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1 Introduction

The purpose of this project is detecting interest points from images and using simple comparisons to
establish correspondences between the interest points extracted from two different images of the same
scene. To achieve this, we develop our own version of the Harris corner detector. Using 4 different
scales of the Harris corner detector, we extract interest points from two different viewpoint images.
In addition, we use SIFT feature extractor from V LFeat library to compare the performance with
the Harris corner detector. After extracting the interest points, we should compute correspondence of
each interest points and bind them as pairs. Using two metrics such that the NCC (Normalized Cross
Correlation) and the SSD (Sum of Squared Differences) metrics, we can establish correspondences
between the interest points in the two images of the same scene.

This document is structured as follows. The theoretical background of Harris corner detector and
SIFT feature descriptors are introduced in Section 2. Then, brief explanation of feature matching
methods are followed in Section 3. The experimental results with given pairs of image sets are shown
in detail in Section 4. Lastly, the MATLAB codes that use for these experiments are attached in the
end.

2 Theoretical Background

In this section, we discuss two different feature extraction methods, Harris corner detector and SIFT
feature descriptor. Each method will be described as step by step with relevant equations.

2.1 Harris Corner Detector

The goal of the Harris corner detector is finding the points that can be defined as corners. A corner
can be defined such that the pixel in the vicinity of which the gray levels show significant variation
in at least two different directions. In order to perform the Harris corner detectors, we have following
steps:

1. Take input as a simple 2D image I and calculate intensity variations at different scales along
the x and y direction. If scale is not important, we can use the Sobel operator to calculate these
variations. In this project, however, different from previous year projects, we need to consider
different scales. In order to compute different scales, we apply different size of Haar filters and

denote I
(i)
x and I

(i)
y where x- and y-oriented filters at new sigma σi.

The basic form of the Haar wavelets are (−1, 1) along x and (1,−1)T along y. These forms are
scaled up to an S × S such that S is the smallest even integer greater than 4σ. For example,
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when σ = 1.4, two Haar wavelets should be expressed as
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because greater but smallest even number of 4σ is 6. Different scale gives us different size of
these Haar wavelet filter matrix. After that, convolve these filters with given images, we can get

I
(i)
x and I

(i)
y respectively.

2. Construct matrix M (i) such that

M (i) =

[

∑

(I
(i)
x )2

∑

I
(i)
x I

(i)
y

∑

I
(i)
x I

(i)
y

∑

(I
(i)
y )2

]

= U−1

[

λ
(i)
1 0

0 λ
(i)
2

]

U,

in a 5σ × 5σ neighborhood window of the pixel where we would like to check the presence or
absence of a corner. We prefer the size of this 5σ × 5σ neighborhood window as odd number
to make sure the center point is a pixel. This 2 × 2 matrix has full rank at a genuine corner.
However, if the pixel on which the 5σ × 5σ window is on a straight edge, its rank reduces to 1.

From this characteristics, we need to compute eigenvalues (λ
(i)
1 , λ

(i)
2 ) of M (i). As observed from

Figure 1, there are four different cases depending on these eigenvalues.

Figure 1: Relationship between eigenvalues and features

3. Calculate the determinant and trace of matrix M (i) and get corner response R(i). Note that
determinant and trace are expressed as

det(M (i)) = λ
(i)
1 λ

(i)
2 , tr(M (i)) = λ

(i)
1 + λ

(i)
2 .
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The corner response R(i) can be computed as

R(i) = det(M (i))− k(tr(M (i)))2 = λ
(i)
1 λ

(i)
2 − k(λ

(i)
1 + λ

(i)
2 )2,

where k should be determined empirically. In this project, this k is set to 0.04.

4. Using non-maximum suppression as we perform for the Canny edges, get rid of the pixels with
corner response near pixels using certain size of window.

5. Find the points with large corner response with respect to threshold THarris. This means if
R(i) > THarris, we consider the pixel location as a corner. Otherwise, although it was classified
with corner, we do not consider it as a corner.

