
ECE661 Computer Vision - Fall 2014 - HW5

Fu-Chen Chen chen1623@purdue.edu

1. Feature extraction and matching

I use the SURF in OpenCV for feature extraction and matching. After matching, I also compare the

distance between corresponding feature's descriptors. If the distance is too large, I will discard the

correspondence to reduce the number of outliers.

2. RANSAC algorithm

1. Determine the parameter δ, ε, ρ where:

 δ is the distance threshold for defining inlier and outlier.

 ε is the expecting ration of outliers.

 ρ is the targeting probability of at least picking all the inliers.

2. Compute the variable N, M where:

 N is the expected # of iteration of RANSAC =
 ρ

 ε

 M is the expected # of inliers = (1-ε)*(Total # of correspondences)

3. Start the RANSAC iterations until the exit conditions is fulfilled (conditions will be mentioned in

step 4). In each iteration, randomly pick 4 correspondences of SURF points and use them to derive

the homography with the same manner in HW2. After getting the homography, use it to generate

the corresponding points of features and get the distances between these corresponding points

and the SURF points. If the distance is smaller than δ, the SURF points are the inliers. Otherwise,

they are the outliers. Keep the homography with the most number of inliers as the best

homography.

4. Exit the RANSAC iteration if # of iteration >= N and # of inliers >= M. These will ensure the

quality of derived homography. Sometimes the condition may not be fulfilled since there are too

many outliers than expected, for safety I set a iteration upper-bound for terminating the RANSAC if

of iteration is bigger than the upper-bound.

3. Least square method

After getting the best homography from RANSAC, we apply it again to all the SURF points and store

all the inlier correspondences:

 total # of inlier

mailto:chen1623@purdue.edu

Let

 is the homography we want to have, then we could have following

equations:

Rewrite them in matrix form:

The solution such that is minimized would be:

So we could use all the inlier correspondences to form the matrix and . Then we could derive

the vector so as to the homography .

4. Dog-Leg algorithm

Let
 be a 9x1 vector (and with all the

definitions of variables mentioned above) at the iteration k of Dog-Leg algorithm. We want to

update the to minimize the geometry error.

In each iteration, we computer the Jacobian and the error vector:

 where

Then we can have:

 with a constant .

Now we can update according to the rule:

 where is the solution of

 and with a constant .

For the first iteration, we set

 with 0< <<1 and set

 . For the following iterations, we update them by:

 where

ρ

δ
 δ

 δ

 ρ

 ρ

 where

ρ

 δ

 δ

 δ

At the end of each iteration, check if the total error is decreasing or increasing by the sign of

 . If the sign is positive, it means the total error is decreasing. If not, it means we

take the wrong step so we should undo this iteration and update the constants by:

The whole Dog-Leg algorithm ends when the is positive and lies within a small

constant. This means we are very close to the optimal solution so the error only decrease a small

value.

5. Image mosaicing method

a. Get homographies of center images

First we derive the homographies in a serial order (ex: from left to right) of images. Then we pick a

image as a center image and find the corresponding homegraphies from center image to other

images by multiplying the derived homographies and their inverse sucessively.

Use above images for example, we have a center image "C", its left, right images and the

homographies H0~H5. We could get the corresponding homegraphies from center image to other

images by:

 For image C to image R1: HCR1 = H3

 For image C to image R2: HCR2 = H4* HCR1

 For image C to image R3: HCR3 = H5* HCR2

 For image C to image L1: HCL1 =

 For image C to image L2: HCL2 = HCL1

 For image C to image L3: HCL3 = HCL2

b. Perform back-warping with blending

Using the corresponding homegraphies of center image, we can create an expanded image that

contain all the back-warped images. Each images' boundaries form a polygon in the expanded

image, so we could scan every pixels in expanded image to check if they are within certain

polygons, which means we could get the pixels value from corresponding images of the polygons

by back-warping and bi-linear interpolation.

One pixel may belong to multiple polygons. If you only take one pixel value from one image of the

polygons, there could be very obvious edges on the boundaries of polygons. Thus we perform a

blending processing that use the weighted sum of pixel values by considering the distance of the

pixel to the boundaries of polygons. The weight of each pixel value of polygon is:

weight = distance* distance + 0.001

By taking the quadratic form of distance, the weight would be small on boundaries and be very

large near the center of boundaries. This let us could perform blending only on the boundaries,

and make other regions of image remain un-blur.

Image without blending: Lots of obvious edges

Image with blending: The edge disappear while the image remain un-blur

6. Parameters

SURF:

SURFthr = 2500 Threshold for extracting SURF feature

MatchThr = 0.30 Threshold for SURF's feature matching.

RANSAC:

RANSAC_delta = 4.5 Distance threshold for defining inlier and outlier

RANSAC_epsilon = 50% Ratio of outliers

RANSAC_p = 99.9% Probability of at least picking all the inlier

RANSAC_TIMEOUT = 999 Iteration upper-bound to stop RANSAC if there is no good result

Dog-Leg:

coef_uk = 0.0000005 Multiplier for initializing uk

coef_rk = 3.0 Initial value of rk

err_con = 0.01 Threshold of delta-error to stop the Dog-Leg

7. Results

Set1 - original images

Set1 - feature correspondences

Set1 - outliers(red) and inliers(blue)

Set1 - final results

without blending

with blending

Set2 - original images

Set2 - feature correspondences

Set2 - outliers(red) and inliers(blue)

Set2 - final results

without blending

with blending

8. Discussion

 Almost all of the inliers lie on the overlap regions of two images, while the outliers lie on

excluded regions.

 Lower the parameter "MatchThr" could significantly reduce the number of outliers. I set

MatchThr=0.30 here in order to get more outliers and show the power of RANSAC. If I set

MatchThr=0.25, then the ration of outlier could be 10%~20%.

 The geometry error reduce a little after Dog-Leg algorithm. I think it's because the

homography comes from the RANSAC and linear-least-square is good enough. In the most

cases, the average geometry error (total error / # of inliers) is below 1.0 before applying

Dog-Leg, so the solution may be very close the optimal solution.

