
ECE661: Computer Vision (Fall 2014)

Shaobo Fang: s-fang@purdue

October 2, 2014

Contents

1 Introduction 2

2 Harris Corner Detector 3
2.1 Overview of Harris Corner Detection . 3
2.2 Harris Corner Detector Implementation . 3

3 Establishing Correspondences Between Image Pairs for Harris Corner De-
tector 6
3.1 SSD: Sum of Squared Differences . 6
3.2 NCC: Normalized Cross Correlation . 6
3.3 False Matching Elimination . 6
3.4 Parameters Table For Harris Corner Detector 7

4 SIFT Algorithm: Scale Invariant Feature Transform 8

5 Establishing Correspondences Between Image Pairs for SIFT 10
5.1 SSD: Sum of Squared Differences . 10
5.2 NCC: Normalized Cross Correlation . 10
5.3 False Matching Elimination . 10
5.4 Parameters Table For SIFT . 11

6 Dynamic Threshold for Euclidean Distance, SSD and NCC 12

7 Results: Very Important Conclusions At End of Each Subsections 13
7.1 Set 1: Harris Operator/SIFT Comparison 13
7.2 Set 2: Harris Operator/SIFT Comparison 20
7.3 My Own Set: Harris Operator/SIFT Comparison 27
7.4 Intermediate Results: Gradient, Corners . 40
7.5 Appendix A: Harris Corner Detection Matlab Script 42
7.6 Appendix B: SIFT Matlab Script . 51

1

mailto:s-fang@purdue.edu

ECE661 Computer Vision: Harris Corner Detector

1 Introduction

In this assignment my own version of Harris corner detector will be implemented. The
correspondences of interest points between two images (the same object with views from
different angles) would be established based on SSD (Sum of Squared Differences) and
NCC (Normalized Cross Correlation) method. Then, we will check the quality of Harris
corner detector by applying the SIFT operator to the same sets of images.

Based on our experiment, it can be concluded although Harris corner detector can detect
those obvious corners easily and accurately, it is not a good method when the features are
not strict corners/more robust features.

It has been found in the experiment that the NCC based SIFT works better than anything
else regarding those robust features. Please refer to figure 26 and figure 39 for great output
from NCC based SIFT matching.

2 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

2 Harris Corner Detector

2.1 Overview of Harris Corner Detection

Before SIFT and SURF operators were invented, Harris Corner Detector was widely used
in digital image interest points detection. The idea of Harris corner detection is based on
that the characterization of a corner pixel should be invariant to rotations of images.

Although scale was not introduced when Harris corner detector was first introduced, we
now can implement the Harris corner detector with variable scale.

2.2 Harris Corner Detector Implementation

1. We first need to calculate the gradient along x and y directions in the image.
However, since we need to make our Harris corner detector scalable, we can not use
Sobel Operator as Sobel Operator can not take care of scales properly. Instead, Haar
Filter was implemented to replace Sobel Operator by finding the dx and dy. Below we
will give an example of Haar filter with σ = 1.2.

Haar Filter for
∂

∂x
, with σ = 1.2 :



−1 −1 −1 1 1 1

−1 −1 −1 1 1 1

−1 −1 −1 1 1 1

−1 −1 −1 1 1 1

−1 −1 −1 1 1 1

−1 −1 −1 1 1 1



Haar Filter for
∂

∂y
, with σ = 1.2 :



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

−1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1


Please note the above form of Haar filter is based on the expansion of Haar wavelet
at basic form. We have to make sure that the forms are scaled up to an M by M
operator where M is the smallest even integer greater than 4× σ. (Similarly we can
easily prove that while σ = 1.2, M = 6. And when σ = 1.4, M = 8)

3 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

σ = 1.4.

Haar Filter for
∂

∂x
, with σ = 1.4 :



−1 −1 −1− 1 1 1 1 1

−1 −1 −1− 1 1 1 1 1

−1 −1 −1− 1 1 1 1 1

−1 −1 −1− 1 1 1 1 1

−1 −1 −1− 1 1 1 1 1

−1 −1 −1− 1 1 1 1 1

−1 −1 −1− 1 1 1 1 1

−1 −1 −1− 1 1 1 1 1



Haar Filter for
∂

∂y
, with σ = 1.4 :



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

−1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1


Furthermore, in order to minimize the noise in the pictures, before gradient
calculation was performed, we also need to filter our images with Gaussian smoothing
filter.

2. After the dx and dy was obtained, we then create a neighbourhood window of size
5σ × 5σ. Note that the σ should be consistent of that used in the first part when we
are filtering the image using Haar filter. The C matrix could then be constructed:

C =

[∑
d2x

∑
dxdy∑

dxdy
∑
d2y

]

3. While C in the previous step is a 2× 2 matrix, we will first check the rank of Ci,j at
pixel location (i,j). As long as rank(C) 6= 2, we will remove the pixel locations from
our candidates list of corners/interest points. The computation efficiency could
be improved significantly if we can first eliminate majority of candidates
points.

4. For the remaining corner candidates, we than need to determine the corner strength.
Define

Conrner Response = λ1λ2 − k(λ1 + λ2)
2

While k is defined as a constant: 0.04, λ1 and λ2 is the eigenvalues of matrix C.
Obviously if C is not rank 2 matrix the candidate point would not worth

4 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

investigating. In order to simplify the calculation,

det(C) = λ1λ2

trace(C) = λ1 + λ2

therefore, SVD of matrix C would then not be required.

5. After corner response at each candidates pixel has been calculated, we then set up a
threshold to filter out those points whose corner responses are not strong enough.
However, in practical we will notice that even after threshold, at certain regions there
would still be too many corner candidates. In order to solve the problem, we will
perform non-maxima suppression to extract only those points with local
maxima values.

6. Now all the Harris corner detection technique has been performed and we have
certain amount of interest points. Save the interest points extracted from each images
separately for corner correspondence estimation.

