
Homework 6

ECE 661
Aziza Satkhozhina

asatkhoz@purdue.edu

Goals

The goal of this homework is to implement Otsu’s binary segmentation and
contour extraction algorithm.

Otsu’s algorithm

Otsu’s segmentation algorithm automatically clusters pixels into two groups:
background and foreground. The main idea of Otsu’s algorihtm is to find
threshold that would maximize between-class variance and minimize within-
class variance. Then, all pixels are classified into 2 classes using that threshold.

First step is to create a histogram of pixel values. Since we are taking 8-bit
image, there are 256 possible values for pixels. We compute histogram h with
256 bins where the height of each bin corresponds to number of pixels that have
that pixel value (from 0 to 255).

Given an image, we can estimate probability of pixel value i by simply di-
viding the height of bin i in the histogram by the total number of pixels N .

pi = hi

N

Given threshold k, probability of class 0 is sum of probabilities of pixel values
smaller than k.

w0 =
∑k

i=1 hi and w1 = 1 − w0

Since the goal is to maximize between class variance, we need to calculate
the means and the variances of both classes.

µ1 = 1
w0

∑k
i=1 ipi and µ2 = 1

w1

∑256
i=k+1 ipi

.
It is sufficient to increase between class variance σ2

b = w0w1(µ0 −µ1)2. This
will decrease within-class variance too. I calculated the between-class variance
for each threshold k and picked the threshold that maximizes the variance.
Depending on the image, sometimes Otsu’s algorithm was run several times for
better results.

Each of the RGB channels of color image was segmented separately. Then,

1



I combined results from RGB channels using AND operator, where I set the
final segmented image pixel to 1 only if all three segmented channels have 1 at
that pixel location. I also had to specify manually which class is foreground and
which is background.

Texture segmentation

To perform texture segmentation, I first converted RGB image into grayscale
using standard formula: I = 0.2989R + 0.5870G + 0.1140B. I then followed a
simple approach by calculating the variance of gray scale image in NxN window.
I performed texture segmentation for three values of N = 3, 5, 7 and combined
all three results into one 3-channel image. Then, texture image is fed into Otsu’s
algorithm the same way as RGB image.

Connected Component Analysis

Connected Component Analysis is another standard approach used in Image
Processing. After Otsu thresholding, we are left with a binary mask where pixel
value 1 represents foreground and pixel 0 represents background. Next step
is to extract the connected components. I used 8 pixel neighborhood to find
connected components. Two-pass Connected Component algorithm first labels
all connected components with a unique label, and then unites some connected
components together. The alogorithm is the following:

Step 1) Set n = 0.

Step 2) For pixel img(x, y), define its 4 neighbors as pixels located at the
following locations (x− 1, y), (x− 1, y − 1), (x, y − 1), (x+ 1, y − 1). If all of its
neighboring pixels have value of 0, then increment the value of n by 1 and set
img(x, y) to n. Otherwise, find the minimum non-zero value of its neighbors, and
set img(x, y) to that value. Record the values of the neighbors into equivalence
list.

Step 3) Repeat step 2 with the next pixel.

Step 4) After all pixels were processed and united into connected compo-
nents, it is necessary to unite connected components using the equivalence list.
Do a second pass on the image and unite all connected components.

Step 5) Optional. Re-label all connected components from 1 to the number
of the components.

Step 6) Optional. Delete connected components whose size is less than 100
pixels to get rid of noise.

2



Contour extraction

I implemented Square Tracing algorithm, one of the earliest contour detection
algorithms. The pseudocode is below and it is applied to each connected com-
ponent ci separately.

Step 1) Set contour list B empty

Step 2) Scan the pixels and find first non-zero pixel of ci at location px, py.
Insert the locations of the pixel into list B.

Step 3) Move to the left adjacent pixel px− 1, py.

Step 4) At location x, y if the current pixel value is 1, then insert the location
into set B and move to the left. If current pixel value is 0, move to the right.

Step 5) Repeat step 4 until x, y = px, py.

Left and right are defined as follows. Initially, if you are at pixel location
x, y, ”North” is defined as moving to the pixel at location x, y − 1, ”South” to
location x, y + 1, ”West” to location x − 1, y, and ”East” to location x + 1, y.
However, once we start moving, the direction is defined by the previous move.
Every move changes the coordinate system, therefore ”right”, ”left” is relative
to the previos move. It is summarized below:

If (prevDirection == “North′′)
left => West
right => East

elseif(prevDirection == “South′′)
left => East
right => West

elseif(prevDirection == “West′′)
left => South
right => North

elseif(prevDirection == “East′′)
left => North
right => South

end

Results

Otsu’s algoruthm applied on the texture features performs much better than
RGB channels. In Pic 1. for example, the lake and the trees have approximately
same amount of red and green, however lake has much more blue color in it.
Therefore Blue color would be suitable for segmentation, while red and green
channels make the result more noisy. Texture feature looks at the smootheness

3



of the region, therefore it is a better feature for extracting objects from an image
(especially for the lake). Pic 2 was a difficult image to segment as the tiger has
multiple colors, and the colors match his background. Also the texture of the
tiger is not uniform, so it is difficult to segment it using texture segmentation
as well.

