
ECE661: Homework 6

Ahmed Mohamed (akaseb@purdue.edu)

October 28, 2014

1 Otsu Segmentation Algorithm

Given a grayscale image, my implementation of the Otsu algorithm follows these steps:

1. Construct a 256-level histogram h of the image, such that h[i] = ni is the number of pixels
whose grayscale value equal to i.

2. Calculate the average grayscale value of the image.

µT =

L∑
1

ipi

where
pi = ni/N

and L is the total number of levels, and N is the total number of pixels in the image.

3. For each level in the histogram, calculate:

(a) The zeroth-order cumulative moment

ω(k) =

k∑
1

pi

(b) The first-order cumulative moment

µ(k) =

k∑
1

ipi

(c) The between-class variance

σ2
B(k) = [µTω(k) − µ(k)]2/[ω(k)(1 − ω(k))]

4. Choose threshold = k∗ such that σ2
B(k∗) is maximum.

5. Construct a mask whose pixels is 1 if the corresponding pixels in the original image is greater
than the threshold, and 0 otherwise. This mask represents the foreground of the image.

6. Repeat this process for an arbitrary number of iterations. In each iteration, the new his-
togram will not contain the pixels below the threshold. The number of iterations is chosen
manually to increase the quality of the results.

1

2 RGB Image Segmentation Using the Otsu algorithm

Given a color image, my implementation follows the following steps to extract the foreground of
the image.

1. Separate the RGB color channels of the input image into three grayscale images.

2. Get the foreground mask for each channel using the Otsu algorithm as described earlier.

3. To merge the three masks together into a single foreground mask, we need to manually know
about the colors of the foreground and the background of the image.

(a) For the lake image, the lake is mostly blue, while the background has other colors.
Hence, we should treat the blue mask as the foreground mask, while the green and red
masks as the background masks. Hence, the overall foreground mask is:

mask = maskb AND (NOT maskg) AND (NOT maskr)

where mask,maskb,maskg,maskr are the overall, blue, green, and red masks respec-
tively.

(b) For the tiger image, there is no dominant color for the background or the foreground.
Hence, we treat all the masks as foreground masks. Hence, the overall foreground mask
is:

mask = maskb AND maskg AND maskr

3 Texture-based Segmentation Using the Otsu algorithm

Given a color image, my implementation follows the following steps to extract the foreground of
the image.

1. Convert the image into a grayscale image.

2. Create a grayscale image whose pixels represent the variance of the grayscale values of the
N ∗N window around the corresponding pixels in the original grayscale image.

3. Do the previous steps for N = 3, N = 5, and N = 7 to get three grayscale images that
represent the texture-based features of the original image. These three grayscale images are
considered three channels of an image.

4. Get the foreground mask for each channel using the Otsu algorithm as described earlier.

5. To merge the three masks together into a single foreground mask, we need to manually know
about the structure of the foreground and the background of the image.

(a) For the lake image, the pixels of the lake have almost no variance. Hence, we treat the
three masks as background masks. Hence, the overall foreground mask is:

mask = (NOT mask1) AND (NOT mask2) AND (NOT mask3)

where mask,mask1,mask2,mask3 are the overall mask and the masks of the individual
channels respectively.

(b) For the tiger image, the pixels of the tiger have larger variance than others. Hence, we
treat the three masks as foreground masks. Hence, the overall foreground mask is:

mask = mask1 AND mask2 AND mask3

where mask,mask1,mask2,mask3 are the overall mask and the masks of the individual
channels respectively.

2

4 Noise Elimination

The foreground masks may be noisy. To eliminate the noise we use combinations of dilation and
erosion as follows:

1. Erosion then Dilation with a square window to remove the noise in the background.

2. Dilation then Erosion with a square window to remove the noise in the foreground.

For the lake image, we needed both approaches to eliminate the noise in both the foreground
and the background. However, for the tiger image, we used only the second approach because
there were many holes in the foreground, and applying the first approach would have removed
most of the mask.

5 Contour Extraction

Given a binary mask, the contour is the foreground pixels that touch the background. Thus, we
follow the following steps:

1. For each pixel in the binary mask:

(a) If the pixel value is 0, it doesn’t belong to the contour.

