 RGB Image Segmentation Using the Otsu algorithm

Given a color image, my implementation follows the following steps to extract the foreground of
an image.

1. Separate the RGB color channels of the input image into three grayscale images.

2. Get the foreground mask for each channel using the Otsu algorithm as described in the next
subsection.

3. To merge the three masks together into a single foreground mask, we observe that the
foreground is always colorful (high pixel values), and the background is either black or
white. We also note that letters have different colors. So we need the foreground to be the
union of all the foregrounds from the three RGB channels. Hence, the overall foreground
mask is:

mask = maskb OR maskg OR maskr
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where mask, maskb, maskg, maskr are the overall, blue, green, and red masks respectively.
The training image is a little different since the foreground is black and the background is
white, so the masks have to be inverted.

2.1 Grayscale Otsu Segmentation

Given a grayscale image, my implementation of the Otsu algorithm follows these steps:

1. Construct a 256-level histogram h of the image, such that h[i] = ni is the number of pixels
whose grayscale value equal to i.

2. Calculate the average grayscale value of the image.

µT =

L∑
1

ipi

where
pi = ni/N

and L is the total number of levels, and N is the total number of pixels in the image.

3. For each level in the histogram, calculate:

(a) The zeroth-order cumulative moment

ω(k) =

k∑
1

pi

(b) The first-order cumulative moment

µ(k) =

k∑
1

ipi

(c) The between-class variance

σ2
B(k) = [µTω(k) − µ(k)]2/[ω(k)(1 − ω(k))]

4. Choose threshold = k∗ such that σ2
B(k∗) is maximum.

5. Construct a mask whose pixels is 1 if the corresponding pixels in the original image is greater
than the threshold, and 0 otherwise. This mask represents the foreground of the image.

3 Component Labeling

Given the foreground mask, the output of this process is a labels image whose pixel values are
labels (integers). Each unique label correspond to a component (which is actually a letter) in the
image. My component labeling implementation follows the following steps:

1. First pass: assign temporary labels for connected pixels, and record labels equivalences. To
achieve that, for each pixel in the mask:

(a) If the pixel value is 0, assign its label to 0.

(b) Construct the equivalence set of labels for this pixel as the labels of the neighboring
pixels (west, north west, north, north east) whose pixel value is equal to the value of
this pixel.
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(c) Note that, in case of 4-connectivity, we only check for the west and north pixels. We
needed the 4-connectivity with the first test image because two characters were 8-
connected.

(d) Check the size of the equivalence set:

i. If the size of the equivalence set is equal to 0, this means that none of the neigh-
boring pixels has labels, so we assign a new label to this pixel.

ii. If the size of the equivalence set is equal to 1, this means that only one neighboring
pixel has a label, so we assign this label to this pixel.

iii. If the size of the equivalence set is more than 1, this means that the neighboring
pixels have different labels. In this case we need to record this equivalence. So,
we add this equivalence set to a global list of equivalence lists. And we choose the
least label from the equivalence set to this pixel.

iv. Note that when adding the equivalence set the the list of equivalence sets, the
equivalence set may share some labels with any of the previous equivalence sets.
In this case, we merge all the sets who intersect into a single equivalence set.

2. Second pass: resolve equivalences. To achieve that, for each pixel with non-zero label in the
labels image:

(a) Check the list of equivalence sets. If the label exists in one of the sets, assign the least
label from the set.

(b) If not, leave the label as is.

(c) Note that after this pass, all the labels who exist in the same equivalence set will have
the least label in teh set.

4 Cleaning Components

This process has two main gaols.

1. Remove the components whose size is more than 30,000 pixels. These components are likely
to be the background, because some images have white backgrounds. This is done by creating
a histogram that represents the frequency of each label. After that, we iterate over the image
to set the the labels whose frequency is more than 30,000 to the label 0 (background).

2. Remove the components whose size is less than 100 pixels. These components are likely to
be noise.

3. For convenience and implementation ease, the method replace the non-continuous labels
with continuous ones. The output of the component labeling could contain labels 2, 20, 40,
etc. After this step, the new labels will be 1, 2, 3, etc.

5 Harris Corner Detector

My Harris corner detection program follows the following steps to find a maximum of N corners
in each component in an image given a specific scale σ.

1. Initialize a list of corners for each label, and a list of the ratios of the corresponding corners.
These lists categorizes the corners by their labels, and will be used to choose the sharpest
corners.

2. Smooth the input image by applying a Gaussian filter with the given σ.
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3. Find the x-derivative and y-derivative of each pixel in the smoothed image by applying a
Haar wavelet filter. The Haar window size is the least even number that is greater than 4σ.
If σ = 1.2, windowsize = 6. As a result, the following operator will be used to find dx:

−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1


And the following operator will be used to find dy:

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1


In order to perform this convolution efficiently, I use the integral image of the smoothed
image.

4. For each labeled pixel in the image:

(a) Construct the following matrix using the 5σ × 5σ window around the pixel:

C =

( ∑
d2x

∑
dxdy∑

dxdy
∑
d2y

)
(b) If the pixel is not a corner, one of the eigen values will be very small. At each pixel,

the corner strength (how likely the pixel is a corner) is given by the following relation:

CornerStrength = λ1λ2 − k(λ1 + λ2)2

Where k is a constant equal to 0.04. To avoid finding the eigen values of the matrix, it
is known that:

Det(C) = λ1λ2

Tr(C) = λ1 + λ2

So the corner strength can now be computed as:

CornerStrength = Det(C) − kTr(C)2

(c) The pixel is considered a corner if its Corner Strength is greater than a certain threshold
HARRIS THRESHOLD which I set to 1012.

(d) If the pixel is considered a corner, add the pixel to the list of corners of its label, and
the ratio to the list of rations of its label.

5. A Non-maximum Suppression process is performed. In other words, a corner is eliminated
if one of its neighbors has a larger corner strength.

6. Use the lists of corners and ratios to choose the sharpest N corners for each label, i.e. the
corners with the largest ratios.
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6 Constructing Shape Vectors

To construct a shape vector that represent a component (character), my method follows the
following steps for each component.