2.2 SIFT Feature Descriptor

We extract SIFT feature points using V LFeat embedded function. The details of theory of SIFT is
already done in class, so we briefly introduce some key steps as follow:

1. Scale-space extreme detection
Using DoG (Difference-of-Gaussian) pyramid, find all the local extrema. The DoG can be
computed as

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ) ∗ I(x, y))

= ff(x, y, kσ)− ff(x, y, σ)

where ff(x, y, σ) is LoG (Laplacian-of-Gaussian) of image I(x, y). In addition, G(x, y, σ) is a
variable-scale Gaussian expressed as

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

.

This means we find points that are locally maximum or locally minimum in the three dimensional
space (x, y, σ). From one point, we need to consider 26 neighbors in a 3D neighborhoods around
3× 3× 3.

2. Keypoint localization
Since we use different scales (σ) across DoG pyramid, we should match the top extreme points
to bottom image. In order to do this, using the second-order derivatives at the sampling points
in the DoG pyramid, you can localize the extremum with sub-pixel accuracy in the vicinity of
where the extremum was found in Step 1. We compute Taylor expansion such that

D(x) = D(x0) + JT (x0)x+
1

2
xTH(x0)x,

where x is the incremental deviation from x0. The gradient vector J and the Hessian H at x is
defined as

J(x0) =

(

∂D

∂x
,
∂D

∂y
,
∂D

∂z

)T

x0
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.

Using this Taylor expansion, SIFT feature can be interpolated near local extremum and find
accurate position of original image.
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3. Discarding low-contrast keypoints
To discard the keypoints with low contrast, thresholding |D(x)| at the locations (x, y, σ)T = x
of the extremums. Typically, an extremum is rejected if |D(x)| < 0.03. We also reject those
exrema in the scale space that draw their support from an edge in the image. The way that we
eliminate edge is the same as we do in the Harris corner detector using trace and determinant
of eigenvalues.

4. Orientation assignment
Now, we want to find the dominant local orientation. First, we calculate the gradient vector of
the Gaussian-smoothed image ff(x, y, σ) at the scale σ of the extremum. At each point in a
S × S neighborhood around the extremum, we compute the gradient magnitude (m(x, y)) and
the gradient orientation (θ(x, y)) such that

m(x, y) =

√

|ff(x+ 1, y, σ)− ff(x, y, σ)|
2
+ |ff(x, y + 1, σ)− ff(x, y, σ)|

2

θ(x, y) = arctan

(

ff(x+ 1, y, σ)− ff(x, y, σ)

ff(x, y + 1, σ)− ff(x, y, σ)

)

.

After weighting θ(x, y) with m(x, y), we construct a histogram of θ(x, y) values using 36 bins
spanning the full 360◦ range.

5. Keypoint descriptor
At the scale of the extremum, the extremum point is surrounded by a 16 × 16 neighborhood
of points that is divided into 4 × 4 cells, each cell consisting of a 4 × 4 block of points. For
each of the 16 cells, an 8-bin orientation histogram is calculated from the gradient-magnitude-
weighted values of θ(x, y) at the 16 pixels in the cell. Finally, stringing together the 16 8-bin
histograms yields a 128-element descriptor at each retained extremum in the DoG pyramid.
This 128-element descriptor as a vector in a 128-dimensional space, its length is normalized to
unity to make it invariant to change in illumination.

3 Feature Matching Methods

Once we got the low-level features such as corners from two different images, we can establish corre-
spondences by directly comparing the gray levels. We use two metrics so called SSD (Sum of Squared
Differences) and NCC (Normalized Cross-Correlation). However, if we got the features from scale-
space operator such as SIFT, we can simply measuring the Euclidean distance between their descriptor
vector.

3.1 SSD (Sum of Squared Differences)

After finding the corners using the Harris corner detector, one possible way of establishing correspon-
dences between image pairs is to use the sum of squared differences. That is, for each pair of interest
points in both input images I1 and I2 we compare their gray levels around an (S+1)×(S+1) window
such that

SSD =

S/2
∑

i=−S/2

S/2
∑

j=−S/2

|I1(i, j)− I2(i, j)|
2.