(b) If the pixel value is 1, and all adjacent pixels in a 3x3 window (8-connectivity) are 1, it
doesn’t belong to the contour.

(c) Only if the pixel is 1, and one or more of its adjacent pixels are zero, it is considered
on the contour.

6 More Observations

1. The results quality of the texture-based segmentation is much better than the image-based
segmentation.

2. Texture-based segmentation consumes more time than the image-based segmentation.

3. Image-based segmentation require human knowledge of the different colors of foregrounds
and backgrounds. For example, my implementation for the lake image will not produce good
results for other images, because we had to use the information that the foreground is blue.
This might not be the case with other images.

4. Texture-based segmentation requires less knowledge about the foreground and the back-
ground. It will divide the image into areas with high variances, and areas with low vari-
ances. We still need to take a human decision about which is the foreground and which is
the background.

5. In brief, The Otsu algorithm is fast, but very limited. It doesn’t produce very good results.
Using texture-based segmentation instead of image-based segmentation increases the quality
of the results, especially with challenging images such as the tiger image.

6. Erosion and Dilation are very effective removing the noise in both the background and the
foreground. However, one should be careful choosing the window size, because this process
could remove the entire mask.

3

7 Results

7.1 Image 1: Lake

Figure 1: The input image

7.1.1 RGB Segmentation

Figure 2: The three color channels (BGR) of the image

Figure 3: The foreground mask using the blue channel of the image, and the corresponding
foreground

4

Figure 4: The foreground masks using the green channel of the image (4 iterations of Otsu’s
algorithm are used.)

Figure 5: The foreground of the image corresponding to the masks of the green channel (4 iterations
of Otsu’s algorithm are used.)

Figure 6: The foreground masks using the red channel of the image (3 iterations of Otsu’s algorithm
are used.)

Figure 7: The foreground of the image corresponding to the masks of the red channel (3 iterations
of Otsu’s algorithm are used.)

5

Figure 8: The overall mask using the masks of the three channels, and the corresponding fore-
ground

Figure 9: The final overall mask after removing the noise, and the corresponding foreground

Figure 10: The final contour of the image

6

7.1.2 Texture-based Segmentation

Figure 11: The three channels of the image representing the texture-based features (corresponding
to the windows 3x3, 5x5, and 7x7 respectively)

Figure 12: The foreground mask using the first channel of the image, and the corresponding
foreground

Figure 13: The foreground mask using the second channel of the image, and the corresponding
foreground

7

Figure 14: The foreground mask using the third channel of the image, and the corresponding
foreground

Figure 15: The overall mask using the masks of the three channels, and the corresponding fore-
ground

Figure 16: The final overall mask after removing the noise, and the corresponding foreground

8

7.2 Image 2: Tiger

Figure 17: The input image

7.2.1 RGB Segmentation

Figure 18: The three color channels (BGR) of the image

Figure 19: The foreground mask using the blue channel of the image, and the corresponding
foreground

9

Figure 20: The foreground mask using the green channel of the image, and the corresponding
foreground

Figure 21: The foreground mask using the red channel of the image, and the corresponding
foreground

Figure 22: The overall mask using the masks of the three channels, and the corresponding fore-
ground

10

Figure 23: The final overall mask after removing the noise, and the corresponding foreground

Figure 24: The final contour of the image

7.2.2 Texture-based Segmentation

Figure 25: The three channels of the image representing the texture-based features (corresponding
to the windows 3x3, 5x5, and 7x7 respectively)

11

Figure 26: The foreground mask using the first channel of the image, and the corresponding
foreground

Figure 27: The foreground mask using the second channel of the image, and the corresponding
foreground

Figure 28: The foreground mask using the third channel of the image, and the corresponding
foreground

12

Figure 29: The overall mask using the masks of the three channels, and the corresponding fore-
ground

Figure 30: The final overall mask after removing the noise, and the corresponding foreground

Figure 31: The final contour of the image

8 Source Code

The following is the entire Python source code.