1. Calculate the center of the component. The center is computed as follows:

xcenter = (xmax + xmin)/2

ycenter = (ymax + ymin)/2

where xcenter and ycenter are the x and y coordinates of the center point. xmax and ymax

xmin and ymin are the coordinates of the extreme points in the two directions.

2. Calculate the angle of each corner with the center of the component:

tan−1((ycorner − ycenter)/(xcorner − xcenter))

The angle is then adjusted if it is negative.

3. Calculate the angle between each two consecutive corners by sorting the angles and then
subtracting each two consecutive angles. The angle between the corners is the same as the
arc length between the projections of the corners on the unit circle. The angle is easier to
implement than the arc length between the projected corners, so I didn’t project the corners.

ArcLength = rθ

where r is the radius of the circle (1 because it is unit circle), and θ is the angle between the
two corners.

4. The shape vector is the vector of the angles between the lines joining the component center
and the corners.

5. As an enhancement, I calculate the distance between each corner and the center pixel. That’s
because some letters have corners with the same angles, but the distances to the corners are
different. Then I append the list of normalized distances to the list of normalized angles in
the shape vector. This enhancement will be evaluated later.

6. Optimally, we would have N angles between the N corners. But for some components, there
is no N corners, so we have to pad the shape vector with zeros.

7 Matching Letters

Given a shape vector of a component, to find the best training component match, my method
follows the following procedures:

1. For each element in the shape vector:

(a) In order to make the matching process rotation invariant, Circularly rotate the vector
such that this element is the first.

(b) For each training shape vector:

i. Find the Euclidean distance between the rotated shape vector and the training
shape vector.

ii. If the Euclidean distance is the least one so far, the best component match is the
component corresponding to the current training shape vector.
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8 More Thoughts

The results section show that the overall average recognition accuracy for all the letters for all the
test images is 31%. Here are my observations:

1. In my opinion, Harris corner detection is the main reason of the low performance due to the
following reasons:

(a) It is hard to tune the variable N (the maximum number of corners for each letter. If I
use large N, Harris will include many not-sharp corners in the letters with few corners
(e.g. I, O), which makes the matching process hard. If I use small N, Many important
corners won’t be included from the letters with many corners (e.g. M, W).

(b) It is hard to set a Harris threshold that is suitable for all the images. If the threshold
is low, this will include many bad corners. If it is high, this will miss many important
corners.

(c) In case of a letter with many corners (e.g. M, W, A), not all the corners will be included.
For example, the letter A has 11 corner, but the maximum I use is 9, so two of the
corners won’t be included each time. However, the 9 sharpest corners differ from image
to image, which result in a shape vector that is greatly different from the training shape
vector.

2. The fonts used for different images are not the same, which makes it very hard to recognize
the letters. For example, the letter O has no corners in the training image, but it has many
edges in the last test image (in the word ”Hollywood”. This shows that the approach of
using the corners to recognize letters will always be limited. This is very clear because the
statistics indicate that the images with the best recognition accuracy are images 3 and 4
because their fonts are similar to the training set, while no letters recognised in Image 2
because the font is very different.

As an enhancement, I try using a modified shape vector that includes the distance to the center
point. I expected that the results would be better if the shape vector encodes the normalized
distance to the corner as well. That’s because some letters have corners with the same angles, but
the distances to the corners are different. Using this enhancement, the accuracy for some images
has greatly increased (image 2 from 0% to 15%). However, the overall accuracy for all the images
was almost the same 30% (vs. 31% without the enhancement).

Many other things can be done to achieve better results such as using larger training set. The
training set should contain many fonts and many ways to write each letter, so that it is easier to
recognize letters from the test set.
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9 Results

9.1 Training Image

Figure 1: The input training image
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Figure 2: Otsu: the foreground mask of the image. White pixels are the foreground, while black
pixels are the background.
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Figure 3: Component labeling: an image representing the output of the component labeling
process. Each unique label (component) is given a random color for visualization. Note that this
image is after the component cleaning process as well.
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Figure 4: Harris corners (red circles) for each component. Note that some characters don’t have
enough corners. The number of corners per character will not exceed N = 9
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Figure 5: The shape vector of each component is the N-vector of angles between each successive
pair of the N (green) lines that join the component cetner (blue) with the corners (red)
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9.2 Test Image 1

Figure 6: The input test image
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Figure 7: Otsu: the foreground mask of the image. White pixels are the foreground, while black
pixels are the background.
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Figure 8: Component labeling: an image representing the output of the component labeling
process. Each unique label (component) is given a random color for visualization. Note that this
image is after the component cleaning process as well.
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Figure 9: Harris corners (red circles) for each component. Note that some characters don’t have
enough corners. The number of corners per character will not exceed N = 9

15



Figure 10: The shape vector of each component is the N-vector of angles between each successive
pair of the N (green) lines that join the component cetner (blue) with the corners (red)
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Figure 11: The output of the character recognition process. The overlaid blue characters are the
output of the recognition process for the corresponding underlaid characters.
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9.3 Test Image 2

Figure 12: The input test image
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Figure 13: Otsu: the foreground mask of the image. White pixels are the foreground, while black
pixels are the background.
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Figure 14: Component labeling: an image representing the output of the component labeling
process. Each unique label (component) is given a random color for visualization. Note that this
image is after the component cleaning process as well.
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Figure 15: Harris corners (red circles) for each component. Note that some characters don’t have
enough corners. The number of corners per character will not exceed N = 9
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Figure 16: The shape vector of each component is the N-vector of angles between each successive
pair of the N (green) lines that join the component cetner (blue) with the corners (red)
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Figure 17: The output of the character recognition process. The overlaid blue characters are the
output of the recognition process for the corresponding underlaid characters.
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9.4 Test Image 3

Figure 18: The input test image

Figure 19: Otsu: the foreground mask of the image. White pixels are the foreground, while black
pixels are the background.
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Figure 20: Component labeling: an image representing the output of the component labeling
process. Each unique label (component) is given a random color for visualization. Note that this
image is after the component cleaning process as well.

