
ECE 661 Homework 2

Zeeshan Nadir
email: znadir@purdue.edu

Due Date: September 11, 2014

Finding the Homography between two planes

The transformation from the world plane to the image plane can be written as

xi = Hxw (1)

where all the vectors and matrices are mentioned in homogeneous coordinates. The subscript i
refers to image plane and subscript w refers to world plane. Writing eq. (1) in explicit format
we get xiyi

zi

 =

h11 h12 h13
h21 h22 h23
h31 h32 1

xwyw

1

 (2)

where we have set h33 = 1 and zw = 1 because only ratios matter in homogeneous coordinates.
The physical coordinates in the image plane are given by (x′i, y

′
i) = (xi

zi
, yizi). If we establish a cor-

respondence between a point in the world plane, and a point in the image plane then we shall
get two equations corresponding to the physical x-coordinate and the physical y-coordinate.
Since the total number of unknowns in eq. (2) are 8, therefore we require a minimum of 4 point
correspondences to find the required homography.

The two equations that we get for each point to point correspondence are given as

x′i =
xi
zi

=
h11xw + h12yw + h13
h31xw + h32yw + h33

(3)

y′i =
xi
zi

=
h21xw + h22yw + h23
h31xw + h32yw + h33

(4)

We can write the above set of equations in form of Ax = b. Here A ∈ R2p×8 is the coefficient
matrix, x ∈ R8 is vector that has elements of H, and b ∈ R8 is a vector of constants and p is
the number of point correspondences we have used. If we use 4 point correspondences, we get
following equation in vector-matrix form

x
(1)
w y

(1)
w 1 0 0 0 −x′ix

(1)
w −x′iy

(1)
w

0 0 0 x
(1)
w y

(1)
w 1 −y′ix

(1)
w −y′iy

(1)
w

x
(2)
w y

(2)
w 1 0 0 0 −x′ix

(2)
w −x′iy

(2)
w

0 0 0 x
(2)
w y

(2)
w 1 −y′ix

(2)
w −y′iy

(2)
w

x
(3)
w y

(3)
w 1 0 0 0 −x′ix

(3)
w −x′iy

(3)
w

0 0 0 x
(3)
w y

(3)
w 1 −y′ix

(3)
w −y′iy

(3)
w

x
(4)
w y

(4)
w 1 0 0 0 −x′ix

(4)
w −x′iy

(4)
w

0 0 0 x
(4)
w y

(4)
w 1 −y′ix

(4)
w −y′iy

(4)
w

h11
h12
h13
h21
h22
h23
h31
h32

=

x′(1)

y′(1)

x′(2)

y′(2)

x′(3)

y′(3)

x′(4)

y′(4)

(5)

Solving eq. (5) gives us the matrix H. In case if we have more than 4 point correspondences
then we can use least squares estimate of x i.e. x = (ATA)−1AT b.

2

Transformation of Image Plane to World Plane

Once we have solved for H matrix, we can find its inverse H−1 which maps the image plane
back to the world plane. Using the boundary of the image and H−1 matrix, we can find an
encompassing rectangle in the world plane, that encompasses the image in the world plane.
Using this rectangular boundary, we can find the width and height of the image in the world
plane. The number of pixels in the rows of image in the world plane can be slected the same as
in the image plane it self. The number of pixels in the columns of the image in the world plane
can be selected according to the aspect ratio of the image in the world plane.

Once we have formed a grid of points in the world plane, then for each point in the world
plane, we can use matrix H−1 to find the corresponding point in the image plane. However
when we apply H−1 to points of world plane to find the corresponding points in the image
plane, the resultant points in the image plane may not come out to be integers. Therefore we
use bilinear interpolation to tackle this.

Figure 1: Bilinear Interpolation.

Bilinear interpolation is extension of linear interpolation for functions of two variables. The
main idea here is to first interpolate in x direction and then use those values to interpolate in
y direction. The scenario of bilinear interpolation is explained with the help of an example.

Suppose P = (x, y) is a point in the image plane where x and y may not be integers. Suppose
(x1, y1), (x1, y2), (x2, y1) and (x2, y2) are the nearest points that have integer as the coordinate
values i.e. all these points are in Z× Z (shown in red in Fig. 1). Then we can find the value of
function f at (x, y) as

f(x, y) =
(x2 − x)(y2 − y)

(x2 − x1)(y2 − y1)
f(x1, y1) +

(x1 − x)(y2 − y)

(x2 − x1)(y2 − y1)
f(x2, y1)

+
(x2 − x)(y1 − y)

(x2 − x1)(y2 − y1)
f(x1, y2) +

(x1 − x)(y1 − y)

(x2 − x1)(y2 − y1)
f(x2, y2) (6)

The above formula is obtained by first performing an interpolation at R1 and R2 (shown as
blue points) in Fig. 1 and then using those two values to interpolate at P . Even though each of

3

the basic step is linear (which are not shown here) in the sampled values and in the position,
however the interpolation as a whole is not linear but rather quadratic in the sample location.