Using this SSD, we can compute the differences between each pairs and take minimal one as corre-
sponding features.
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3.2 NCC (Normalized Cross-Correlation)

Another technique to establish correspondences between image pairs is the normalized cross-correlation.
In this case, the gray levels of each pair of interest points in both input images I1 and I2 are compared
around an (S + 1)× (S + 1) window in the following manner:

NCC =

S/2
∑

i=−S/2

S/2
∑

j=−S/2

(I1(i, j)−m1)(I2(i, j)−m2)

√

√

√

√

√

S/2
∑

i=−S/2

S/2
∑

j=−S/2

(I1(i, j)−m1)2
S/2
∑

i=−S/2

S/2
∑

j=−S/2

(I2(i, j)−m2)2

,

where mi is the mean value along the (S + 1) × (S + 1) window around the interest point i. In this
case, the NCC value will be between −1 and 1, being 1 a perfect match between two interest points
around the comparison window. Therefore, we can set a threshold to filter the pairs of interest points
that are more likely to match.

3.3 Euclidean Distance

When using the SIFT feature descriptors, the correspondences between image pairs can be done by
simply compare the Euclidean distance between each pair of possible interest points in the two input
images I1 and I2. Since each interest point is represented by a 128-element descriptor vector, we can
compare two of them as follows:

d(a, b) =

√

√

√

√

128
∑

i=1

(ai − bi)2,

where a and b are the two descriptors to be compared. Therefore, we can establish a threshold to
filter the best matches. Note that this part is included in V LFeat embedded SIFT function.

4 Comparison of Harris Corner Detector and SIFT Descrip-
tors

1. As we learned from class, Harris corner detector is useful when there is not any scale space
movement between pairs of image. Therefore, Harris corner detector can find many matched
points in set 1 as SIFT did. However, except from set 1, SIFT feature extraction methods are
always outperformed. Meanwhile, SIFT feature already considered scale parameters, it is much
robust to extract corresponding feature points under scale space movement.

2. Harris corner detector is too sensitive to noise. In order to reduce this sensitive, we perform
non-maxima suppression to extract just one corners inside certain window.

3. SSD doesn’t need many computations, but the results from SSD matching is very dependent
on thresholding. The NCC is more robust when there are affine distortion between a pair of
images.
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5 Experimental Results

In this section, we show feature extraction results using various methods (Harris corner detector,
SIFT) and matching correspondences between these feature pairs with three different methods that
we introduced from previous section. Note that we use two methods such as SSD, NCC for matching
Harris corner detectors and use Euclidean distance for SIFT descriptors. Since we need to apply four
different scales for the Harris corner detector, each image pairs produces nine different image matching
results. We apply these methods for two given image pairs and two image pairs taken on my own.

Before moving on to the results, we introduce several parameters that we use for feature extraction
methods and feature matching methods. The detail parameters are explained in Table 1. We gen-
erally use same values for different image pairs except from scale value (i) and thresholds of feature
matching methods. More specifically, we use four different scale values from 1 to 4. Since this scale
values make σ values changes, window size of Haar filter depends on this scale value. Moreover, in

order to decide true corners, we should have threshold for Harris corner detector, T
(i)
Harris. Since the

size of neighborhood window M (i) is changeable, fixed T
(i)
Harris did not work. Therefore, we set T

(i)
Harris

as average of corresponding corner response R(i). Note that if certain pixel location has very large
corner response, the corner might detect across all different scales.

In addition, we have p which control threshold values of SSD, NCC and Euclidean distance metrics. In
particular, we compute the average of each metric value between two correspondences, and multiplying
p to the average of metric values to control thresholds.

Harris parameter Description Value
k sensitivity parameter 0.04
σ neighborhood window size to build C 1.2i

Wnms Window size of non-maxima suppression 29
SSD/NCC parameters

WSSD Comparison window size of SSD 20
WNCC Comparison window size of NCC 20
TSSD SSD threshold p · TSSD

ave

TNCC NCC threshold p · TNCC
ave

SIFT parameter
PeakThresh Peak selection threshold 3

Euclidean distance parameters
TdistE Euclidean distance threshold p · T distE

ave

Table 1: Parameter description and value
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5.1 Set 1

Since a pair of image from set 1 has only small moves, the correspondence results are quite good. We
use scale for threshold p as 1 for all metric in this set. As we mentioned, we apply four different scales
such that i = 1, 2, 3, 4. As can be seen from Figures, the number of Harris corner features decreases
when scale value increases. This is expected because we convolve larger Haar wavelet to given image
pair and it makes Harris corner detect sparser corner when we increase scale. As scale goes up, fewer
but better matched corresponding corner pairs are left. Different from Harris corner detector, SIFT
found rich feature points from both image pair and matched them nicely. Note that we use Euclidean
distance of 128-vector of each feature points and select the point that produces minimum distance .