Figure 21: Harris corners (red circles) for each component. Note that some characters don’t have
enough corners. The number of corners per character will not exceed N = 9
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Figure 22: The shape vector of each component is the N-vector of angles between each successive
pair of the N (green) lines that join the component cetner (blue) with the corners (red)

Figure 23: The output of the character recognition process. The overlaid blue characters are the
output of the recognition process for the corresponding underlaid characters.
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9.5 Test Image 4

Figure 24: The input test image
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Figure 25: Otsu: the foreground mask of the image. White pixels are the foreground, while black
pixels are the background.
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Figure 26: Component labeling: an image representing the output of the component labeling
process. Each unique label (component) is given a random color for visualization. Note that this
image is after the component cleaning process as well.
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Figure 27: Harris corners (red circles) for each component. Note that some characters don’t have
enough corners. The number of corners per character will not exceed N = 9
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Figure 28: The shape vector of each component is the N-vector of angles between each successive
pair of the N (green) lines that join the component cetner (blue) with the corners (red)
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Figure 29: The output of the character recognition process. The overlaid blue characters are the
output of the recognition process for the corresponding underlaid characters.
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9.6 Test Image 5

Figure 30: The input test image
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Figure 31: Otsu: the foreground mask of the image. White pixels are the foreground, while black
pixels are the background. 35



Figure 32: Component labeling: an image representing the output of the component labeling
process. Each unique label (component) is given a random color for visualization. Note that this
image is after the component cleaning process as well.

36



Figure 33: Harris corners (red circles) for each component. Note that some characters don’t have
enough corners. The number of corners per character will not exceed N = 937



Figure 34: The shape vector of each component is the N-vector of angles between each successive
pair of the N (green) lines that join the component cetner (blue) with the corners (red)38



Figure 35: The output of the character recognition process. The overlaid blue characters are the
output of the recognition process for the corresponding underlaid characters.39



9.7 Test Image 6

Figure 36: The input test image
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Figure 37: Otsu: the foreground mask of the image. White pixels are the foreground, while black
pixels are the background.
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Figure 38: Component labeling: an image representing the output of the component labeling
process. Each unique label (component) is given a random color for visualization. Note that this
image is after the component cleaning process as well.
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Figure 39: Harris corners (red circles) for each component. Note that some characters don’t have
enough corners. The number of corners per character will not exceed N = 9
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Figure 40: The shape vector of each component is the N-vector of angles between each successive
pair of the N (green) lines that join the component cetner (blue) with the corners (red)
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Figure 41: The output of the character recognition process. The overlaid blue characters are the
output of the recognition process for the corresponding underlaid characters.
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9.8 Statistics

Figure 42: Statistics of the recognition Process WITHOUT the enhancement of the corners dis-
tances. The first column contains the letters. The second and third columns contain the actual
number of characters in Image 1 and the correctly recognized letters respectively. Columns 4-13
are the same for all the other test images. Column 14 and 15 contain the actual number of char-
acters in all the images and the correctly recognized letters respectively. Column 16 contains the
overall recognition accuracy for each letter. The last two rows show the overall statistics for all
letters in each image. The bold-ed number shows that the overall average recognition accuracy is
31correctly recognized out of 162 letters)
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Figure 43: Statistics of the recognition Process WITH the enhancement of the corners disntance.
The first column contains the letters. The second and third columns contain the actual number
of characters in Image 1 and the correctly recognized letters respectively. Columns 4-13 are the
same for all the other test images. Column 14 and 15 contain the actual number of characters in
all the images and the correctly recognized letters respectively. Column 16 contains the overall
recognition accuracy for each letter. The last two rows show the overall statistics for all letters in
each image. The bold-ed number shows that the overall average recognition accuracy is 31correctly
recognized out of 162 letters)
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10 Source Code

The following is the entire Python source code.

1 import sys
2 import cv2
3 import numpy as np
4 from math import atan2 , p i
5
6 # Harris Corner Detect ion Threshold
7 HARRIS THRESHOLD = 1e12
8
9 # The number o f corners in one l e t t e r .