Output images

Figure 1: Original pic. 1

Figure 2: Otsu segmentation of Pic. 1 (RGB channels)

(a) R channel (b) G channel

(c) B channel

4



Figure 3: Pic.1 Texture Image

5



Figure 4: Otsu segmentation of Pic. 1

(a) RGB image

(b) Texture image

6



Figure 5: Pic.1 Connected Component

Figure 6: Pic.1 Contour image

7



Figure 7: Original pic. 2

Figure 8: Pic.2 Texture Image

8



Figure 9: Otsu segmentation of Pic. 2

(a) RGB image

(b) Texture image

9



Figure 10: Pic. 2 Connected Component

Figure 11: Pic. 2 Contour image

10



Matlab code 
 
 
%**************************************************************************** 
%**************************************************************************** 
 
img = imread('pic2.jpg');  
str = 'pic2'; 
s = size(img); 
  
%Otsu applied on RGB channels 
otsuRGB = zeros(s); 
for ch = 1:3 
    otsuRGB(:,:,ch) = otsu(img(:,:,ch),1); 
end 
  
%combine three channels to get one BW image 
bwotsu = zeros(s(1),s(2)); 
for i = 1:s(1) 
    for j = 1:s(2) 
        if(otsuRGB(i,j,1) > 0 && otsuRGB(i,j,2)>0 && otsuRGB(i,j,3)>0) 
            bwotsu(i,j) = 1; 
        end 
    end 
end 
imwrite(bwotsu,strcat(str,'_otsuRGB.png')); 
  
%convert RGB into grayscale 
img_g = rgb2gray(img); 
%Texture segmentation applied on gray scale image for three Ns 
tim = zeros(s); 
for ch = 1:3 
    I = text_segm(img_g,1+ch*2); 
    tim(:,:,ch) = I/max(max(I))*255; 
end 
tim = uint8(tim); 
imwrite(tim,strcat(str,'_texture.png')); 
  
%apply otsu on the texture image 
im = zeros(s); 
for ch = 1:3 
    im(:,:,ch) = otsu(tim(:,:,ch),1); 
end 
  
%combine three texture images into one bw 
bw = zeros(s(1),s(2)); 
for i = 1:s(1) 
    for j = 1:s(2) 
        if(im(i,j,1) > 0 && im(i,j,2)>0 && im(i,j,3)>0) 
            bw(i,j) = 1; 
        end 
    end 
end 
imwrite(bw,strcat(str,'_OtsuTexture.png')); 
  



%apply connect component analysis 
[img_con, N] = myconn(bw); 
img_con = delete_small_cc(img_con,100); 
imwrite(img_con,strcat(str,'conn.png')); 
  
%apply contour extraction algorithm  
cont = find_contour(img_con); 
imwrite(cont,strcat(str,'_contour.png')) 
 
%**************************************************************************** 
%**************************************************************************** 
 
function img = otsu(img,nruns) 
s = size(img); 
  
N = 256; %number of graylevels 
bw = ones(s(1),s(2)); 
for r = 1:nruns 
    %compute the histogram of colors 
    h = zeros(1,N); 
    for i = 1:s(1) 
        for j = 1:s(2) 
            if(bw(i,j)==1) 
                h(img(i,j)+1) = h(img(i,j)+1)+1; 
            end 
        end 
    end 
     
    %compute probabilities of each gray level 
    p = h/(s(1)*s(2)); 
     
     
    %omoute between class variance for different thresholds 
    varB = zeros(1,N);     
    for k = 1:N 
        w0 = sum(p(1:k)); 
        t1 = sum([1:k].*p(1:k)); 
        t2 = sum([k+1:N].*p(k+1:N)); 
        w1 = 1 - w0; 
        mu0 = t1/w0; 
        mu1 = t2/w1; 
        varB(k) = w0*w1*(mu1-mu0)^2; 
    end 
     
    %find the largest between class variance 
    ind = find(varB == max(varB)); 
     
    %compute new segmented image (foreground) 
%     bw = zeros(s(1),s(2)); 
    new_img = zeros(size(img)); 
    for i = 1:s(1) 
        for j = 1:s(2) 
            if(bw(i,j)==1 && img(i,j) > ind(1)) %less or equal depending on 
what is foreground 
                new_img(i,j) = img(i,j); 



                bw(i,j) =1; 
            else 
                bw(i,j)=0; 
            end 
        end 
    end 
    img = new_img; 
end 
 