Figure 2: SSD correspondences found with scale 1 in set 1.

Figure 3: NCC correspondences found with scale 1 in set 1.
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Figure 4: SSD correspondences found with scale 2 in set 1.

Figure 5: NCC correspondences found with scale 2 in set 1.
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Figure 6: SSD correspondences found with scale 3 in set 1.

Figure 7: NCC correspondences found with scale 3 in set 1.
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Figure 8: SSD correspondences found with scale 4 in set 1.

Figure 9: NCC correspondences found with scale 4 in set 1.

Figure 10: SIFT correspondences found with Euclidean distance metric in set 1.
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5.2 Set 2

Different from set 1, image pair of set 2 is very difficult to find matched points due to different
illumination condition and different objects. We decide scale for threshold p as 0.6 empirically for
all metric in this set. As we mentioned, we apply four different scales such that i = 1, 2, 3, 4. As we
observed already, larger scale produces less corner points. Note that SSD correspondences with less
corner points did not get better. However, NCC correspondences with less corner points clearly shows
better matched.

Figure 11: SSD correspondences found with scale 1 in set 2.

Figure 12: NCC correspondences found with scale 1 in set 2.
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Figure 13: SSD correspondences found with scale 2 in set 2.

Figure 14: NCC correspondences found with scale 2 in set 2.
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Figure 15: SSD correspondences found with scale 3 in set 2.

Figure 16: NCC correspondences found with scale 3 in set 2.
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Figure 17: SSD correspondences found with scale 4 in set 2.

Figure 18: NCC correspondences found with scale 4 in set 2.

Figure 19: SIFT correspondences found with Euclidean distance metric in set 2.
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5.3 Set 3

Set 3 and set 4 are my personal set to apply feature extraction and matched feature points methods.
More specifically, we took images from our lab and image pair of set 3 contains letter and time table.
Since these images are taken from different orientation, this pair of image has projective distortion.
We decide scale for threshold p as 0.8 empirically for all metric in this set. As we mentioned, we apply
four different scales such that i = 1, 2, 3, 4.

Figure 20: SSD correspondences found with scale 1 in set 3.

Figure 21: NCC correspondences found with scale 1 in set 3.
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Figure 22: SSD correspondences found with scale 2 in set 3.

Figure 23: NCC correspondences found with scale 2 in set 3.
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Figure 24: SSD correspondences found with scale 3 in set 3.

Figure 25: NCC correspondences found with scale 3 in set 3.
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Figure 26: SSD correspondences found with scale 4 in set 3.

Figure 27: NCC correspondences found with scale 4 in set 3.

Figure 28: SIFT correspondences found with Euclidean distance metric in set 3.
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5.4 Set 4

Set 4 is taken from different orientation with varying rotation and translation. This set turns out to
be very difficult set. We decide scale for threshold p as 0.6 empirically for all metric in this set. As
we mentioned, we apply four different scales such that i = 1, 2, 3, 4.

Figure 29: SSD correspondences found with scale 1 in set 4.

Figure 30: NCC correspondences found with scale 1 in set 4.
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Figure 31: SSD correspondences found with scale 2 in set 4.

Figure 32: NCC correspondences found with scale 2 in set 4.
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Figure 33: SSD correspondences found with scale 3 in set 4.

Figure 34: NCC correspondences found with scale 3 in set 4.
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Figure 35: SSD correspondences found with scale 4 in set 4.

Figure 36: NCC correspondences found with scale 4 in set 4.