5 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

3 Establishing Correspondences Between Image Pairs

for Harris Corner Detector

3.1 SSD: Sum of Squared Differences

In order to use SSD to establish the correspondences between interest points of an image
pair, we first need to define a window (M + 1) × (M + 1). For the Harris corner detector,
let f1(i, j) denote the pixel values in image 1 within the (M + 1)× (M + 1) window, and let
f2(i, j) denote the pixel values in image 2 within the (M + 1)× (M + 1) window. Pairwise
SSD is defined as:

SSD =
∑
i

∑
j

|f1(i, j)− f2(i, j)|2

3.2 NCC: Normalized Cross Correlation

Similarly as SSD, In order to use NCC to establish the correspondences between interest
points of an image pair, we first need to define a window (M + 1)× (M + 1). For the Harris
corner detector, let f1(i, j) denote the pixel values in image 1 within the (M + 1)× (M + 1)
window, and let f2(i, j) denote the pixel values in image 2 within the (M + 1) × (M + 1)
window. Pairwise NCC is defined as:

NCC =

∑
i

∑
j

(f1(i, j)− µ1)(f2(i, j)− µ2)√
[
∑
i

∑
j

(f1(i, j)− µ1)2][
∑
i

∑
j

(f2(i, j)− µ2)2]

while µ1 is the mean of window f1(i, j) and µ2 is the mean of window f2(i, j).

3.3 False Matching Elimination

In general, a lot of pairs were matched incorrectly if we do not have any systematic way to
avoid/reduce false matching.

SSD Case: As SSD is defined as the sum of squared errors, an ideal match would
obviously have SSD = 0. However, based on our practical experiment we know that is
almost impossible. Hence we use the following method to reduce/avoid false matching.

1. If SSD value of a certain pair is smaller than 5 × (the absolute minima values of SSD
across all SSD matrix, we proceed, otherwise will dump the point. This step will
actually dump a lot of good candidates.

2. If the minimum of SSD
second minimum of SSD

is smaller than a certain ratio (denoted as Rssd), we will
establish correspondence between this specific pair. Otherwise we will again dump
the point as candidate.

6 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

NCC Case: As NCC is defined as the normalized cross correlation, an ideal match
would obviously have NCC = 1. However, based on our practical experiment we know that
is almost impossible. Hence we use the following method to reduce/avoid false matching.

1. If NCC value of a certain pair is smaller than 0.9 × (the absolute maxima values of
NCC across all SSD matrix, we proceed, otherwise will dump the point. This step
will actually dump a lot of good candidates.

2. If the maxima of NCC
second maxima ofNCC

is larger than a certain ratio (denoted as Rncc), we will
establish correspondence between this specific pair. Otherwise we will again dump
the point as candidate.

3. Of course, if NCC value is negative, which mean two pixel is anti-correlated, they can
not be a pair.

3.4 Parameters Table For Harris Corner Detector

Image WHaar WSSD WNCC THSSD THNCC RSSD RNCC

pic1.jpg 5σ × 5σ 10σ × 10σ 10σ × 10σ ≤ 40× SSDMinima ≥ 0.3×NCCMaxima 0.85 1.1
pic2.jpg 5σ × 5σ 10σ × 10σ 10σ × 10σ ≤ 40× SSDMinima ≥ 0.3×NCCMaxima 0.85 1.1
pic6.jpg 5σ × 5σ 10σ × 10σ 10σ × 10σ ≤ 40× SSDMinima ≥ 0.3×NCCMaxima 0.8 1.01
pic7.jpg 5σ × 5σ 10σ × 10σ 10σ × 10σ ≤ 40× SSDMinima ≥ 0.3×NCCMaxima 0.8 1.01
my1.jpg 5σ × 5σ 10σ × 10σ 10σ × 10σ ≤ 40× SSDMinima ≥ 0.3×NCCMaxima 0.85 1.01
my2.jpg 5σ × 5σ 10σ × 10σ 10σ × 10σ ≤ 40× SSDMinima ≥ 0.3×NCCMaxima 0.85 1.01

Note that the threshold values for corner responses is defined as:

(CR1Maxima + CR2Maxima)/20

(CR1Maxima is the Maxima for Corner Response of Image 1

(CR2Maxima is the Maxima for Corner Response of Image 2

7 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

4 SIFT Algorithm: Scale Invariant Feature Transform

For SIFT algorithm, we first need to find all the local extrema from the DoG pyramid.
Note that extrema include both maxima and minima. To be more detailed, each point in
the DoG pyramid should be compared to:

1. 8 points in the 3 by 3 neighbourhood at the same scale

2. 9 points in the 3 by 3 neighbourhood at the next scale

3. 9 points in the 3 by 3 neighbourhood at the previous scale

Usually, those points in original image that the grey levels change rapidly in several
directions are likely to be the DoG extrema.

In order to locate the extrema in the sub-pixel accuracy, we need to estimate the
second-order derivatives of D(x, y, σ) at the sampling points in the DoG pyramid. First,
find the Taylor series expansion of D(x, y, σ) in the vicinity of ~x0 = (x0, y0, σ0)

T :

D(~x) ≈ D(~x0) + JT (~x0)~x+
1

2
~xTH(~x0)~x

where ~x is a incremental of ~x0.

Easily, J is the gradient vector estimated at ~x0:

J(~x0) = (
∂D

∂x
,
∂D

∂y
,
∂D

∂σ
)T |~x0

And Hessian matrix is:

H(~x0) =


∂2D
∂x2

∂2D
∂x∂y

∂2D
∂x∂σ

∂2D
∂y∂x

∂2D
∂y2

∂2D
∂y∂σ

∂2D
∂σ∂x

∂2D
∂σ∂y

∂2D
∂σ2


For the true locations of extrema:

~x = −H−1(~x0)J(~x0)

As the extrema points are found, we need to threshold out those extremas who are week.
For example we can set a hard cut off at:

D(~x) ≥ 0.03

to be qualified for an extrema candidate.