Now that we have explained the methodology of obtaining the homography and using that
homography for transforming the images from image plane to world plane, we shall now show
our results of the given tasks with brief explanation while referring to first two sections wher-
ever necessary. But before that, we shall show the two images that are used in this homework.
Please note that the points that are used for finding homographies have been shown in the start
where the test images are shown.

Figure 2: Frame.jpg

Figure 3: Audrey.jpg

4

Task 1

• In this task, we are supposed to project Fig. 3 (Audrey.jpg) into the frame in Fig. 2
(Frame.jpg) defined by points P, Q, R, S.

• For this first we have to find the homography between Fig. 2 (Frame.jpg) and Fig. 3
(Audrey.jpg).

• Then using that homography we have to project Fig. 3 (Audrey.jpg) into the frame defined
by points P, Q, R, S.

• To find the homography, first we establish point correspondences using points P′, Q′, R′,
S′ in Fig. 3 (Audrey.jpg) which correspond to points P, Q, R and S in Fig. 2 (Frame.jpg).

• After the homography is found, then we transform the image Fig. 3 (Audrey.jpg) on to
the plane of Fig. 2 (Frame.jpg) using the methodology describe in first two sections.

• Following are the results for this transformation.

Figure 4: Result of Task 1

5

Task 2

• In this task, we are supposed to project the plane of Fig. 2 (Frame.jpg) on to the plane of
Fig. 3 (Audrey.jpg) such that the frame defined by A, B, C, D in Fig. 2 (Frame.jpg) fits
around the face in Fig. 3 (Audrey.jpg) .

• For this first we have to find the homography between Fig. 2 (Frame.jpg) and Fig. 3
(Audrey.jpg).

• Then using that homography we have to project Fig. 2 (Frame.jpg) on to the plane of
Fig. 3 (Audrey.jpg).

• To find the homography, first we establish point correspondences using points P′, Q′, R′,
S′ in Fig. 3 (Audrey.jpg) which correspond to points A, B, C and D in Fig. 2 (Frame.jpg).

• After the homography is found, then we transform the image Fig. 2 (Frame.jpg) on to the
plane of Fig. 3 (Audrey.jpg) using the methodology describe in first two sections.

• Following are the results for this transformation.

Figure 5: Result of Task 2

6

Task 3

• In task 3, we have to project the resultant images of task 1 and task 2 on to the world
plane for image in Fig. 2 (Frame.jpg).

• The world coordinates for Fig. 2 (Frame.jpg) are given in Fig. 6.

• For this, we first find the homography between the results of Task 1 and Task 2 using
the appropriate frames i.e. for projecting the result of task 1, we use point P, Q, R, S in
Fig. 6 and for establishing point correspondences and for projecting the result of task 2,
we use point A, B, C, D in Fig. 6.

• Once the homography is found, then we simply project the results of task 1 and task 2
on to the world plane using the corresponding homographies. How this is done is already
described in the first two introductory sections.

Figure 6: World Coordinates

7

Following are the results.

Figure 7: Projection of Task 1 Result on to the world plane

Figure 8: Projection of Task 2 Result on to the world plane

8

Repitition of all three tasks using your own images

We have to perform the same three tasks again using our own images. Following are the
images that we shall be using for this purpose. Again the points that are used for finding
homographies have been shown in the start where the test images are shown. Both the frames
are 102cm tall and 75cm wide.

Figure 9: Frame 2.jpg

Figure 10: Zeeshan Nadir.jpg

9

Figure 11: Result of Task 1

Figure 12: Result of Task 2

10

Figure 13: Projection of Task 1 Result on to world plane

Figure 14: Projection of Task 2 Result on to world plane

11

Source Code

Following are the source codes used for each of the 3 tasks. Please note that I am not using
any openCV functions here for finding homographies etc. Except for reading and writing
images, every function has been implemented.

Here is the MATLAB code for Task 1.