1 import cv2
2 import numpy as np
3
4
5 # The input image f i l e name .
6 FILE NAME = ’ images /1 . jpg ’
7
8 # Whether to use t e x t u r e f e a t u r e s or not (RGB va lue s) .

13

9 USE TEXTURE = False
10
11
12 def main () :
13
14 # Read the input image .
15 image = cv2 . imread (FILE NAME)
16 cv2 . imshow(FILE NAME, image)
17
18 i f not USE TEXTURE:
19 s = ’ ’
20
21 # Segment us ing Otsu ’ s a lgor i thm on the image .
22 mask = otsu rgb (image , inverted masks =[0 , 1 , 1] ,
23 i t e r a t i o n s =[1 , 4 , 3] , s=s)
24 else :
25 s = ’ t ’
26
27 # Build an image with the t ex ture−based f e a t u r e s o f the g ray s ca l e image .
28 texture image = ge t t ex tu r e image (image)
29
30 # Segment us ing Otsu ’ s a lgor i thm on the tex ture−based image .
31 mask = otsu rgb (texture image , inverted masks =[1 , 1 , 1] ,
32 i t e r a t i o n s =[1 , 1 , 1] , org image=image , s=s)
33
34 # Erosion then Di l a t i on to remove the no i se s in the background .
35 ke rne l = np . ones ((17 , 17) , np . u int8)
36 mask = cv2 . erode (mask , k e rne l)
37 mask = cv2 . d i l a t e (mask , k e rne l)
38
39 # Di la t i on the Erosion to remove the no i se s in the foreground .
40 ke rne l = np . ones ((5 , 5) , np . u int8)
41 mask = cv2 . d i l a t e (mask , k e rne l)
42 mask = cv2 . erode (mask , k e rne l)
43
44 cv2 . imshow(i n j e c t (FILE NAME, ’ f i l t e r e d ma sk {} ’ . format (s)) , mask)
45 cv2 . imwrite (i n j e c t (FILE NAME, ’ f i l t e r e d ma sk {} ’ . format (s)) , mask)
46 cv2 . imshow(i n j e c t (FILE NAME, ’ f i l t e r e d f o r e g r o u nd {} ’ . format (s)) ,
47 cv2 . b i tw i s e and (image , image , mask=mask))
48 cv2 . imwrite (i n j e c t (FILE NAME, ’ f i l t e r e d f o r e g r o u nd {} ’ . format (s)) ,
49 cv2 . b i tw i s e and (image , image , mask=mask))
50
51 # Extract the contour
52 contour = ex t r a c t con tou r (mask)
53 cv2 . imshow(i n j e c t (FILE NAME, ’ contour {} ’ . format (s)) , contour)
54 cv2 . imwrite (i n j e c t (FILE NAME, ’ contour {} ’ . format (s)) , contour)
55
56 while not cv2 . waitKey (50) & 0xFF == 27 : pass
57 cv2 . destroyAllWindows ()
58
59
60 def i n j e c t (image name , s u f f i x) :
61 return ’ {} {} .{} ’ . format (image name . s p l i t (’ . ’) [0] , s u f f i x ,
62 image name . s p l i t (’ . ’) [1])
63
64
65 def ot su rgb (image , inverted masks =[0 , 0 , 0] ,
66 i t e r a t i o n s =[1 , 1 , 1] , org image=None , s=’ ’) :
67
68 # The o r i g i n a l image i s j u s t used fo r the r e s u l t s .
69 i f org image i s None :
70 org image = image
71
72 # I n i t i a l i z e the o v e r a l l mask .
73 overa l l mask = np . ndarray ((image . shape [0] , image . shape [1]) , np . u int8)
74 overa l l mask . f i l l (255)
75