Figure 37: SIFT correspondences found with Euclidean distance metric in set 4.
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Appendix: MATLAB Codes

Listing 1: MATLAB code - HW4main.m

%% ECE 661 HW #4

% PUID: 0023094873

% name: Soonam Lee

% HW4main.m

5

c lc ; clear a l l ; close a l l ;

%% main

path = ’/home/stargate/a/sig/lee714/coursework/ECE661/Homework/HW4/’;

10 % path = ’D:\Study\Purdue_Study\2014_Fall\ECE661\Homework\HW4\’;

bools.Plot = true;

bools.Save = false;

15 % Set index

idx = 4;

% Load input image

img1_orig = imread ([path, ’Pics/Set’, num2str(idx), ’/pic1.jpg’]);

20 img2_orig = imread ([path, ’Pics/Set’, num2str(idx), ’/pic2.jpg’]);

img1 = double(rgb2gray(img1_orig ));

img2 = double(rgb2gray(img2_orig ));

% Set the parameters

25 params.scale = 4;

params.sigma = 1.2;

params.k = 0.04;

params.W_nms = 29;

params.W_SSD = 20;

30 params.W_NCC = 20;

params.p = 0.6;

% Perform Harris Corner Detector

HarrisCorner(img1_orig , img2_orig , params , idx , path, bools );

35

% Perform SIFT descriptor

SIFTDescriptor(img1_orig , img2_orig , params , idx , path, bools );

Listing 2: MATLAB code - HarrisCorner.m

%% ECE 661 HW #4

% PUID: 0023094873

% name: Soonam Lee

% HarrisCorner.m

5

function HarrisCorner(img1_orig , img2_orig , params , idx , path, bools)

img1 = double(rgb2gray(img1_orig ));

img2 = double(rgb2gray(img2_orig ));

10 % Corner responses map R1, R2

R1 = zeros( s ize (img1 )); R2 = zeros( s ize (img2 ));

% Corner location map C1, C2
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C1 = zeros( s ize (img1 )); C2 = zeros( s ize (img2 ));

15 % % normalize image 1 and image 2

% img1 = img1/max(max(img1));

% img2 = img2/max(max(img2));

% Get the size of images

20 [height , width] = s ize (img1);

sigma = params.scale*params.sigma;

t i c

25 %% Ix, Iy convlved with Haarx and Haary

% Construct Haar wavelet filter with respect to size of sigma

% Set the S1, the smallest even integer greater than 4∗sigma.

W1 = round( ce i l (4* sigma )/2)*2;

Haarx = [-ones(W1 , W1/2), ones(W1 ,W1 /2)];

30 Haary = [ones(W1/2, W1); -ones(W1/2, W1)];

Ix1 = imfilter(img1 , Haarx , ’same’);

Iy1 = imfilter(img1 , Haary , ’same’);

Ix2 = imfilter(img2 , Haarx , ’same’);

35 Iy2 = imfilter(img2 , Haary , ’same’);

% if bools.Plot

% figure; imshow(uint8(Ix1)); figure; imshow(uint8(Iy1));

% figure; imshow(uint8(Ix2)); figure; imshow(uint8(Iy2));

40 % end

%% Construct matrix M1 and M2

% window size should always be odd

W2 = round( ce i l (5* sigma )/2)*2+1;

45 half_W2 = round(W2/2) -1;

for i = half_W2 +1:width -half_W2 -1

for j = half_W2 +1: height -half_W2 -1

%% Image 1

50 % Get local window from Ix1, Iy1

Ix1_sub = Ix1(j-half_W2:j+half_W2 , i-half_W2:i+half_W2 );

Iy1_sub = Iy1(j-half_W2:j+half_W2 , i-half_W2:i+half_W2 );

% Get M matrix

M1(1,1) = sum(sum(Ix1_sub .^2));

55 M1(1,2) = sum(sum(Ix1_sub .* Iy1_sub ));

M1(2,2) = sum(sum(Iy1_sub .^2));

% Corner response

R1(j,i) = det(M1) - params.k* trace(M1)^2;

60 %% Image 2

% Get local window from Ix2, Iy2

Ix2_sub = Ix2(j-half_W2:j+half_W2 , i-half_W2:i+half_W2 );

Iy2_sub = Iy2(j-half_W2:j+half_W2 , i-half_W2:i+half_W2 );

% Get M matrix

65 M2(1,1) = sum(sum(Ix2_sub .^2));

M2(1,2) = sum(sum(Ix2_sub .* Iy2_sub ));