10 CORNERSNUM = 9
11
12
13 def main ( ) :
14
15 # The shape vec t o r s o f the t r a i n i n g image .
16 t r a i n i n g v e c t o r s = None
17
18 # The order o f the l e t t e r s in the t r a i n i n g image according to the l a b e l s
19 # numbers .
20 t r a i n i n g l e t t e r s = ’CGABDEFHIJKLMNOQSPRTUVWXYZ’
21
22 for i in xrange ( 7 ) :
23
24 print ’ Image ’ , i
25
26 # The f i l e name of the input image .
27 f i l e name = ’ images /{} . jpg ’ . format ( i )
28
29 # Read the input image .
30 image = cv2 . imread ( f i l e name )
31
32 image c lone = image . copy ( )
33
34 # Segment us ing Otsu ’ s a lgor i thm on the image .
35 i f i != 6 :
36 mask = otsu rgb ( image , f i l e name , inverted masks =[1 , 1 , 1 ] ,
37 i s and=0)
38 else :
39 mask = otsu rgb ( image , f i l e name , inverted masks =[0 , 0 , 0 ] )
40
41 # Perform component l a b e l i n g . Use four conne c t i v i t y only f o r the
42 # t e s t i n g image number 1 .
43 l abe l s image = labe l components (mask , f o u r c onn e c t i v i t y=( i == 1))
44
45 # Clean the components by removing the very l a r g e components .
46 clean components ( l ab e l s image )
47
48 # Visua l i z e the l a b e l s by a s s i gn ing a random co lo r to each l a b e l .
49 show labe l s ( l abe l s image , f i l e name )
50
51 # Convert the co l o r image to g ray s ca l e .
52 gray image = cv2 . cvtColor ( image , cv2 .COLORBGR2GRAY)
53
54 # Find the corners in the g ray s ca l e image us ing Harris corner d e t e c t i on .
55 components corners = ha r r i s ( gray image , l ab e l s image )
56
57 # Mark the corners in the f i r s t image .
58 for component in components corners :
59 for corner in component :
60 cv2 . c i r c l e ( image , ( corner [ 0 ] , co rner [ 1 ] ) , 7 , (0 , 0 , 255) , −1)
61
62 # Save the r e s u l t s .
63 cv2 . imshow( i n j e c t ( f i l e name , ’ c o rne r s ’ ) , image )
64 cv2 . imwrite ( i n j e c t ( f i l e name , ’ c o rne r s ’ ) , image )
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65
66 # Get the shape vec t o r s .
67 components centers , components vectors = ge t shape v e c t o r s (
68 l abe l s image , components corners )
69
70 # The shape vec t o r s o f the f i r s t image , are the t r a i n i n g vec t o r s .
71 i f i == 0 :
72 t r a i n i n g v e c t o r s = components vectors
73
74 for j , c en t e r in enumerate ( components centers ) :
75 cv2 . c i r c l e ( image , ( c en t e r [ 0 ] , c en t e r [ 1 ] ) , 7 , (255 , 0 , 0 ) , −1)
76
77 for corner in components corners [ j ] :
78 cv2 . l i n e ( image , ( c en t e r [ 0 ] , c en t e r [ 1 ] ) , ( corner [ 0 ] , co rner [ 1 ] ) ,
79 (0 , 255 , 0 ) , 3)
80
81 # Save the r e s u l t s .
82 cv2 . imshow( i n j e c t ( f i l e name , ’ f e a t u r e s ’ ) , image )
83 cv2 . imwrite ( i n j e c t ( f i l e name , ’ f e a t u r e s ’ ) , image )
84
85 i f i == 0 :
86 # Print the l e t t e r s on the image .
87 for j , c en t e r in enumerate ( components centers ) :
88 cv2 . putText ( image c lone , t r a i n i n g l e t t e r s [ j ] ,
89 center , cv2 .FONT HERSHEY SIMPLEX, 1 , (255 , 0 , 0 ) , 2)
90 else :
91 # Match the l e t t e r s in the image with the t r a i n i n g image .
92 matchings = recognize components ( t r a i n i n g v e c t o r s ,
93 components vectors )
94 # Print the l e t t e r s on the image .
95 for j , c en t e r in enumerate ( components centers ) :
96 cv2 . putText ( image c lone , t r a i n i n g l e t t e r s [ matchings [ j ] ] ,
97 center , cv2 .FONT HERSHEY SIMPLEX, 1 , (255 , 0 , 0 ) , 2)
98
99 # Save the r e s u l t s .