1 path load = ['/Users/zeeshannadir/purdue/ECE661/Fall 2014/hw 2/Pics/'];
2

3 [x] = imread([path load 'Frame.jpg']);
4 image(x);
5

6 [y] = imread([path load 'Audrey.jpg']);
7 figure(2)
8 image(y);
9

10 % indicating the points in Fig. 2 (Frame.jpg) for finding point correspondences
11 P = [188 154];
12 Q = [346 177];
13 R = [185 462];
14 S = [344 433];
15

16 % indicating the points in Fig. 3 (Audrey.jpg) for drawing a box around face
17 P = [36 103];
18 Q = [305 103];
19 R = [36 439];
20 S = [305 439];
21

22 % Cropping Audrey.jpg for convenience using the four points P , Q , R , S
23 y = y(103:439,36:305,:);
24

25 % After cropping, now indicating the corner points for establishing point
26 % correspondences
27 a = [1 1];
28 b = [size(y,2) 1];
29 c = [1 size(y,1)];
30 d = [size(y,2) size(y,1)];
31

32

33 % establish homography
34 x w = [P; Q; R; S;];
35 x i = [a ; b ; c ; d ;];
36

37 % converting the images to double for calculations
38 x = double(x);
39 y = double(y);
40

41 H = findHomography (x i,x w);
42 H = Hˆ(−1); % find H inverse once for all
43

44 % finding the boundries of the image in the world plane i.e. finding
45 % boundary of Audrey.jpg in the plane of Frame.jpg
46

47 % give physical is a function that returns physical coordinates from

12

48 % homogeneous coordinates
49 [i1 i2]=give physical (H * [a .';1]); a(1) = round(i1); a(2) = round(i2);
50 [i1 i2]=give physical (H * [b .';1]); b(1) = round(i1); b(2) = round(i2);
51 [i1 i2]=give physical (H * [c .';1]); c(1) = round(i1); c(2) = round(i2);
52 [i1 i2]=give physical (H * [d .';1]); d(1) = round(i1); d(2) = round(i2);
53

54

55 % initialize the output image
56 z = x; % output image
57

58 % compute the offsets so that only the grid points within the boundary are
59 % considered
60 tx1 = min([a(1) b(1) c(1) d(1)]);
61 tx2 = max([a(1) b(1) c(1) d(1)]);
62

63 ty1 = min([a(2) b(2) c(2) d(2)]);
64 ty2 = max([a(2) b(2) c(2) d(2)]);
65

66 % compute the height and width of projected image into the world plane
67 height = ty2−ty1;
68 width = tx2−tx1;
69

70 tx = −tx1 + 1; % now we have the proper offsets that could be added
71 ty = −ty1 + 1; % now we have the proper offsets that could be added
72

73 temp var = zeros(1,1,3); % a temporary variable for book keeping
74 for m = 1:1:height
75 for n=1:1:width
76 [i1 i2]=give physical (H * [n−tx;m−ty;1]);
77 temp = biLinear(i1,i2,y);
78 % check if bilinear didn't return zero, it may return zero if the index
79 % where we want to interpolate is outside the domain of image plane
80 if (any (temp 6= temp var))
81 z(m−ty,n−tx,:) = temp; % note all three channels (rgb) are ...

copied at once
82 end
83 end
84 end
85

86 % convert the result back into Unsigned integer
87 z=uint8(z);
88 figure;
89 imshow(z);
90 imwrite(z,[path load 'task1 result.tif']);

13

Here is the MATLAB code for Task 2.

1 close all; clc; clear
2 % Please note that all of this work takes into account of the fact that in ...

the formulation we write
3 % x coordinate before y i.e. (x,y) however in MATLAB the first index
4 % traverses the rows of the matrix i.e. in y direction and second index
5 % traverses the columns i.e. in x direction
6 path load = ['/Users/zeeshannadir/purdue/ECE661/Fall 2014/hw 2/Pics/'];
7

8 [x] = imread([path load 'Frame.jpg']);
9 image(x);

10

11 [y] = imread([path load 'Audrey.jpg']);
12 figure(2)
13 image(y);
14

15 % indicating the points in Fig. 2 (Frame.jpg) for finding point correspondences
16 P = [491 211];
17 Q = [562 220];
18 R = [490 372];
19 S = [563 364];
20

21 % indicating the corner points for establishing point correspondences
22 P = [36 103];
23 Q = [305 103];
24 R = [36 439];
25 S = [305 439];
26

27 % establish homography by providing the 4 point correspondences
28 x w = [P; Q; R; S;];
29 x i = [P ; Q ; R ; S ;];
30

31 % converting the images to double for calculations
32 x = double(x);
33 y = double(y);
34

35 H = findHomography (x i,x w);
36 H = Hˆ(−1); % find H inverse once for all
37

38

39 % now we find the width and height of the projected image by finding the
40 % corner points in the image world
41