M2(2,2) = sum(sum(Iy2_sub .^2));

% Corner response
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R2(j,i) = det(M2) - params.k* trace(M2)^2;

70 end

end

% Window size for non−maximum suppresion of corner response

W_nms = params.W_nms;

75 half_W_nms = round(W_nms /2) -1;

for i = half_W_nms +1:width -half_W_nms -1

for j = half_W_nms +1: height -half_W_nms -1

% Get local window from corner response R1

R1_sub = R1(j-half_W_nms:j+half_W_nms , i-half_W_nms:i+half_W_nms );

80 % Non−maxima suppresion and thresholding

i f (R1(j,i) == max(max(R1_sub )) && R1(j,i) > mean(mean(abs(R1))))

C1(j,i) = 1;

end

85 % Get local window from corner response R2

R2_sub = R2(j-half_W_nms:j+half_W_nms , i-half_W_nms:i+half_W_nms );

% Non−maxima suppresion and thresholding

i f (R2(j,i) == max(max(R2_sub )) && R2(j,i) > mean(mean(abs(R2))))

C2(j,i) = 1;

90 end

end

end

t = toc;

95

[col1 , row1] = f ind(C1 == 1);

[col2 , row2] = f ind(C2 == 1);

% if bools.Plot % plot image

100 % figure;

% imagesc([img1_orig, img2_orig]);

% hold on;

% plot(row1, col1,’rx’, ’LineWidth’,2);

% plot(row2+width, col2, ’rx’, ’LineWidth’,2);

105 % axis off; hold off;

% end

%% Match corresponding corners

% SSD

110 [pts1 , pts2] = SSD(img1 , img2 , C1 , C2 , params );

i f bools.Plot % plot image

hfig1 = f igure ; imshow ([img1_orig , img2_orig ]);

set(gca,’Position ’ ,[0 0 1 1]);

115 set(gcf ,’Position ’ ,[0 0 2*width +1 height +1]);

set(gcf , ’PaperPositionMode ’, ’auto’);

truesize(hfig1 ,[ height 2* width ]);

hold on;

% Save the shown figure itself

120 F = getframe(hfig1 );

plot(row1 ,col1 ,’rx’,’LineWidth ’ ,2);

plot(row2+width ,col2 ,’rx’,’LineWidth ’ ,2);

for i=1:min( length(pts1), length(pts2))

plot ([pts1(i,1), pts2(i,1)+ width], [pts1(i,2), pts2(i,2)], ’-y’);
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125 end

axis off; hold off;

end

i f bools.Save % save image

imwrite(F.cdata ,[path,’Pics/Set’,num2str(idx),’/Harris_SSDMatched.jpg’], ...

130 ’jpeg’,’Quality ’ ,100);

end

% NCC

[pts3 , pts4] = NCC(img1 , img2 , C1 , C2 , params );

135

i f bools.Plot % plot image

hfig2 = f igure ; imshow ([img1_orig , img2_orig ]);

set(gca,’Position ’ ,[0 0 1 1]);

set(gcf ,’Position ’ ,[0 0 2*width +1 height +1]);

140 set(gcf , ’PaperPositionMode ’, ’auto’);

truesize(hfig2 ,[ height 2* width ]);

hold on;

% Save the shown figure itself

F = getframe(hfig2 );

145 plot(row1 ,col1 ,’rx’,’LineWidth ’ ,2);

plot(row2+width ,col2 ,’rx’,’LineWidth ’ ,2);

for i=1:min( length(pts3), length(pts4))

plot ([pts3(i,1), pts4(i,1)+ width], [pts3(i,2), pts4(i,2)], ’-c’);

end

150 axis off; hold off;

end

i f bools.Save % save image

imwrite(F.cdata ,[path,’Pics/Set’,num2str(idx),’/Harris_NCCMatched.jpg’],...