After the candidates of the local extrema are found, we then need to establish the dominant
local orientation for each candidate point found in previous step. To find the local

8 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

dominant orientation we need to calculate the gradient vector of the Gaussian-smoothed
image f(x, y, σ) at the scale σ of the extrema. It magnitude is defined as:

m(x, y) =
√
|f(x+ 1, y, σ)− f(x, y, σ)|2 + |f(x, y + 1, σ)− f(x, y, σ)|2

While the orientation is:

θ(x, y) = arctan
f(x+ 1, y, σ)− f(x, y, σ)

f(x, y + 1, σ)− f(x, y, σ)

Finally, we divide the 16 by 16 neighbourhood of point into 4 by 4 cells (each cell with 4 by
4 points and totally we have 16 cells). Now, for each of the cell, an 8-bin orientation
histogram is calcualted from the gradient-magnitude-weighted values of θ(x, y) at 16 pixels.
That is, total of 8× 16 = 128. Hence,for each interest point, we will have 128-element
descriptor.

In next section, we will explain how to establish correspondences based on
features extracted by SIFT operator

9 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

5 Establishing Correspondences Between Image Pairs

for SIFT

5.1 SSD: Sum of Squared Differences

In order to use SSD to establish the correspondences between interest points of an image
pair yield by SIFT, we need:

SSD =
∑
i

∑
j

|f1(i, j)− f2(i, j)|2

While f1(i, j) is the 128-elements descriptor obtained at each interest points location.

5.2 NCC: Normalized Cross Correlation

Similarly as SSD, In order to use NCC to establish the correspondences between interest
points of an image pair, we need :

NCC =

∑
i

∑
j

(f1(i, j)− µ1)(f2(i, j)− µ2)√
[
∑
i

∑
j

(f1(i, j)− µ1)2][
∑
i

∑
j

(f2(i, j)− µ2)2]

While f1(i, j) is the 128-elements descriptor obtained at each interest points location.

5.3 False Matching Elimination

In general, a lot of pairs were matched incorrectly if we do not have any systematic way to
avoid/reduce false matching.

SSD Case: As SSD is defined as the sum of squared errors, an ideal match would
obviously have SSD = 0. However, based on our practical experiment we know that is
almost impossible. Hence we use the following method to reduce/avoid false matching.

1. If SSD value of a certain pair is smaller than 5 × (the absolute minima values of SSD
across all SSD matrix, we proceed, otherwise will dump the point. This step will
actually dump a lot of good candidates.

2. If the minimum of SSD
second minimum of SSD

is smaller than a certain ratio (denoted as Rssd), we will
establish correspondence between this specific pair. Otherwise we will again dump
the point as candidate.

Euclidean Distance Case: Euclidean distance case is almost identical as SSD, the only
difference is Euclidean Distance =

√
SSD

10 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

NCC Case: As NCC is defined as the normalized cross correlation, an ideal match
would obviously have NCC = 1. However, based on our practical experiment we know that
is almost impossible. Hence we use the following method to reduce/avoid false matching.

1. If NCC value of a certain pair is smaller than 0.9 × (the absolute maxima values of
NCC across all SSD matrix, we proceed, otherwise will dump the point. This step
will actually dump a lot of good candidates.

2. If the maxima of NCC
second maxima ofNCC

is larger than a certain ratio (denoted as Rncc), we will
establish correspondence between this specific pair. Otherwise we will again dump
the point as candidate.

3. Of course, if NCC value is negative, which mean two pixel is anti-correlated, they can
not be a pair.

5.4 Parameters Table For SIFT

Image REuclidean RSSD RNCC

pic1.jpg ≤ 5× EuclideanMinima ≤ 5× SSDMinima ≥ 0.9×NCCMaxima

pic2.jpg ≤ 5× EuclideanMinima ≤ 5× SSDMinima ≥ 0.9×NCCMaxima

pic6.jpg ≤ 5× EuclideanMinima ≤ 5× SSDMinima ≥ 0.9×NCCMaxima

pic7.jpg ≤ 5× EuclideanMinima ≤ 5× SSDMinima ≥ 0.9×NCCMaxima

my1.jpg ≤ 5× EuclideanMinima ≤ 5× SSDMinima ≥ 0.9×NCCMaxima

my2.jpg ≤ 5× EuclideanMinima ≤ 5× SSDMinima ≥ 0.9×NCCMaxima

Based on our empirical data, dynamic threshold method works great for SIFT.

11 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

6 Dynamic Threshold for Euclidean Distance, SSD and

NCC

It has already proven useful and convenient in this experiment using dynamic threshold.
The idea of dynamic threshold is to avoid manually change each threshold value for every
single experiment. Because the threshold values would vary hugely based on the image
quality, illumination, feature descriptors strength, corner response, etc.

For example, in order to qualify for a match SSD value should be at least smaller than 5
times the smallest SSD value. Or, similarly, in order to qualify for a match NCC value
should be at least larger than 0.9 times the largest NCC value.

Great Result: NCC for SIFT

From the experiment, we have actually concluded that when the images/features are
robust, NCC based on SIFT features can still work great. For more details please refer
to each of the conclusion/discussion session in next section and figure 26, figure
39.

12 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

7 Results: Very Important Conclusions At End of Each

Subsections

7.1 Set 1: Harris Operator/SIFT Comparison

Figure 1. Set1: pic1.jpg

Figure 2. Set1: pic2.jpg

13 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 3. Harris: The SSD matching with σ = 0.6

Figure 4. Harris: The NCC matching with σ = 0.6

14 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 5. Harris: The SSD matching with σ = 1

Figure 6. Harris: The NCC matching with σ = 1

15 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 7. Harris: The SSD matching with σ = 1.4

Figure 8. Harris: The NCC matching with σ = 1.4

16 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 9. Harris: The SSD matching with σ = 2.2

Figure 10. Harris: The NCC matching with σ = 2.2

17 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 11. SIFT: Interest Points Matching Based on Euclidean Distance

Figure 12. SIFT: Interest Points Matching Based on SSD

18 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 13. SIFT: Interest Points Matching Based on NCC

Conclusion for Set 1:

For this set of images as the view angle (also the lighting conditions, color saturation, etc)
didn’t change that much, Harris corner detector works pretty well. For the correspondences
established based on SSD and NCC, except for a very few mismatch the overall correct
matching rate is very high.