100 cv2 . imshow( i n j e c t ( f i l e name , ’ r e c o gn i t i o n ’ ) , image c lone )
101 cv2 . imwrite ( i n j e c t ( f i l e name , ’ r e c o gn i t i o n ’ ) , image c lone )
102
103 while not cv2 . waitKey (50) & 0xFF == 27 :
104 pass
105 cv2 . destroyAllWindows ( )
106
107
108 def i n j e c t ( image name , s u f f i x ) :
109 return ’ {} {} .{} ’ . format ( image name . s p l i t ( ’ . ’ ) [ 0 ] , s u f f i x ,
110 image name . s p l i t ( ’ . ’ ) [ 1 ] )
111
112
113 def ot su rgb ( image , f i l e name , inverted masks =[0 , 0 , 0 ] , i s and=1,
114 i t e r a t i o n s =[1 , 1 , 1 ] , org image=None , s=’ ’ ) :
115
116 # The o r i g i n a l image i s j u s t used fo r the r e s u l t s .
117 i f org image i s None :
118 org image = image
119
120 # I n i t i a l i z e the o v e r a l l mask .
121 overa l l mask = np . z e r o s ( ( image . shape [ 0 ] , image . shape [ 1 ] ) , np . u int8 )
122 i f i s and :
123 overa l l mask . f i l l (255)
124
125 # For each channel in the three co l o r channels :
126 for c in xrange ( 3 ) :
127
128 # The image repre s en t ing channel c .
129 channel image = np . z e r o s l i k e ( image )
130 channel image [ : , : , c ] = image [ : , : , c ]
131
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132 # The mask o f channel c .
133 mask = None
134
135 # For an a r b i t r a r y number o f i t e r a t i o n s : perform the segmentat ion
136 # using Otsu ’ s a lgor i thm .
137 for i in xrange ( i t e r a t i o n s [ c ] ) :
138 # Perform the segmentat ion us ing Otsu ’ s a lgor i thm .
139 mask = otsu ( image [ : , : , c ] , mask )
140
141 ”””
142 # Save the r e s u l t s .
143 cv2 . imwrite ( i n j e c t ( f i l e name , ’mask {} {}{} ’ . format ( c , i , s ) ) , mask)
144 ”””
145
146 # Inver t the masks t ha t are ind i ca t ed in inver ted masks .
147 i f inverted masks [ c ] == 1 :
148 mask = cv2 . b i tw i s e no t (mask )
149
150 # Calcu la t e the o v e r a l l mask as the l o g i c a l and/or o f masks .
151 i f i s and :
152 overa l l mask = cv2 . b i tw i s e and ( overa l l mask , mask )
153 else :
154 overa l l mask = cv2 . b i tw i s e o r ( overa l l mask , mask )
155
156 # Save the r e s u l t s .
157 cv2 . imwrite ( i n j e c t ( f i l e name , ’mask{} ’ . format ( s ) ) , ove ra l l mask )
158
159 return overa l l mask
160
161
162 def otsu ( image , mask=None ) :
163
164 # The histogram of g ray s ca l e l e v e l s .
165 histogram = [ 0 ] ∗ 256
166
167 # The t o t a l number o f p i x e l s in the mask .
168 pixe ls num = 0
169
170 # The average g ray s ca l e va lue f o r the en t i r e image (masked by the mask ) .
171 mu t = 0
172
173 # I n i t i a l i z e the histogram based on the p i x e l s o f the image .
174 for r in xrange ( image . shape [ 0 ] ) :
175 for c in xrange ( image . shape [ 1 ] ) :
176 i f mask i s None or mask [ r ] [ c ] != 0 :
177 pixe ls num += 1
178 mu t += image [ r ] [ c ]
179 histogram [ image [ r ] [ c ] ] += 1
180
181 # The average g ray s ca l e va lue f o r the en t i r e image (masked by the mask ) .
182 mu t = f l o a t (mu t ) / pixe ls num
183
184 # The cumulat ive p r o b a b i l i t y o f p i x e l s l e s s than or equa l l e v e l i .
185 omega i = 0
186
187 # The cumulat ive average g ray s ca l e va lue l e s s than or equa l l e v e l i .
188 mu i = 0
189
190 # The f i n a l chosen t h r e s ho l d .
191 th r e sho ld = −1
192
193 # The maximum sigma b ˆ 2 corresponding to the f i n a l chosen t h r e s ho l d .
194 max sigma b = −1
195
196 # For every g ray s ca l e l e v e l in the histogram :
197 for i in xrange ( 2 5 6 ) :
198
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199 # The number o f p i x e l s in the g ray s ca l e l e v e l i .
200 n i = histogram [ i ]
201
202 # The p r o b a b i l i t y o f p i x e l s in l e v e l i .
203 p i = n i / f l o a t ( pixe ls num )
204
205 # Update the cumulat ive p r o b a b i l i t y o f p i x e l s l e s s than or equa l
206 # l e v e l i , and the cumulat ive average g ray s ca l e va lue l e s s than or
207 # equa l l e v e l i .
208 omega i += p i
209 mu i += i ∗ p i
210
211 # Ignore the very f i r s t l e v e l s and the very l a s t l e v e l s t ha t don ’ t
212 # contain any p i x e l s . For the se l e v e l s , s i gma b i w i l l cause d i v i s i o n
213 # by zero excep t ion .
214 i f omega i == 0 or omega i == 1 :
215 continue
216
217 # Update the between−c l a s s var iance sigma b ˆ 2 .
218 s i gma b i = (mu t ∗ omega i − mu i ) ∗∗ 2 / ( omega i ∗ (1 − omega i ) )
219
220 # Compare the between−c l a s s var iance sigma b ˆ 2 to the maximum,
221 # and update the b e s t t h r e s ho l d .
222 i f s i gma b i > max sigma b :
223 th r e sho ld = i
224 max sigma b = s igma b i
225
226 # The image o f the output mask .
227 output mask = np . z e r o s l i k e ( image )
228
229 i f th r e sho ld == −1:
230 return output mask
231
232 # For each p i x e l in the input image :
233 for r in xrange ( image . shape [ 0 ] ) :
234 for c in xrange ( image . shape [ 1 ] ) :
235 # Set the corresponding output mask p i x e l to 1 i f the p i x e l
236 # va lue s i s g r ea t e r than the t h r e s ho l d .
237 i f image [ r ] [ c ] > th r e sho ld :
238 output mask [ r ] [ c ] = 255
239
240 return output mask
241
242
243 def l abe l components ( image , f o u r c onn e c t i v i t y=False ) :
244
245 # The output image o f l a b e l s .
246 l abe l s image = np . z e r o s ( image . shape , np . u int16 )
247
248 # The next l a b e l to use .
249 n ex t l a b e l = 1
250
251 # The l i s t o f l a b e l s e qu i va l ence s e t s .
252 e qu i v a l e n c e s e t s = [ ]
253
254 # The f i r s t pass : a s s i gn temporary l a b e l s , and record equ i va l ence s .