14

76 # For each channel in the three co l o r channels :
77 for c in xrange (3) :
78
79 print ’ Proce s s ing channel : ’ , c
80
81 # The image repre s en t ing channel c .
82 channel image = np . z e r o s l i k e (image)
83 channel image [: , : , c] = image [: , : , c]
84 cv2 . imshow(i n j e c t (FILE NAME, ’ channe l {}{} ’ . format (c , s)) ,
85 channel image)
86 cv2 . imwrite (i n j e c t (FILE NAME, ’ channe l {}{} ’ . format (c , s)) ,
87 channel image)
88
89 # The mask o f channel c .
90 mask = None
91
92 # For an a r b i t r a r y number o f i t e r a t i o n s : perform the segmentat ion
93 # using Otsu ’ s a lgor i thm .
94 for i in xrange (i t e r a t i o n s [c]) :
95 # Perform the segmentat ion us ing Otsu ’ s a lgor i thm .
96 mask = otsu (image [: , : , c] , mask)
97
98 # Save the r e s u l t s .
99 cv2 . imshow(i n j e c t (FILE NAME, ’mask {} {}{} ’ . format (c , i , s)) , mask)

100 cv2 . imwrite (i n j e c t (FILE NAME, ’mask {} {}{} ’ . format (c , i , s)) , mask)
101 cv2 . imshow(i n j e c t (FILE NAME, ’ f o r eg round {} {}{} ’ . format (c , i , s)) ,
102 cv2 . b i tw i s e and (org image , org image , mask=mask))
103 cv2 . imwrite (i n j e c t (FILE NAME, ’ f o r eg round {} {}{} ’ . format (c , i , s)) ,
104 cv2 . b i tw i s e and (org image , org image , mask=mask))
105
106 # Calcu la t e the o v e r a l l mask as the l o g i c a l and o f masks a f t e r i n v e r t i n g
107 # the masks t ha t are ind i ca t ed in inver ted masks .
108 i f inverted masks [c] == 1 :
109 overa l l mask = cv2 . b i tw i s e and (overa l l mask , cv2 . b i tw i s e no t (mask))
110 else :
111 overa l l mask = cv2 . b i tw i s e and (overa l l mask , mask)
112
113 # Save the r e s u l t s .
114 cv2 . imshow(i n j e c t (FILE NAME, ’mask{} ’ . format (s)) , ove ra l l mask)
115 cv2 . imwrite (i n j e c t (FILE NAME, ’mask{} ’ . format (s)) , ove ra l l mask)
116 cv2 . imshow(i n j e c t (FILE NAME, ’ foreground {} ’ . format (s)) ,
117 cv2 . b i tw i s e and (org image , org image , mask=overa l l mask))
118 cv2 . imwrite (i n j e c t (FILE NAME, ’ foreground {} ’ . format (s)) ,
119 cv2 . b i tw i s e and (org image , org image , mask=overa l l mask))
120
121 return overa l l mask
122
123
124 def otsu (image , mask=None) :
125
126 # The histogram of g ray s ca l e l e v e l s .
127 histogram = [0] ∗ 256
128
129 # The t o t a l number o f p i x e l s in the mask .
130 pixe ls num = 0
131
132 # The average g ray s ca l e va lue f o r the en t i r e image (masked by the mask) .
133 mu t = 0
134
135 # I n i t i a l i z e the histogram based on the p i x e l s o f the image .
136 for r in xrange (image . shape [0]) :
137 for c in xrange (image . shape [1]) :
138 i f mask i s None or mask [r] [c] != 0 :
139 pixe ls num += 1
140 mu t += image [r] [c]
141 histogram [image [r] [c]] += 1
142