’jpeg’,’Quality ’ ,100);

155 end

Listing 3: MATLAB code - SIFTDescriptor.m

%% ECE 661 HW #4

% PUID: 0023094873

% name: Soonam Lee

% SIFTDescriptor.m

5

function SIFTDescriptor(img1_orig , img2_orig , params , idx , path, bools)

img1 = double(rgb2gray(img1_orig ));

img2 = double(rgb2gray(img2_orig ));

10 % Get the size of images

[height , width] = s ize (img1);

% Use vl_sift

[f1 ,d1] = vl_sift(single(img1),’PeakThresh ’ ,3);

15 [f2 ,d2] = vl_sift(single(img2),’PeakThresh ’ ,3);

[pts1 , pts2] = distEuclidean(f1 , f2 , d1 , d2 , params );

pts1 = round(pts1);

20 pts2 = round(pts2);

% if bools.Plot % plot image
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% figure;

% imagesc([img1_orig, img2_orig]);

25 % hold on;

% plot(round(f1(1,:)), round(f1(2,:)), ’ro’,’LineWidth’,2);

% plot(round(f2(1,:))+width, round(f2(2,:)), ’ro’,’LineWidth’,2);

% % plot(pts1(:,2), pts1(:,1), ’ro’,’LineWidth’,2);

% % plot(pts2(:,2)+width, pts2(:,1), ’ro’,’LineWidth’,2);

30 % axis off; hold off;

% end

i f bools.Plot % plot image

hfig1 = f igure ; imshow ([img1_orig , img2_orig ]);

35 set(gca,’Position ’ ,[0 0 1 1]);

set(gcf ,’Position ’ ,[0 0 2*width +1 height +1]);

set(gcf , ’PaperPositionMode ’, ’auto’);

truesize(hfig1 ,[ height 2* width ]);

hold on;

40 % Save the shown figure itself

F = getframe(hfig1 );

plot(round(f1(1,:)), round(f1(2,:)), ’ro’,’LineWidth ’ ,2);

plot(round(f2(1 ,:))+ width , round(f2(2,:)), ’ro’,’LineWidth ’ ,2);

% plot(pts1(:,2), pts1(:,1),’ro’,’LineWidth’,2);

45 % plot(pts2(:,2)+width, pts2(:,1), ’ro’,’LineWidth’,2);

for i=1:min( length(pts1), length(pts2))

plot ([pts1(i,2), pts2(i,2)+ width], [pts1(i,1), pts2(i,1)], ’-g’);

end

axis off; hold off;

50 end

i f bools.Save % save image

imwrite(F.cdata ,[path,’Pics/Set’,num2str(idx),’/SIFT_EuclideanMatched.jpg’], ...

’jpeg’,’Quality ’ ,100);

end

Listing 4: MATLAB code - SSD.m

%% ECE 661 HW #4

% PUID: 0023094873

% name: Soonam Lee

% SSD.m

5

function [pts1 , pts2] = SSD(img1 , img2 , C1 , C2 , params)

[col1 , row1] = f ind(C1 == 1);

[col2 , row2] = f ind(C2 == 1);

10 pts1 = NaN( length(col1 ),2);

pts2 = NaN( length(col2 ),2);

W_SSD = params.W_SSD + 1;

half_W_SSD = round(W_SSD /2) -1;

15 for j = 1: length(col2)

j

for i = 1: length(col1)

% Get local neighbors from corner and compare the gray level image

% around an neighbors

20 sub1 = img1(col1(i)-half_W_SSD:col1(i)+ half_W_SSD , ...

row1(i)-half_W_SSD:row1(i)+ half_W_SSD );
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sub2 = img2(col2(j)-half_W_SSD:col2(j)+ half_W_SSD , ...

row2(j)-half_W_SSD:row2(j)+ half_W_SSD );

SSD_sub = (abs(sub1 - sub2 )).^2;

25 SSD(j,i) = sum(sum(SSD_sub ));

end

end

% Want to find the index of minimum differences

30 [value , idx] = min(SSD);

T_SSD = params.p*mean(value );

% Thresholding using T_SSD

newcol1 = col1; newrow1 = row1;

newcol1( f ind(value > T_SSD )) = NaN;

35 newrow1( f ind(value > T_SSD )) = NaN;

newcol1( isnan(newcol1 ),:) = [];

newrow1( isnan(newrow1 ),:) = [];

% find index that corresponding thresholded points

40 idx( f ind(value > T_SSD )) = NaN;

cnt = 1;

for i=1: length(idx)

i f ~( isnan((idx(i))))