255 # For each p i x e l in the image :
256 for r in xrange ( image . shape [ 0 ] ) :
257 for c in xrange ( image . shape [ 1 ] ) :
258
259 # Process only non−zero p i x e l s .
260 i f image [ r ] [ c ] == 0 :
261 continue
262
263 # The equ i va l ence s e t o f l a b e l s f o r t h i s p i x e l .
264 e qu i v a l e n c e s e t = s e t ( [ ] )
265
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266 # I f t h i s p i x e l va lue i s equa l to the west p i x e l :
267 i f c − 1 >= 0 and image [ r ] [ c ] == image [ r ] [ c − 1 ] :
268 # Add the l a b e l to the equ i va l ence s e t .
269 e qu i v a l e n c e s e t . add ( l ab e l s image [ r ] [ c − 1 ] )
270
271 # I f t h i s p i x e l va lue i s equa l to the north p i x e l :
272 i f r − 1 >=0 and image [ r ] [ c ] == image [ r − 1 ] [ c ] :
273 # Add the l a b e l to the equ i va l ence s e t .
274 e qu i v a l e n c e s e t . add ( l ab e l s image [ r − 1 ] [ c ] )
275
276 # I f i t i s 8−connec t i v i t y , check the north west and north eas t .
277 i f not f o u r c onn e c t i v i t y :
278 # I f t h i s p i x e l va lue i s equa l to the north west p i x e l :
279 i f ( r − 1 >= 0 and c − 1 >=0 and
280 image [ r ] [ c ] == image [ r − 1 ] [ c − 1 ] ) :
281 # Add the l a b e l to the equ i va l ence s e t .
282 e qu i v a l e n c e s e t . add ( l ab e l s image [ r − 1 ] [ c − 1 ] )
283
284 # I f t h i s p i x e l va lue i s equa l to the north eas t p i x e l :
285 i f ( r − 1 >=0 and c + 1 < image . shape [ 1 ] and
286 image [ r ] [ c ] == image [ r − 1 ] [ c + 1 ] ) :
287 # Add the l a b e l to the equ i va l ence s e t .
288 e qu i v a l e n c e s e t . add ( l ab e l s image [ r − 1 ] [ c + 1 ] )
289
290 # Check the number o f l a b e l s in the equ i va l ence s e t .
291 i f l en ( e qu i v a l e n c e s e t ) == 0 :
292 # I f no l a b e l s in the equ i va l ence set , a s s i gn new l a b e l .
293 l a b e l = nex t l a b e l
294 n e x t l a b e l += 1
295 e l i f l en ( e qu i v a l e n c e s e t ) == 1 :
296 # I f only one l a b e l in the equ i va l ence set , choose i t .
297 l a b e l = min ( e qu i v a l e n c e s e t )
298 else :
299 # Choose the l e a s t l a b e l f o r the current p i x e l .
300 l a b e l = min ( e qu i v a l e n c e s e t )
301 # I f more than one l a b e l in the equ i va l ence s e t :
302 # For every s e t in the g l o b a l l i s t o f e qu i va l ence s e t s .
303 for i in xrange ( l en ( e qu i v a l e n c e s e t s ) − 1 , −1, −1):
304
305 # I f the current p i x e l e qu i va l ence s e t share any l a b e l s
306 # with the equ i va l ence s e t in the l i s t :
307 i f bool ( e qu i v a l e n c e s e t & equ i v a l e n c e s e t s [ i ] ) :
308 # Merge the two in to the p i x e l e qu i va l ence s e t .
309 e qu i v a l e n c e s e t |= equ i v a l e n c e s e t s [ i ]
310 # Dele te the merged s e t from the l i s t o f s e t s .
311 del e qu i v a l e n c e s e t s [ i ]
312
313 # Add the p i x e l e qu i va l ence s e t to the l i s t .
314 e qu i v a l e n c e s e t s . append ( e qu i v a l e n c e s e t )
315
316 l abe l s image [ r ] [ c ] = l a b e l
317
318 # The second pass : r e s o l v e e qu i va l ence s .
319 # For each p i x e l in the image .
320 for r in xrange ( l ab e l s image . shape [ 0 ] ) :
321 for c in xrange ( l abe l s image . shape [ 1 ] ) :
322
323 # Process only non−zero l a b e l s .
324 i f l ab e l s image [ r ] [ c ] != 0 :
325
326 # The new l a b e l to be ass igned a f t e r r e s o l v i n g equ i va l ence s .
327 new labe l = −1
328
329 # I f the p i x e l l a b e l b e l ongs to one o f the equ i va l ence se t s ,
330 # ass i gn the l e a s t l a b e l from the equ i va l ence s e t .
331 for e qu i v a l e n c e s e t in e qu i v a l e n c e s e t s :
332 i f l ab e l s image [ r ] [ c ] in e qu i v a l e n c e s e t :
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333 new labe l = min ( e qu i v a l e n c e s e t )
334 break
335
336 # Assign the f i n a l l a b e l in case o f equ iva l ences , otherwise ,
337 # leave the l a b e l as i s .
338 i f new labe l != −1:
339 l abe l s image [ r ] [ c ] = new labe l
340
341 return l ab e l s image
342
343
344 def clean components ( l ab e l s image ) :
345
346 # This method removes the components whose s i z e i s l a r g e r than 30000
347 # p i x e l . These components are l i k e l y to be the background .
348
349 # The f r e quenc i e s o f the l a b e l s in the image .
350 l a b e l s f r e q u e n c i e s = np . bincount ( l ab e l s image . r av e l ( ) )
351
352 # The s e t o f l a b e l s to remove .
353 removed labe l s = s e t ( [ ] )
354
355 # For each l a b e l , i f i t s f requency exceeds 30000 , add i t to the s e t .
356 for i in xrange (1 , l en ( l a b e l s f r e q u e n c i e s ) ) :
357 i f l a b e l s f r e q u e n c i e s [ i ] > 30000 or l a b e l s f r e q u e n c i e s [ i ] < 100 :
358 removed labe l s . add ( i )
359
360 # For each p i x e l in the image .
361 for r in xrange ( l ab e l s image . shape [ 0 ] ) :
362 for c in xrange ( l abe l s image . shape [ 1 ] ) :
363
364 # I f the l a b e l i s one o f the l a b e l s to remove , remove i t .
365 i f l ab e l s image [ r ] [ c ] != 0 and l ab e l s image [ r ] [ c ] in r emoved labe l s :
366 l abe l s image [ r ] [ c ] = 0
367
368 # Then , the method ass i gned new l a b e l s so t ha t they are continuous 1 , 2 , . . .
369
370 # The current unique l a b e l s ( not cont inuous ) .
371 l a b e l s = np . unique ( l ab e l s image )
372
373 # For each p i x e l in the image .
374 for r in xrange ( l ab e l s image . shape [ 0 ] ) :
375 for c in xrange ( l abe l s image . shape [ 1 ] ) :
376
377 # Assign the index o f the l a b e l . The ind i c e s are cont inuous .