It can also be concluded that larger the σ, less sensitive the Harris Corner detector is (less
interest points is not necessarily bad). Those points in the lower part of the image could
always be detected by Harris Corner detector. As the Harris Corner detector already work
pretty well, SIFT operator would not improve our result that much. (of course we will
easily have a lot more interest points).

19 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

7.2 Set 2: Harris Operator/SIFT Comparison

Figure 14. Set2: pic6.jpg

Figure 15. Set1: pic7.jpg

20 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 16. Harris: The SSD matching with σ = 0.6

Figure 17. Harris: The NCC matching with σ = 0.6

21 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 18. Harris: The SSD matching with σ = 1

Figure 19. Harris: The NCC matching with σ = 1

22 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 20. Harris: The SSD matching with σ = 1.4

Figure 21. Harris: The NCC matching with σ = 1.4

23 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 22. Harris: The SSD matching with σ = 2.2

Figure 23. Harris: The NCC matching with σ = 2.2

24 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 24. SIFT: Interest Points Matching Based on Euclidean Distance

Figure 25. SIFT: Interest Points Matching Based on SSD

25 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 26. SIFT: Interest Points Matching Based on NCC

Conclusion for Set 2:

For this set of images as the view angle (ESPECIALLY the lighting conditions, color
saturation, etc) changed significantly, Harris corner detector did not perform as well as in
the previous set. For the correspondences established based on SSD and NCC, the
matching rate decreased significantly.

Although larger the σ, less sensitive the Harris Corner detector is (less interest points
detected is not necessarily bad). Those points detected with larger σ actually tend to be
more accurately matched across the images.

As the Harris Corner detector yield bad results for this pair, SIFT operator actually works
a lot better! The results based on Euclidean and SSD are great, but the result based on
NCC is greater! With NCC, SIFT actually succeeded in matching the Arsenal Player
Poster, while there are not so many significant corners in there (by human visual).

Based on the result from this part, we have concluded when the features are more robust,
SIFT with NCC would improve our matching rate significantly.

26 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

7.3 My Own Set: Harris Operator/SIFT Comparison

Figure 27. My Set: my1.jpg

27 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 28. My Set: my2.jpg

28 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 29. Harris: The SSD matching with σ = 0.6

29 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 30. Harris: The NCC matching with σ = 0.6

30 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 31. Harris: The SSD matching with σ = 1

31 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 32. Harris: The NCC matching with σ = 1

32 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 33. Harris: The SSD matching with σ = 1.4

33 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 34. Harris: The NCC matching with σ = 1.4

34 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 35. Harris: The SSD matching with σ = 2.2

35 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 36. Harris: The NCC matching with σ = 2.2

36 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 37. SIFT: Interest Points Matching Based on Euclidean Distance

37 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 38. SIFT: Interest Points Matching Based on SSD

38 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Figure 39. SIFT: Interest Points Matching Based on NCC

Conclusion for Set 1:

Although for this set of images the view angle changed slightly as in Set 1, Harris corner
detector did not perform as well as in the previous set. For the correspondences established
based on SSD and NCC, the matching rate decreased significantly compared to those in set
1.

Challenge: If we look closely into this pair, we will find there is a huge trouble.
Unlike Set 1, a lot of features in the images are very similar. For example: The
Frames, The Car White Paint, The Tyres, Those Trees. Even by human visual if
we only look into the small details we can not distinguish one object from another.
However, SIFT has proven to be more accurate/sensitive than human visual in this case.

Again, similar as to those in Set 2 larger the σ, less sensitive the Harris Corner detector is
(less interest points detected is not necessarily bad). Those points detected with larger σ
actually tend to be more accurately matched across the images.

As the Harris Corner detector did not yield ideal results for this pair, again, SIFT operator
actually works better! The results based on Euclidean and SSD are great (there are only a
few points because the threshold and other limiting conditions are strict in order to avoid

39 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

mismatch as much as possible), but the result based on NCC is greater! With NCC, SIFT
actually succeeded in matching the Old Car in the images, while there are not so many
significant corners in there (by human visual).

Based on the result from this part, once more we have concluded when the features are
more robust, SIFT with NCC would improve our matching rate significantly.

7.4 Intermediate Results: Gradient, Corners

Fig 40. The x-gradient (left) and y-gradient (right) for pic1.jpg (upper) and pic2.jpg
(lower) using σ = 1

40 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Fig 41. The corner points detected on pic1.jpg using σ = 1

41 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

Fig 42. The corner points detected on pic2.jpg using σ = 1

7.5 Appendix A: Harris Corner Detection Matlab Script

1 %%%
2 % Read the test images, and seek user input for a scale sigma
3 %%%
4 close all; clear all; clc
5 pic1 = imread('your image name 1.jpg'); % your image name 1 = the image1 want

to be processed
6 pic2 = imread('your image name 2.jpg'); % your image name 2 = the image2 want

to be processed
7

8 scale = input('Enetr a scale:');
9

10 %%%
11 % Change the RGB images into gray scale
12 %%%
13 pic1 gray = rgb2gray(pic1);
14 pic2 gray = rgb2gray(pic2);

42 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

15 pic1 gray = double(pic1 gray);
16 pic2 gray = double(pic2 gray);
17

18 %%%
19 % Set up some coefficient, Rssd = ratio for SSD, Rncc = ratio for NCC
20 %%%
21 Rssd = 0.85
22 Rncc = 1.01
23 k = 0.04;
24