 
%**************************************************************************** 
%**************************************************************************** 
 
function tim = text_segm(img,N) 
s = size(img); 
tim = zeros(size(img)); 
w = (N-1)/2; 
  
for i = 1+w:s(1)-w 
    for j = 1+w:s(2)-w 
        patch = img(i-w:i+w, j-w:j+w); 
        patch = patch(:); 
        m = mean(patch); 
        tim(i,j) = 1/length(patch)*sum((patch-m).^2); 
    end 
end 
 
%**************************************************************************** 
%**************************************************************************** 
 
function [img, n ] = myconn(img) 
  
s = size(img); 
n = 1; 
cnt = 0; 
  
%first pass (label all non zero pixels) 
equiv = []; 
for i = 1:s(1) 
    for j = 1:s(2) 
        if(img(i,j)==1) 
            neighbors = []; 
            if(i > 1 && img(i-1,j) > 0) 
                neighbors = [neighbors img(i-1,j)]; 
            end 
            if(j > 1 && img(i,j-1)>0 ) 
                neighbors = [neighbors img(i,j-1)]; 
            end 
            if(i> 1 && j >1 && img(i-1,j-1) > 0) 
                 neighbors = [neighbors img(i-1,j-1)]; 
            end 
            if(i> 1 && j < s(1) &&  img(i-1,j+1) > 0) 
                 neighbors = [neighbors img(i-1,j+1)]; 
            end 
             



            if(isempty(neighbors)) 
                n = n + 1; 
                img(i,j) = n; 
            else 
                label = min(neighbors); 
                img(i,j) = label; 
                k = unique(neighbors); 
                if(length(k) > 1 || (length(k)==1 && k~=label) ) 
                    for m = 1:length(k) 
                        if(label ~= k(m)) 
                            equiv{k(m)} = label; 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
  
%pass #2  : unite connected components in equivalence class 
for i = 1:s(1) 
    for j = 1:s(2) 
        if(img(i,j) > 0) 
            if(img(i,j) < length(equiv)) 
                parent = equiv{img(i,j)}; 
                if(~isempty(parent)) 
                    while(~isempty(equiv{parent})) 
                        parent = equiv{parent}; 
                    end 
                    img(i,j) = parent; 
                end 
            end 
        end 
    end 
end 
  
%make the labels to be from 1 to N 
k = unique(unique(img)); 
k(find(k==0))=[]; 
  
for i = 1:s(1) 
    for j  = 1:s(2) 
        if(img(i,j)>1) 
            ind = find(k==img(i,j)); 
            img(i,j) = ind; 
        end 
    end 
end 
 
 
%**************************************************************************** 
%**************************************************************************** 
 
function img = delete_small_cc(img,N) 
  
k = unique(unique(img)); 



k(find(k==0))=[]; 
  
for i = 1:length(k) 
    [row col] = find(img == k(i)); 
    if(length(row)< N) 
        for j = 1:length(row) 
            img(row(j),col(j))=0; 
        end 
    end 
end 
 
%**************************************************************************** 
%**************************************************************************** 
 
function cont = find_contour(img_con) 
  
%find unique labels 
k = unique(unique(img_con)); 
k(find(k==0))=[]; 
cont = zeros(size(img_con)); 
s = size(img_con); 
  
for i = 1:length(k) 
    [row col] = find(img_con == k(i)); 
    I = zeros(size(img_con)); 
     
    %create a binary image 
    for i = 1:length(row) 
        I(row(i),col(i))=1; 
    end 
     
    %find a non zero pixel 
    ind = find(row == max(row)); 
    y = row(ind(1)); 
    x = col(ind(1)); 
     
    %initialize the contour list 
    B = [y x]; 
    py = y; px = x; 
    d = 3; 
     
    x = x - 1; 
     
    %1 is up, 2 bottom, 3 left, 4 right 
    while(x~=px || y~=py) 
        %if its a white pixel move to the left 
       if(I(y,x)==1) 
            B = [B; y x]; 
            if(d == 1)%up 
                d = 3; 
                if(x-1>0) 
                    x = x-1; 
                end 
            elseif(d==2) 
                d = 4; 



                if(x+1<=s(2)) 
                    x = x + 1; 
                end 
            elseif(d == 3) %previos step was to the left 
                d = 2; %down 
                if(y+1 <= s(1)) 
                    y = y + 1; 
                end 
            else 
                d = 1; 
                if(y-1 > 0) 
                    y = y - 1; 
                end 
            end 
       else %if pixel is black move to the right 
            if(d == 1)%up 
                d = 4; 
                if(x+1 <= s(2)) 
                    x = x+1; 
                end 
            elseif(d==2) 
                d = 3; 
                if(x-1 > 0) 
                    x = x - 1; 
                end 
            elseif(d == 3) %previos step was to the left 
                d = 1; %down 
                if(y-1 >0) 
                y = y - 1; 
                end 
            else 
                d = 2; 
                if(y+1 <= s(1)) 
                y = y + 1; 
                end 
            end 
        end 
    end 
     
    for i = 1:size(B,1) 
        cont(B(i,1),B(i,2))=1; 
    end 
end 
 