378 i f l ab e l s image [ r ] [ c ] != 0 :
379 l abe l s image [ r ] [ c ] = np . where ( l a b e l s == labe l s image [ r ] [ c ] ) [ 0 ]
380
381
382 def show labe l s ( l abe l s image , f i l e name ) :
383
384 # The image with the co lored components
385 l a b e l s c o l o r s = np . z e r o s ( ( l ab e l s image . shape [ 0 ] , l ab e l s image . shape [ 1 ] , 3 ) ,
386 np . u int8 )
387
388 # Get the unique l a b e l s .
389 l a b e l s = np . unique ( l ab e l s image )
390 print ’ Components #’ , l en ( l a b e l s ) − 1
391
392 # Generate a l i s t o f random co l o r s f o r the l i s t o f unique l a b e l s .
393 random colors = np . random . random integers (255 , s i z e=( l en ( l a b e l s ) , 3 ) )
394
395 # For each p i x e l in the image .
396 for r in xrange (1 , l ab e l s image . shape [ 0 ] ) :
397 for c in xrange (1 , l ab e l s image . shape [ 1 ] ) :
398 # Process only non−zero l a b e l s .
399 i f l ab e l s image [ r ] [ c ] != 0 :
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400 # Color the l a b e l wi th the corresponding co l o r .
401 l a b e l i n d e x = np . where ( l a b e l s == labe l s image [ r ] [ c ] ) [ 0 ]
402 l a b e l s c o l o r s [ r ] [ c ] [ : ] = random colors [ l a b e l i n d e x ]
403
404 # Save the r e s u l t s .
405 cv2 . imwrite ( i n j e c t ( f i l e name , ’ l a b e l s ’ ) , l a b e l s c o l o r s )
406 cv2 . imshow( i n j e c t ( f i l e name , ’ l a b e l s ’ ) , l a b e l s c o l o r s )
407
408
409 def ha r r i s ( image , l abe l s image , sigma =1.2) :
410
411 # The unique l a b e l s .
412 l a b e l s = np . unique ( l ab e l s image )
413
414 # The array fo r the corners o f each component .
415 components corners = [ [ ] for i in xrange ( l en ( l a b e l s ) − 1 ) ]
416 # The array o f the corresponding r a t i o s .
417 c o r n e r s r a t i o s = [ [ ] for i in xrange ( l en ( l a b e l s ) − 1 ) ]
418
419 smoothed image = cv2 . GaussianBlur ( image , (0 , 0 ) , sigma )
420
421 i n t e g r a l image = np . z e r o s ( image . shape )
422 for y in range ( image . shape [ 0 ] ) :
423 i n t e g r a l image [ y ] [ 0 ] = smoothed image [ y ] [ 0 ]
424 for x in range (1 , image . shape [ 1 ] ) :
425 i n t e g r a l image [ y ] [ x ] = ( smoothed image [ y ] [ x ] +
426 i n t e g r a l image [ y ] [ x − 1 ] )
427
428 for x in range ( image . shape [ 1 ] ) :
429 for y in range (1 , image . shape [ 0 ] ) :
430 i n t e g r a l image [ y ] [ x ] += in t e g r a l image [ y − 1 ] [ x ]
431
432 haar window = in t (np . c e i l ( sigma ∗ 4) )
433 haar window += haar window % 2
434
435 dx = np . z e r o s ( image . shape )
436 dy = np . z e r o s ( image . shape )
437 for y in range ( haar window / 2 , image . shape [ 0 ] − haar window / 2 ) :
438 for x in range ( haar window / 2 , image . shape [ 1 ] − haar window / 2 ) :
439 dx [ y ] [ x ] = get dx ( in t eg ra l image , x , y , haar window )
440 dy [ y ] [ x ] = get dy ( in t eg ra l image , x , y , haar window )
441
442 harr i s window = in t (np . c e i l ( sigma ∗ 5) )
443 harr i s window −= (1 − harr i s window % 2)
444
445 co rne r s = [ ]
446 ra t i o image = np . z e r o s l i k e (dx )
447
448 # For each p i x e l in the input image :
449 for y in range ( harr i s window / 2 , image . shape [ 0 ] − harr i s window / 2 ) :
450 for x in range ( harr i s window / 2 , image . shape [ 1 ] − harr i s window / 2 ) :
451
452 # Don ’ t process un−l a b e l e d p i x e l s .
453 i f l ab e l s image [ y ] [ x ] == 0 :
454 continue
455
456 # The summation o f the sqr ( x−d e r i v a t i v e ) , sqr (y−d e r i v a t i v e ) ,
457 # and x−d e r i v a t i v e ∗ y−d e r i v a t i v e over the Harris window .
458 dx2 = 0
459 dxdy = 0
460 dy2 = 0
461
462 # For each p i x e l in the Harris window around the p i x e l ( x , y ) .
463 for j in range (y − harr i s window / 2 ,
464 y + harr i s window / 2 + 1 ) :
465 for i in range (x − harr i s window / 2 ,
466 x + harr i s window / 2 + 1 ) :
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467
468 # Get the x−d e r i v a t i v e and y−d e r i v a t i v e o f the p i x e l ( i , j ) .
469 d x i j = dx [ j ] [ i ]
470 d y i j = dy [ j ] [ i ]
471
472 # Add to the summation o f the sqr ( x−d e r i v a t i v e ) ,
473 # sqr (y−d e r i v a t i v e ) , and x−d e r i v a t i v e ∗ y−d e r i v a t i v e over
474 # the Harris window .
475 dx2 += np . square ( d x i j )
476 dxdy += dx i j ∗ dy i j
477 dy2 += np . square ( d y i j )
478
479 i f dx2 == 0 and dy2 == 0 and dxdy == 0 :
480 continue
481
482 dx2 /= harr i s window
483 dy2 /= harr i s window
484 dxdy /= harr i s window
485
486 # Compute the determinant and the t race o f the C matrix at the
487 # p i x e l ( x , y )
488 de t c = dx2 ∗ dy2 − np . square ( dxdy )
489 t r c = dx2 + dy2
490
491 # Compute the r a t i o between the determinant and the t race squared .
492 #ra t i o = de t c / np . square ( t r c )
493 r a t i o = det c − 0 .04 ∗ np . square ( t r c )
494 ra t i o image [ y ] [ x ] = r a t i o
495
496 i f r a t i o >= HARRIS THRESHOLD:
497 components corners [ l ab e l s image [ y ] [ x ] − 1 ] . append ( ( x , y ) )
498 c o r n e r s r a t i o s [ l ab e l s image [ y ] [ x ] − 1 ] . append ( r a t i o )
499
500 ”””
501 # I f the r a t i o i s above the HARRIS THRESHOLD, the p i x e l i s
502 # cons idered a corner .
503 i f r a t i o >= HARRIS THRESHOLD:
504 corners . append (( x , y ))
505 ”””
506
507
508 for i in xrange ( l en ( components corners ) ) :
509 for j in xrange ( l en ( components corners [ i ] ) − 1 , −1, −1):
510
511 i f not i s c o r n e r ( components corners [ i ] [ j ] [ 0 ] ,
512 components corners [ i ] [ j ] [ 1 ] ,
513 rat io image , harr i s window ) :