25

26 I1 = rgb2gray(pic1);
27 I2 = rgb2gray(pic2);
28

29 size I1 = size(I1);
30 size I2 = size(I2);
31 size I1 = size(I1);
32 size I2 = size(I2);
33

34 I1x = zeros(size I1(1),size I1(2));
35 I1y = zeros(size I1(1),size I1(2));
36 I2x = zeros(size I2(1),size I2(2));
37 I2y = zeros(size I2(1),size I2(2));
38 I1 = double(I1);
39 I2 = double(I2);
40

41 haar size = round(round((4*scale+1))/2)*2;
42

43 %%%
44 % Smooth the image a bit before processing to make sure those noise would
45 % not be detected as corners (to improve computational efficiency)
46 %%%
47 smooth filter = fspecial('gaussian', 5*scale, scale);
48 I1 = imfilter(I1,smooth filter);
49 I2 = imfilter(I2,smooth filter);
50

51 %%%
52 % Applying 'Haar' Filter
53 %%%
54 Hx(1:haar size,1:haar size/2) = −1;
55 Hx(1:haar size,haar size/2+1:haar size) = 1;
56 Hy(1:haar size/2,1:haar size) = 1;
57 Hy(haar size/2+1:haar size,1:haar size) = −1;
58

59 I1x = imfilter(I1,Hx);
60 I1y = imfilter(I1,Hy);
61 I2x = imfilter(I2,Hx);
62 I2y = imfilter(I2,Hy);
63

64 %%%
65 % This part no longer useful. The part is for the initial implementation of

Sobel filter
66 %%%
67 %%%

43 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

68 % This part is for sobel operator
69 %
70 %
71 % for i = 2:1:size I1(1)−1;
72 % for j = 2:1:size I1(2)−1;
73 % I1x(i,j) = I1(i−1,j+1) + 2*I1(i, j+1) + I1(i+1, j+1) −I1(i−1,j−1)

...
74 % − 2*I1(i,j−1) − I1(i+1,j−1);
75 % I1y(i,j) = I1(i−1,j−1) + 2*I1(i−1,j) + I1(i−1,j+1) − I1(i+1,j−1)

...
76 % −2*I1(i+1, j) − I1(i+1, j+1);
77 % end
78 % end
79 %
80 % for i = 2:1:size I2(1)−1;
81 % for j = 2:1:size I2(2)−1;
82 % I2x(i,j) = I2(i−1,j+1) + 2*I2(i, j+1) + I2(i+1, j+1) −I2(i−1,j−1)

...
83 % − 2*I2(i,j−1) − I2(i+1,j−1);
84 % I2y(i,j) = I2(i−1,j−1) + 2*I2(i−1,j) + I2(i−1,j+1) − I2(i+1,j−1) −

...
85 % 2*I2(i+1, j) − I2(i+1, j+1);
86 % end
87 % end
88 %
89 %%%
90

91 %%%
92 % Plot the gradient as intermediate result to make sure Haar filter was

correctly implemented
93 %%%
94 figure
95 subplot(2,2,1)
96 image(I1x)
97 colormap(gray(256))
98 subplot(2,2,2)
99 image(I1y)

100 colormap(gray(256))
101 subplot(2,2,3)
102 image(I2x)
103 colormap(gray(256))
104 subplot(2,2,4)
105 image(I2y)
106 colormap(gray(256))
107

108 tic
109 disp('Compute the C matrix for Image 1...')
110 %%%
111 % Calculate the C matrix for image 1
112 %%%
113 for i =1:1:size I1(1)
114 for j = 1:1:size I1(2)
115 C Matrix I1 = [0,0;0,0];
116 for m = −(5*scale−1)/2:1:(5*scale−1)/2

44 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

117 for n = −(5*scale−1)/2:1:(5*scale−1)/2
118 if (i+m>0) && (i+m < size I1(1)) && (j+n>0) && (j+n < size I1

(2))
119 C Matrix I1(1,1) = C Matrix I1(1,1) + I1x(i+m,j+n)*I1x(i+m,j+n

);
120 C Matrix I1(2,2) = C Matrix I1(2,2) + I1x(i+m,j+n)*I1x(i+m,j+n

);
121 C Matrix I1(1,2) = C Matrix I1(1,2) + I1x(i+m,j+n)*I1y(i+m,j+n

);
122 C Matrix I1(2,1) = C Matrix I1(2,1) + I1x(i+m,j+n)*I1y(i+m,j+n

);
123 else
124 end
125 end
126 end
127 C I1{i,j} = C Matrix I1;
128 end
129 end
130 toc
131 disp('Check the rank of C matrix for Image 1... ')
132 %%%
133 % Check the rank of C matrix. If rank not euqal to 2 then dump the points
134 % If rank(C) = 2 then save the points for further processing
135 %%%
136 for i =1:1:size I1(1)
137 for j = 1:1:size I1(2)
138 C Matrix I1 = C I1{i,j};
139 if (rank(C Matrix I1) == 2)
140 I corner I1(i,j) = 1;
141 % plot(j,i,'b*');
142 else
143 I corner I1(i,j) = 0;
144 end
145 end
146 end
147 toc
148 disp('Evaluating the corner strength for Image 2... ')
149

150 Corner strength I1 = zeros(size I1(1),size I1(2));
151 %%%
152 % Estimate the corner strength at the remaining cadidate locations for image 1
153 %%%
154 for i =1:1:size I1(1)
155 for j = 1:1:size I1(2)
156 if (I corner I1(i,j) == 1)
157 %[U,S,V] = svd(C I1{i,j}); %%%No need to use SVD
158 %Corner strength I1(i,j) = S(1,1)*S(2,2) − k*(S(1,1)+S(2,2))ˆ2;

%%%No need to use SVD
159 Corner strength H I1(i,j) = det(C I1{i,j}) − k*(trace(C I1{i,j}))

ˆ2; %%%This is better way to calculate corner strength
160 end
161 end
162 end
163