42 % these are the corner points of Frame.jpg for which we shall find boundary
43 % in the plane of Audrey.jpg
44 a = [1 1];
45 b = [size(x,2) 1];
46 c = [1 size(x,1)];
47 d = [size(x,2) size(x,1)];
48

49 % give physical is a function that returns physical coordinates from
50 % homogeneous coordinates
51 [i1 i2]=give physical (H* [a.';1]); a (1) = round(i1); a (2) = round(i2);
52 [i1 i2]=give physical (H* [b.';1]); b (1) = round(i1); b (2) = round(i2);
53 [i1 i2]=give physical (H* [c.';1]); c (1) = round(i1); c (2) = round(i2);
54 [i1 i2]=give physical (H* [d.';1]); d (1) = round(i1); d (2) = round(i2);
55

56 % compute the offsets so that only the grid points within the boundary are

14

57 % considered
58

59 tx1 = min([a (1) b (1) c (1) d (1)]);
60 tx2 = max([a (1) b (1) c (1) d (1)]);
61

62 ty1 = min([a (2) b (2) c (2) d (2)]);
63 ty2 = max([a (2) b (2) c (2) d (2)]);
64

65 height = ty2−ty1;
66 width = tx2−tx1;
67

68 tx = −tx1 + 1; % now we have the proper offsets that could be added
69 ty = −ty1 + 1; % now we have the proper offsets that could be added
70

71

72 z = zeros(height,width,3); % initialize output image
73

74 for m = 1:1:height
75 for n=1:1:width
76 [i1 i2]=give physical (H * [n−tx;m−ty;1]); % note all three ...

channels (rgb) are copied at once
77 z(m,n,:) = biLinear(i1,i2,x);
78 end
79 end
80

81 % Once Frame.jpg is projected in the plane of Audrey.jpg, we can paste the
82 % picture of Audrey.jpg inside the frame since both are in same planes now
83

84 for m=103:1:439 % traverse in y direction
85 for n=36:1:305 % traverse in x direction
86 z(m+ty,n+tx,:) = y(m,n,:);
87 end
88 end
89

90 % convert the result back into unsigned integer
91 z=uint8(z);
92 figure;
93 imshow(z);
94 imwrite(z,[path load 'task2 result.tif']);

15

Here is the MATLAB code for Task 3.

1 path load = ['/Users/zeeshannadir/purdue/ECE661/Fall 2014/hw 2/Pics/'];
2

3 [x] = imread([path load 'Frame.jpg']);
4 image(x);
5

6 [y] = imread([path load 'Audrey.jpg']);
7 figure(2)
8 image(y);
9

10 figure
11 [T1 result] = imread([path load 'task1 result.tif']);
12 image(T1 result);
13

14 figure
15 [T2 result] = imread([path load 'task2 result.tif']);
16 image(T2 result);
17

18 % indicating the points in Fig. 2 (Frame.jpg) for finding point correspondences
19 P = [491 211];
20 Q = [562 220];
21 R = [490 372];
22 S = [563 364];
23

24 % length and width (in cm) of glass frame in the door in the world plane
25 frame length = 92;
26 frame width = 63;
27

28 % providing the world coordinates of the glass frame in the door in world
29 % plane
30 P = [0 0];
31 Q = [frame width 0];
32 R = [0 frame length];
33 S = [frame width frame length];
34

35 % Finding the Homogrphy by providing the 4 point correspondences
36 x w = [P; Q; R; S];
37 x i = [P ; Q ; R ; S];
38

39 x = double(x);
40 y = double(y);
41

42 H = findHomography (x i,x w);
43 H = Hˆ(−1); % find H inverse once for all
44

45 % now we find the width and height of the projected image by using the
46 % corner points in the image world
47

48 % these are the corner points of Result of Task 1 for which we shall find
49 % boundary in the world plane
50

51 % give physical is a function that returns physical coordinates from
52 % homogeneous coordinates
53 a = [1 1];
54 b = [size(T2 result,2) 1];
55 c = [1 size(T2 result,1)];
56 d = [size(T2 result,2) size(T2 result,1)];
57

16

58

59 [i1 i2]=give physical (H * [a .';1]); a(1) = i1; a(2) = i2;
60 [i1 i2]=give physical (H * [b .';1]); b(1) = i1; b(2) = i2;
61 [i1 i2]=give physical (H * [c .';1]); c(1) = i1; c(2) = i2;
62 [i1 i2]=give physical (H * [d .';1]); d(1) = i1; d(2) = i2;
63