45 newrow2(cnt) = row2(idx(i));

newcol2(cnt) = col2(idx(i));

cnt = cnt +1;

end

end

50

% Get pts1 and pts2

pts1 = [newrow1 , newcol1 ];

pts2 = [newrow2 ’, newcol2 ’];

Listing 5: MATLAB code - NCC.m

%% ECE 661 HW #4

% PUID: 0023094873

% name: Soonam Lee

% NCC.m

5

function [pts3 , pts4] = NCC(img1 , img2 , C1 , C2 , params)

[col1 , row1] = f ind(C1 == 1);

[col2 , row2] = f ind(C2 == 1);

10 W_NCC = params.W_NCC + 1;

half_W_NCC = round(W_NCC /2) -1;

for j = 1: length(col2)

j

15 for i = 1: length(col1)

% Get local neighbors from corner and compare the gray level image

% around an neighbors

sub1 = img1(col1(i)-half_W_NCC:col1(i)+ half_W_NCC , ...

row1(i)-half_W_NCC:row1(i)+ half_W_NCC );

20 sub2 = img2(col2(j)-half_W_NCC:col2(j)+ half_W_NCC , ...

row2(j)-half_W_NCC:row2(j)+ half_W_NCC );
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m1 = mean(mean(sub1 )); m2 = mean(mean(sub2 ));

deviation1 = sub1 - m1; deviation2 = sub2 - m2;

NCC_numer = sum(sum(deviation1 .* deviation2 ));

25 NCC_denom = sqrt(sum(sum(deviation1 .^2)) * sum(sum(deviation2 .^2)));

NCC_sub = NCC_numer / NCC_denom;

NCC(j,i) = NCC_sub;

end

end

30

% Want to find the index that NCC is close to 1

[value , idx] = min(abs(NCC -1));

T_NCC = params.p*mean(value );

% Thresholding using T_NCC

35 newcol1 = col1; newrow1 = row1;

newcol1( f ind(value > T_NCC )) = NaN;

newrow1( f ind(value > T_NCC )) = NaN;

newcol1( isnan(newcol1 ),:) = [];

newrow1( isnan(newrow1 ),:) = [];

40

% find index that corresponding thresholded points

idx( f ind(value > T_NCC )) = NaN;

cnt = 1;

45 for i=1: length(idx)

i f ~( isnan((idx(i))))

newrow2(cnt) = row2(idx(i));

newcol2(cnt) = col2(idx(i));

cnt = cnt +1;

50 end

end

% Get pts1 and pts2

pts3 = [newrow1 , newcol1 ];

55 pts4 = [newrow2 ’, newcol2 ’];

Listing 6: MATLAB code - distEuclidean.m

%% ECE 661 HW #4

% PUID: 0023094873

% name: Soonam Lee

% distEuclidean.m

5

function [pts1 , pts2] = distEuclidean(f1 , f2 , d1 , d2 , params)

pts1 = NaN( length(d1),2);

pts2 = NaN( length(d2),2);

10

% Euclidean distance

for j = 1: s ize (d2 ,2)

j

for i = 1: s ize (d1 ,2)

15 distE(j,i) = sqrt(sum((d1(:,i)-d2(:,j)).^2));

end

end

% Want to find the index of minimum differences
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20 [value , idx] = min(distE );

T_distE = params.p*mean(value );

% Thresholding using T_distE

newcol1 = f1(1,:)’; newrow1 = f1(2,:)’;

newcol1( f ind(value > T_distE )) = NaN;

25 newrow1( f ind(value > T_distE )) = NaN;

newcol1( isnan(newcol1 ),:) = [];

newrow1( isnan(newrow1 ),:) = [];

% find index that corresponding thresholded points

30 idx( f ind(value > T_distE )) = NaN;

cnt = 1;

for i=1: length(idx)

i f ~( isnan((idx(i))))

35 newrow2(cnt) = f2(2,idx(i));

newcol2(cnt) = f2(1,idx(i));

cnt = cnt +1;

end

end

40

% Get pts1 and pts2

pts1 = [newrow1 , newcol1 ];

pts2 = [newrow2 ’, newcol2 ’];

30