45 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

164 toc
165 disp('Compute the C matrix for Image 2...')
166 %%%
167 % Calculate the C matrix for image 2
168 %%%
169 for i =1:1:size I2(1)
170 for j = 1:1:size I2(2)
171 C Matrix I2 = [0,0;0,0];
172 for m = −(5*scale−1)/2:1:(5*scale−1)/2
173 for n = −(5*scale−1)/2:1:(5*scale−1)/2
174 if (i+m>0) && (i+m < size I2(1)) && (j+n>0) && (j+n < size I2

(2))
175 C Matrix I2(1,1) = C Matrix I2(1,1) + I2x(i+m,j+n)*I2x(i+m,j+n

);
176 C Matrix I2(2,2) = C Matrix I2(2,2) + I2x(i+m,j+n)*I2x(i+m,j+n

);
177 C Matrix I2(1,2) = C Matrix I2(1,2) + I2x(i+m,j+n)*I2y(i+m,j+n

);
178 C Matrix I2(2,1) = C Matrix I2(2,1) + I2x(i+m,j+n)*I2y(i+m,j+n

);
179 else
180 end
181 end
182 end
183 C I2{i,j} = C Matrix I2;
184 end
185 end
186

187 toc
188 disp('Check the rank of C matrix for Image 2... ')
189 %%%
190 % Check the rank of C matrix. If rank not euqal to 2 then dump the points
191 % If rank(C) = 2 then save the points for further processing
192 %%%
193 for i =1:1:size I2(1)
194 for j = 1:1:size I2(2)
195 C Matrix I2 = C I2{i,j};
196 if (rank(C Matrix I2) == 2)
197 I corner I2(i,j) = 1;
198 else
199 I corner I2(i,j) = 0;
200 end
201 end
202 end
203

204 Corner strength I2 = zeros(size I2(1),size I2(2));
205

206

207 toc
208 disp('Evaluating the corner strength for Image 2... ')
209 %%%
210 % Estimate the corner strength at the remaining cadidate locations for image 2
211 %%%
212

46 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

213 for i =1:1:size I2(1)
214 for j = 1:1:size I2(2)
215 if (I corner I2(i,j) == 1)
216 Corner strength H I2(i,j) = det(C I2{i,j}) − k*(trace(C I2{i,j}))

ˆ2;
217 end
218 end
219 end
220

221 %%%
222 % Set up a dynamic threshold, thus if a candidate has a corner strength lower

than
223 % the threshold, it would be filtered out (to improve computational efficiency

)
224 %%%
225

226 threshold = (max(max(Corner strength H I1)) + max(max(Corner strength H I2)))
/20;

227

228 %%%
229 % Counting the corners detected in both image and plot those corners
230 % This is intermediate results and will not appear on homework report
231 %%%
232 figure
233 image(I1)
234 colormap(gray(256))
235 hold on;
236 Actual Corner I1 = zeros(size I1(1),size I1(2));
237

238 toc
239 disp('Thresholding the corner candidates for Image 1... ')
240

241

242 cnt cor1 = 0;
243 for i = 11:1:size I1(1)−10
244 for j = 11:1:size I1(2)−10
245 if (Corner strength H I1(i,j) > threshold) && ...
246 (Corner strength H I1(i,j) == max(max(Corner strength H I1(i−10:1:i

+10,j−10:1:j+10))))
247 Actual Corner I1(i,j) = 1;
248 plot(j,i,'rx');
249 cnt cor1 = cnt cor1 + 1;
250 corner loc1(cnt cor1,1:2) = [i;j];
251 else
252 end
253 end
254 end
255

256 figure
257 image(I2)
258 colormap(gray(256))
259 hold on;
260 Actual Corner I2 = zeros(size I2(1),size I2(2));
261

47 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

262 toc
263 disp('Thresholding the corner candidates for Image 2... ')
264 cnt cor2 = 0;
265 for i = 11:1:size I2(1)−10
266 for j = 11:1:size I2(2)−10
267 if (Corner strength H I2(i,j) > threshold) && ...
268 (Corner strength H I2(i,j) == max(max(Corner strength H I2(i−10:1:i

+10,j−10:1:j+10))))
269 Actual Corner I2(i,j) = 1;
270 plot(j,i,'bx');
271 cnt cor2 = cnt cor2 + 1;
272 corner loc2(cnt cor2,1:2) = [i;j];
273 else
274 end
275 end
276 end
277

278 corner count1 = sum(sum(Actual Corner I1))
279 corner count2 = sum(sum(Actual Corner I2))
280

281 window size = scale*20;
282

283 %
%%%

284 %%%%%% Optimized SSD
%%%%%%%%%%%%%%%%%%%%%%%%%

285

286 %%%
287 % Set a window so the the SSD of each candidate could be found
288 %%%
289

290 for m = 1:1:cnt cor1
291 i1 = corner loc1(m,1);
292 j1 = corner loc1(m,2);
293 for n = 1:1:cnt cor2
294 i2 = corner loc2(n,1);
295 j2 = corner loc2(n,2);
296 SSD Win = pic1 gray(i1−window size/2:1:i1+window size/2,j1−window size

/2:1:j1+window size/2) − ...
297 pic2 gray(i2−window size/2:1:i2+window size/2,j2−window size/2:1:

j2+window size/2);
298 SSD(m,n) = sumsqr(SSD Win);
299 end
300 end
301

302 %%%
303 % Set a new image prepared for displaying the matched interest points
304 %%%
305 new image(1:(max(size I1(1),size I2(1))),1:size I1(2)+size I2(2),1:3) = ...
306 zeros(max(size I1(1),size I2(1)), size I1(2)+size I2(2),3);
307 new image(1:size I1(1),1:size I1(2),:) = pic1;
308 new image(1:size I2(1),1+size I1(2):size I2(2)+size I1(2),:) = pic2;
309 new image = uint8(new image);