15

143 # The average g ray s ca l e va lue f o r the en t i r e image (masked by the mask) .
144 mu t = f l o a t (mu t) / pixe ls num
145
146 # The cumulat ive p r o b a b i l i t y o f p i x e l s l e s s than or equa l l e v e l i .
147 omega i = 0
148
149 # The cumulat ive average g ray s ca l e va lue l e s s than or equa l l e v e l i .
150 mu i = 0
151
152 # The f i n a l chosen t h r e s ho l d .
153 th r e sho ld = −1
154
155 # The maximum sigma b ˆ 2 corresponding to the f i n a l chosen t h r e s ho l d .
156 max sigma b = −1
157
158 # For every g ray s ca l e l e v e l in the histogram :
159 for i in xrange (2 5 6) :
160
161 # The number o f p i x e l s in the g ray s ca l e l e v e l i .
162 n i = histogram [i]
163
164 # The p r o b a b i l i t y o f p i x e l s in l e v e l i .
165 p i = n i / f l o a t (pixe ls num)
166
167 # Update the cumulat ive p r o b a b i l i t y o f p i x e l s l e s s than or equa l
168 # l e v e l i , and the cumulat ive average g ray s ca l e va lue l e s s than or
169 # equa l l e v e l i .
170 omega i += p i
171 mu i += i ∗ p i
172
173 # Ignore the very f i r s t l e v e l s and the very l a s t l e v e l s t ha t don ’ t
174 # contain any p i x e l s . For the se l e v e l s , s i gma b i w i l l cause d i v i s i o n
175 # by zero excep t ion .
176 i f omega i == 0 or omega i == 1 :
177 continue
178
179 # Update the between−c l a s s var iance sigma b ˆ 2 .
180 s i gma b i = (mu t ∗ omega i − mu i) ∗∗ 2 / (omega i ∗ (1 − omega i))
181
182 # Compare the between−c l a s s var iance sigma b ˆ 2 to the maximum,
183 # and update the b e s t t h r e s ho l d .
184 i f s i gma b i > max sigma b :
185 th r e sho ld = i
186 max sigma b = s igma b i
187
188 print th r e sho ld
189
190 # The image o f the output mask .
191 output mask = np . z e r o s l i k e (image)
192
193 i f th r e sho ld == −1:
194 return output mask
195
196 # For each p i x e l in the input image :
197 for r in xrange (image . shape [0]) :
198 for c in xrange (image . shape [1]) :
199 # Set the corresponding output mask p i x e l to 1 i f the p i x e l
200 # va lue s i s g r ea t e r than the t h r e s ho l d .
201 i f image [r] [c] > th r e sho ld :
202 output mask [r] [c] = 255
203
204 return output mask
205
206
207 def ge t t ex tu r e image (co lo r image) :
208
209 # The gray s ca l e ver s ion o f the image .

16

210 image = cv2 . cvtColor (co lor image , cv2 .COLORBGR2GRAY)
211
212 # The tex ture−based image .
213 texture image = np . z e r o s l i k e (co l o r image)
214
215 # The d i f f e r e n t window s i z e s used f o r the t e x t u r e f e a t u r e s .
216 window size = [3 , 5 , 7]
217
218 # For each d i f f e r e n t window s i z e :
219 for i , w in enumerate (window size) :
220
221 # Half o f the window s i z e .
222 d = w / 2
223
224 # For each p i x e l in the input image :
225 for r in xrange (d , image . shape [0] − d) :
226 for c in xrange (d , image . shape [1] − d) :
227 # Calcu la t e the var iance o f the p i x e l va lue s in the window ,
228 # and s t o r e i t in the tex ture image .
229 texture image [r] [c] [i] = np . i n t (
230 np . var (image [r − d : r + d + 1 , c − d : c + d + 1]))
231
232 return texture image
233
234
235 def ex t r a c t con tou r (image) :
236
237 # The contour image .
238 contour = np . z e r o s l i k e (image)
239
240 # For each p i x e l in the input image :
241 for r in xrange (1 , image . shape [0] − 1) :
242 for c in xrange (1 , image . shape [1] − 1) :
243
244 # I f the p i x e l i s non−zero and there e x i s t a zero p i x e l in
245 # the surrounding 3x3 window , the p i x e l i s cons idered on the
246 # contour .
247 i f image [r] [c] != 0 and \
248 np . min (image [r − 1 : r + 2 , c − 1 : c + 2]) == 0 :
249 contour [r] [c] = 255
250
251 return contour
252
253
254 i f name == ” main ” :
255 main ()

Listing 1: The entire Python source code

17

	Otsu Segmentation Algorithm
	RGB Image Segmentation Using the Otsu algorithm
	Texture-based Segmentation Using the Otsu algorithm
	Noise Elimination
	Contour Extraction
	More Observations
	Results
	Image 1: Lake
	RGB Segmentation
	Texture-based Segmentation

	Image 2: Tiger
	RGB Segmentation
	Texture-based Segmentation

	Source Code