514 del components corners [ i ] [ j ]
515 del c o r n e r s r a t i o s [ i ] [ j ]
516
517 for i in xrange ( l en ( components corners ) ) :
518 i f l en ( components corners [ i ] ) < CORNERSNUM:
519 print l en ( components corners [ i ] )
520
521 max indices = sor t ed ( range ( l en ( c o r n e r s r a t i o s [ i ] ) ) ,
522 key=lambda x : c o r n e r s r a t i o s [ i ] [ x ] ) [−CORNERSNUM: ]
523 components corners [ i ] = [ components corners [ i ] [ j ] for j in max indices ]
524
525 return components corners
526
527
528 def f a s t c onvo l u t e ( in t eg ra l image , x1 , y1 , x2 , y2 ) :
529 return i n t e g r a l image [ y2 ] [ x2 ] − i n t e g r a l image [ y2 ] [ x1 − 1 ] − \
530 i n t e g r a l image [ y1 − 1 ] [ x2 ] + in t e g r a l image [ y1 − 1 ] [ x1 − 1 ]
531
532
533 def get dx ( in t eg ra l image , x , y , window size ) :
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534
535 ha l f 1 = f a s t c onvo l u t e ( in t eg ra l image ,
536 x , y − window size / 2 ,
537 x + window size / 2 − 1 , y + window size / 2 − 1)
538 ha l f 2 = f a s t c onvo l u t e ( in t eg ra l image ,
539 x − window size / 2 , y − window size / 2 ,
540 x − 1 , y + window size / 2 − 1)
541 return ha l f 1 − ha l f 2
542
543
544 def get dy ( in t eg ra l image , x , y , window size ) :
545
546 ha l f 1 = f a s t c onvo l u t e ( in t eg ra l image ,
547 x − window size / 2 , y − window size / 2 + 1 ,
548 x + window size / 2 − 1 , y )
549 ha l f 2 = f a s t c onvo l u t e ( in t eg ra l image ,
550 x − window size / 2 , y + 1 ,
551 x + window size / 2 − 1 , y + window size / 2)
552 return ha l f 1 − ha l f 2
553
554
555 def i s c o r n e r (x , y , ra t io image , harr i s window ) :
556
557 # Get the r a t i o o f the p i x e l a t ( x , y ) .
558 r a t i o = ra t i o image [ y ] [ x ]
559
560 # For each p i x e l in the Harris window around the p i x e l ( x , y ) .
561 for j in range (y − harr i s window / 2 ,
562 y + harr i s window / 2 + 1 ) :
563 for i in range (x − harr i s window / 2 ,
564 x + harr i s window / 2 + 1 ) :
565
566 # I f the r a t i o o f the p i x e l a t ( x , y ) i s l e s s than one o f i t s
567 # neighbors , e l im ina t e i t from the corners .
568 i f r a t i o image [ j ] [ i ] > r a t i o :
569 return False
570
571 return True
572
573
574 def g e t shape v e c t o r s ( l abe l s image , components corners ) :
575
576 # The unique l a b e l s .
577 l a b e l s = np . unique ( l ab e l s image ) [ 1 : ]
578
579 # The array fo r the corners o f each component .
580 components centers = [ ]
581
582 # The l i s t o f shape vec t o r s o f the components .
583 components vectors = [ [ ] for i in xrange ( l en ( l a b e l s ) ) ]
584
585 # For each l a b e l :
586 for i , l a b e l in enumerate ( l a b e l s ) :
587 # Find where the l a b e l i s .
588 py , px = np . where ( l ab e l s image == l a b e l )
589
590 # Find the center o f the component with t ha t l a b e l .
591 c en t e r x = (np .max(px ) + np . min (px ) ) / 2
592 c en t e r y = (np .max(py ) + np . min (py ) ) / 2
593
594 # Add the center to the array o f cen te r s .
595 cente r = ( center x , c en t e r y )
596 components centers . append ( cente r )
597
598 # The l i s t o f ang l e s o f the corners .
599 ang l e s = [ ]
600
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601 # Compute the ang l e s o f the corners ,
602 for corner in components corners [ i ] :
603
604 ang le = atan2 ( corner [ 1 ] − c en te r [ 1 ] , co rner [ 0 ] − c en te r [ 0 ] )
605 ang le = angle ∗ 180 / p i
606 i f ang le < 0 :
607 ang le += 360
608
609 ang l e s . append ( ang le )
610
611 # Sort the ang l e s ascending .
612 ang l e s . s o r t ( )
613
614 # Find the d i f f e r e n c e s between the ang les , which repre sen t the arc
615 # leng t h between the corners on the un i t c i r c l e .
616 for j , ang le in enumerate ( ang l e s ) :
617 d i f f = ang le − ang l e s [ j − 1 ]
618 i f d i f f < 0 :
619 d i f f += 360
620 components vectors [ i ] . append ( d i f f )
621
622 i f l en ( components vectors [ i ] ) < CORNERSNUM:
623 for j in xrange (CORNERSNUM − l en ( components vectors [ i ] ) ) :
624 components vectors [ i ] . append ( 0 . 0 )
625
626 return components centers , components vectors
627
628
629 def recognize components ( t r a i n i n g v e c t o r s , components vectors ) :
630
631 # The l i s t o f the b e s t matches .
632 matches = [ ]
633
634 # For each component :
635 for i , component vector in enumerate ( components vectors ) :
636
637 # The index o f the b e s t match .
638 best match = −1
639 # The minimum di s tance to the b e s t match .
640 min d i s t = sys . f l o a t i n f o .max
641
642 # For each element in the shape vec tor :
643 for j in xrange ( l en ( component vector ) ) :
644
645 # Cir cu l a r l y r o t a t e the vec to r around index j .
646 r o t a t ed v e c t o r = component vector [ j : ] + component vector [ : j ]
647 #pr in t r o t a t e d v e c t o r
648
649 # For each t r a i n i n g vec to r :
650 for k , t r a i n i n g v e c t o r in enumerate ( t r a i n i n g v e c t o r s ) :
651
652 #pr in t t r a i n i n g v e c t o r
653 # Calcu la t e the euc l i dean d i s t ance .
654 d i s t = np . l i n a l g . norm ( ( np . array ( r o t a t ed v e c t o r ) −
655 np . array ( t r a i n i n g v e c t o r ) ) )
656
657 # Keep the b e s t match with i t s d i s t ance .
658 i f d i s t < min d i s t :
659 min d i s t = d i s t
660 best match = k
661
662 matches . append ( best match )
663
664 return matches
665
666
667 i f name == ” main ” :
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668 main ( )

Listing 1: The entire Python source code
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