48 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

310 figure
311 image(new image)
312 truesize
313 hold on;
314

315

316 %%%
317 % If an interest point with SSD:
318 % 1) Smaller than a threshold
319 % 2) Minima
320 % 3) Minima/Second Minama < Rssd (ratio)
321 % Correspondence Established
322 %%%
323

324 for m = 1:1:cnt cor1
325 i1 = corner loc1(m,1);
326 j1 = corner loc1(m,2);
327 for n = 1:1:cnt cor2
328 if (SSD(m,n) == min(SSD(m,:))) && (SSD(m,n) < 40* min(min(SSD(:,:))))
329 local minima = SSD(m,n);
330 SSD(m,n) = max(SSD(m,:));
331 if (local minima/min(SSD(m,:)) < Rssd)
332 i2 = corner loc2(n,1);
333 j2 = corner loc2(n,2);
334 rand color = rand(1, 3);
335 plot([j1;size I1(2)+j2],[i1;i2],'−x','Color',rand color(1,:));
336 n = cnt cor2;
337 else
338 end
339 else
340 end
341

342 end
343 end
344 title('Optimized SSD Corner Correspondence Matching')
345

346

347

348 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Optimized NCC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
349

350 %%%
351 % Set a window so the the NCC of each candidate could be found
352 %%%
353 for m = 1:1:cnt cor1
354 i1 = corner loc1(m,1);
355 j1 = corner loc1(m,2);
356 for n = 1:1:cnt cor2
357 i2 = corner loc2(n,1);
358 j2 = corner loc2(n,2);
359

360 f1 m1 = pic1 gray(i1−window size/2:1:i1+window size/2,j1−window size
/2:1:j1+window size/2) − ...

361 mean(mean(pic1 gray(i1−window size/2:1:i1+window size/2,j1−
window size/2:1:j1+window size/2)));

49 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

362

363 f2 m2 = pic2 gray(i2−window size/2:1:i2+window size/2,j2−window size
/2:1:j2+window size/2) − ...

364 mean(mean(pic2 gray(i2−window size/2:1:i2+window size/2,j2−
window size/2:1:j2+window size/2)));

365

366 NNC(m,n) = sum(sum(f1 m1.*f2 m2))/((sumsqr(f1 m1)*sumsqr(f2 m2))ˆ(1/2)
);

367

368 end
369 end
370

371 %%%
372 % Set a new image prepared for displaying the matched interest points
373 %%%
374 new image(1:(max(size I1(1),size I2(1))),1:size I1(2)+size I2(2),1:3) = ...
375 zeros(max(size I1(1),size I2(1)), size I1(2)+size I2(2),3);
376 new image(1:size I1(1),1:size I1(2),:) = pic1;
377 new image(1:size I2(1),1+size I1(2):size I2(2)+size I1(2),:) = pic2;
378 new image = uint8(new image);
379 figure
380 image(new image)
381 truesize
382 hold on;
383

384 %%%
385 % If an interest point with SSD:
386 % 1) Larger than a threshold
387 % 2) Maxima
388 % 3) Maxima/Second Maxima > Rncc (ratio)
389 % Correspondence Established
390 %%%
391

392 for m = 1:1:cnt cor1
393 i1 = corner loc1(m,1);
394 j1 = corner loc1(m,2);
395 for n = 1:1:cnt cor2
396 if (NNC(m,n) == max(NNC(m,:))) && (NNC(m,n) > 0.3*max(max(NNC(:,:))))
397 local maxima = NNC(m,n);
398 NNC(m,n) = min(NNC(m,:));
399 if (local maxima/max(NNC(m,:)) > Rncc)
400 i2 = corner loc2(n,1);
401 j2 = corner loc2(n,2);
402 rand color = rand(1, 3);
403 plot([j1;size I1(2)+j2],[i1;i2],'−x','Color',rand color(1,:));
404 n = cnt cor2;
405 else
406 end
407 else
408 end
409

410 end
411 end
412 title('Optimized NCC Corner Correspondence Matching')

50 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

7.6 Appendix B: SIFT Matlab Script

1 %%%
2 % Read the test images, and seek user input for a scale sigma
3 %%%
4 close all; clear all; clc
5 pic1 = imread('your image name 1.jpg'); % your image name 1 = the image1 want

to be processed
6 pic2 = imread('your image name 2.jpg'); % your image name 2 = the image2 want

to be processed
7 %%%
8 % Set up some coefficient, Rssd = ratio for SSD, Rncc = ratio for NCC
9 % Reuc = ratio for Euclidean Distance

10 %%%
11 Reuc = 0.7;
12 Rssd = 0.7;
13 Rncc = 1.4;
14 %%%
15 % Change the RGB images into gray scale
16 %%%
17 pic1 gray = rgb2gray(pic1);
18 pic2 gray = rgb2gray(pic2);
19 pic1 gray = double(pic1 gray);
20 pic2 gray = double(pic2 gray);
21 %%%
22 % Perform SIFT feature extration and extract both locations and descriptors
23 % for each candidates interest point
24 %%%
25 [I1,sift vec I1] = vl sift(im2single(rgb2gray(pic1)));
26 [I2,sift vec I2] = vl sift(im2single(rgb2gray(pic2)));
27 size image I1 = size(pic1);
28 size I1 = size(I1);
29 size I2 = size(I2);
30 points size I1 = size I1(2);
31 points size I2 = size I2(2);
32

33 %%%
34 % Round up those sub−pixel returned from SIFt operator
35 %%%
36 for i = 1:1:points size I1
37 corner loc I1(1,i) = round(I1(2,i));
38 corner loc I1(2,i) = round(I1(1,i));
39 end
40

41 for i = 1:1:points size I2
42 corner loc I2(1,i) = round(I2(2,i));
43 corner loc I2(2,i) = round(I2(1,i));
44 end
45