64 % finding the total height and width (in cm) of image in the world plane
65 height cm = max([c(2)−a(2) d(2)−b(2)]); % compute height in cm
66 width cm = max([b(1)−a(1) d(1)−c(1)]); % compute width in cm
67

68 % Finding the aspect ratio
69 aspect ratio = width cm/height cm;
70

71 % set the width of output the same as input and select height according to
72 % aspect ratio
73 width = size(T2 result,2);
74 height = round ((aspect ratioˆ−1) * width);
75

76 pixel height = height cm/height;
77 pixel width = width cm/width;
78

79 z = zeros(height,width,3) ; % initialize output image
80

81 % compute the offsets so that only the grid points within the boundary are
82 % considered
83

84 tx = min([a(1) b(1) c(1) d(1)]);
85 ty = min([a(2) b(2) c(2) d(2)]);
86

87 tx = tx/pixel width;
88 ty = ty/pixel height;
89

90 tx = −tx + 1; % now we have the proper offsets that could be added
91 ty = −ty + 1; % now we have the proper offsets that could be added
92

93 for m = 1:1:height
94 for n=1:1:width
95 [i1 i2]=give physical (H * ...

[(n−tx).*pixel width;(m−ty).*pixel height;1]);
96 z(m,n,:) = biLinear(i1,i2,T2 result); % note all three channels ...

(rgb) are copied at once
97 end
98 end
99

100 % converting the result back to unsigned integer
101 z=uint8(z);
102 figure;
103 image(z);
104 imwrite(z,[path load 'task3 2 result.tif']);

17

Here is the MATLAB code for function findHomography.

1 function [H] = findHomography(x i,x w)
2 % The rows of x i are coordinates of points of scene in image plane
3 % The rows of x w are coordinates of points of scene in real world plane
4 if (size(x i,1) 6= size(x w,1))
5 disp(' There should be equal no. of points in x i and x w');
6 return;
7 end
8 N = size(x i,1);
9 A = zeros (2*N,8); % forming the system matrix

10 b = zeros(2*N,1); % forming the RHS of equation
11

12 % Filling up the matrix of coefficients
13 for k=1:1:N
14 A(2*k−1,:)=[x w(k,1) x w(k,2) 1 0 0 0 −x i(k,1)*x w(k,1) ...

−x i(k,1)*x w(k,2)];
15 A(2*k,:)=[0 0 0 x w(k,1) x w(k,2) 1 −x i(k,2)*x w(k,1) −x i(k,2)*x w(k,2)];
16 end
17

18 % Filling up the vector of constants
19 for k=1:1:N
20 b(2*k−1) = x i(k,1);
21 b(2*k) = x i(k,2);
22 end
23 % Finding the lest squares estimate
24 % (its better to use this formula just in case we provide more than 4 points ...

to the function)
25 h = (A.' * A)ˆ−1 * (A.' * b);
26 % Assigning the values to H matrix
27 H = zeros(3,3);
28 H(1,1) = h(1);
29 H(1,2) = h(2);
30 H(1,3) = h(3);
31 H(2,1) = h(4);
32 H(2,2) = h(5);
33 H(2,3) = h(6);
34 H(3,1) = h(7);
35 H(3,2) = h(8);
36 H(3,3) = 1;
37 end

Here is the MATLAB code for function give phsical.

1 % This function accepts the homogeneous coordinates of a ponit
2 % and returns the physical coodinates of the same point
3 function [x1,x2] = give physical (x)
4 x1 = x(1)/x(3);
5 x2 = x(2)/x(3);
6 end

18

Here is the MATLAB code for function biLinear.

1 function [f]= biLinear (x,y,Z)
2 % Z is the image where you get the values from
3 % x , y is the location which would be given a value from Z through
4 % interpolation
5

6 % first check if we are at a valid coordinate
7 S = size(Z);
8 if ((y<1) | | (y>S(1)))
9 f=zeros(1,1,3);

10 elseif ((x<1) | | (x>S(2)))
11 f = zeros(1,1,3);
12 else
13 x1 = floor(x);
14 x2 = ceil(x);
15 y1 = floor(y);
16 y2 = ceil(y);
17 f = ((x2−x)*(y2−y)) / ((x2−x1)*(y2−y1)) * Z(y1,x1,:) + ...
18 ((x−x1)*(y2−y)) / ((x2−x1)*(y2−y1)) * Z(y1,x2,:) + ...
19 ((x2−x)*(y−y1)) / ((x2−x1)*(y2−y1)) * Z(y2,x1,:) + ...
20 ((x−x1)*(y−y1)) / ((x2−x1)*(y2−y1)) * Z(y2,x2,:);
21 end
22 end

19