46

47 disp('Calculating Euclidean Distance Matrix')
48 %%%

51 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

49 % Calculating the Euclidean Distance of vectors returned from SIFt operator
50 %%%
51 for m = 1:1:points size I1
52 i1 = corner loc I1(1,m);
53 j1 = corner loc I1(2,m);
54 for n = 1:1:points size I2
55 i2 = corner loc I2(1,n);
56 j2 = corner loc I2(2,n);
57 sift diff = double(sift vec I1(:,m)) − double(sift vec I2(:,n));
58 sift mat(m,n) = sumsqr(sift diff);
59 end
60 end
61 disp('Matching Interest Points Based on Euclidean Distance Matrix')
62 figure
63 image(cat(2, pic1, pic2));
64 truesize
65 hold on;
66 title('Matching based on Euclidean Distance')
67 %%%
68 % Macthing images the Euclidean Distance of vectors returned from SIFt

operator
69 %%%
70 for m = 1:1:points size I1
71 i1 = corner loc I1(1,m);
72 j1 = corner loc I1(2,m);
73 for n = 1:1:points size I2
74 if (sift mat(m,n) == min(sift mat(m,:)) && (sift mat(m,n)<5*min(min(

sift mat))))
75 loc minimum = sift mat(m,n);
76 sift mat(m,n) = max(sift mat(m,:));
77 if (loc minimum/min(sift mat(m,:)) < Reuc)
78 i2 = corner loc I2(1,n);
79 j2 = corner loc I2(2,n);
80 rand color = rand(1, 3);
81 plot([j1;size image I1(2)+j2],[i1;i2],'−x','Color',rand color(1,:)

);
82 n = points size I2;
83 else
84 end
85 else
86 end
87 end
88 end
89 %%%
90 % Calculating the SSD from vectors returned from SIFt operator
91 %%%
92 disp('Calculating SSD Matrix')
93 SSD = sift mat.ˆ2;
94 disp('Matching Interest Points Based on SSD Matrix')
95 figure
96 image(cat(2, pic1, pic2));
97 truesize
98 hold on;
99 title('Matching based on SSD')

52 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

100 %%%
101 % Matching images based on the SSDf vectors returned from SIFt operator
102 %%%
103 for m = 1:1:points size I1
104 i1 = corner loc I1(1,m);
105 j1 = corner loc I1(2,m);
106 for n = 1:1:points size I2
107 if (SSD(m,n) == min(SSD(m,:)) && (SSD(m,n)<5*min(min(SSD))))
108 loc minimum = SSD(m,n);
109 SSD(m,n) = max(SSD(m,:));
110 if (loc minimum/min(SSD(m,:)) < Rssd)
111 i2 = corner loc I2(1,n);
112 j2 = corner loc I2(2,n);
113 rand color = rand(1, 3);
114 plot([j1;size image I1(2)+j2],[i1;i2],'−x','Color',rand color(1,:)

);
115 n = points size I2;
116 else
117 end
118 else
119 end
120 end
121 end
122

123 disp('Calculating the NCC matrix')
124 %%%
125 % Calculating the NCC from vectors returned from SIFt operator
126 %%%
127 for m = 1:1:points size I1
128 i1 = corner loc I1(1,m);
129 j1 = corner loc I1(2,m);
130 for n = 1:1:points size I2
131 i2 = corner loc I2(1,n);
132 j2 = corner loc I2(2,n);
133 f1m1 = double(sift vec I1(:,m)) − double(mean(sift vec I1(:,m)));
134 f2m2 = double(sift vec I2(:,n)) − double(mean(sift vec I2(:,n)));
135 NCC(m,n) = sum(f1m1.*f2m2)/((sumsqr(f1m1)*(sumsqr(f2m2)))ˆ(1/2));
136

137 end
138 end
139

140 figure
141 image(cat(2, pic1, pic2));
142 truesize
143 hold on;
144 title('Matching based on NNC')
145 disp('Matching Interest Points Based on NCC Matrix')
146 %%%
147 % Matching images based on the NCC from vectors returned from SIFt operator
148 %%%
149 for m = 1:1:points size I1
150 i1 = corner loc I1(1,m);
151 j1 = corner loc I1(2,m);
152 m

53 October 2, 2014

ECE661 Computer Vision: Harris Corner Detector

153 for n = 1:1:points size I2
154 if (NCC(m,n) == max(NCC(m,:))) && (NCC(m,n) > max(max(NCC))*(0.9))
155 local maxima = max(NCC(m,n));
156 NCC(m,n) = min(NCC(m,:));
157 if (local maxima/max(NCC(m,:)) > Rncc)
158 i2 = corner loc I2(1,n);
159 j2 = corner loc I2(2,n);
160 rand color = rand(1, 3);
161 plot([j1;size image I1(2)+j2],[i1;i2],'−x','Color',rand color(1,:)

);
162 n = points size I2;
163 else
164 end
165 else
166 end
167 end
168 end

54 October 2, 2014

	Introduction
	Harris Corner Detector
	Overview of Harris Corner Detection
	Harris Corner Detector Implementation

	Establishing Correspondences Between Image Pairs for Harris Corner Detector
	SSD: Sum of Squared Differences
	NCC: Normalized Cross Correlation
	False Matching Elimination
	Parameters Table For Harris Corner Detector

	SIFT Algorithm: Scale Invariant Feature Transform
	Establishing Correspondences Between Image Pairs for SIFT
	SSD: Sum of Squared Differences
	NCC: Normalized Cross Correlation
	False Matching Elimination
	Parameters Table For SIFT

	Dynamic Threshold for Euclidean Distance, SSD and NCC
	Results: Very Important Conclusions At End of Each Subsections
	Set 1: Harris Operator/SIFT Comparison
	Set 2: Harris Operator/SIFT Comparison
	My Own Set: Harris Operator/SIFT Comparison
	Intermediate Results: Gradient, Corners
	Appendix A: Harris Corner Detection Matlab Script
	Appendix B: SIFT Matlab Script

