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ECE 661: Homework 10: Face Recognition and Object Detection 

Fall 2014 

Solutions 

 

PART I. FACE RECOGNITION 

In the first part, the task is to perform face recognition with PCA and LDA and the nearest-

neighborhood rule is applied for classification. 

 

1. PCA (Principal Components Analysis) 

To perform face recognition using PCA, both train and test images need to be vectorized 

before any other operations. With the vectorized image, the covariance matrix C for train 

images is first computed.   

1.1 Estimate Covariance C of Training Image Set 

Given N vectorized training images, 𝑥𝑖⃑⃑  ⃑ indicates the ith image, where i=0,1,2,…,N-1. To 

compute the covariance matrix C, the mean vector with the N images can be computed 

following 
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And X is defined as 

  1 2, ,..., NX x m x m x m    .  (2) 

Then X is normalized to achieve illumination invariance by subjecting it to the constraint 

that 𝑥𝑖⃑⃑  ⃑
𝑇
𝑥𝑖⃑⃑  ⃑ = 1.  To compute covariance C, the following equation can be used: 
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The eigenvectors 𝑤𝑖⃑⃑⃑⃑  of C corresponding to the K largest eigenvalues will 

constitute the PCA feature set, denoted as WK. Different Ks are tested in this 

homework. However, the direct Eigen decomposition of C can eat up significant 

computational resources, therefore, a computational trick is applied to compute 

the eigenvectors 𝑤𝑖⃑⃑⃑⃑ . 

1.2 Compute Eigenvectors of C Using a Computational Trick 

If 𝑤⃑⃑  represents an eigenvector of C, then it must satisfy 

 TXX w w .  (4) 
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Instead of computing the eigenvectors of C, the eigenvectors of XTX are first 

computed, denoted as 𝑢⃑ . Their relations are shown in equation (5). The Eigen 

decomposition of XTX is much easier than C, since XTX is much smaller than C. 

 TX Xu u   (5) 

Then, to get 𝑤⃑⃑  from 𝑢⃑ , equation (5) is multiplied by X at both side, and 

reformatted as 

  TXX Xu Xu .  (6) 

Since C equals XXT, the eigenvectors of C can be computed following 

 w Xu .  (7) 

The eigenvectors are then normalized to unit magnitude, so that the images can be 

back projected into the eigenspace. The eigenvectors of largest K eigenvalues are 

used in this homework. 

1.3 Back Project both Train and Test Images for Testing 

Both train and test images are back projected to the eigenspace following 

 T
i iy W X ,  (8) 

where W=[𝑤1⃑⃑ ⃑⃑ , 𝑤2⃑⃑ ⃑⃑ ,…, 𝑤𝐾⃑⃑⃑⃑  ⃑]. The trained feature with nearest distance is considered as the 

target matching for a test feature.  

 

2. LDA (Linear Discriminant Analysis) 

The goal of LDA is to find the directions in the underlying vector space that are 

maximally discriminating between the classes. In this case, two concepts are introduced, 

the between-class scatter SB and the within-class scatter SW along a direction. 

2. 1 Definition of between-class scatter SB and within-class scatter SW  

For multiple classes, the between-class scatter is defined as 
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where  is the set of all classes and m  is the global mean same as equation (1). The 

within-class scatter is defined as  
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where the subset of images corresponding to class i is denoted as i  and im  is the mean 

image vector for class i. 

2. 2 Goal of LDA  

The goal of LDA is to find LDA eigenvectors W that can maximize the Fisher 

Discriminant Function,  

  
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w S w
J w

w S w
 .  (11) 

However, instead of directly solving this problem, Yu and Yang’s algorithm is applied to 

find the W, since SW can be singular in this case. 

2. 3 Yu and Yang’s Algorithm  

The first step of Yu and Yang’s algorithm is to perform an Eigen decomposition of SB. 

The eigenvalues are diagonalized and sorted in descending order. This will also yields a 

matrix denoted as V, representing the corresponding eigenvectors. The same trick used in 

PCA is also applied here to perform the Eigen decomposition. The first K eigenvectors 

constitute matrix Y. Then a matrix Z is constructed following 

 1/2
BZ YD   (12) 

where DB is the upper-left K×K sub-matrix of the diagonalized eigenvalues of SB, 

 T
B BD Y S Y .  (13) 

To compute DB, instead of equation (13), we can apply the following equation 

   
T

T T
BD Y M Y M   (14) 

where 1 2, ,...,M m m m m m m    
 

.  

Then, the eigenvectors matrix U is computed by Eigen decomposition of T
WZ S Z . This 

equation can be computed following 

   
T

T T T
W W WZ S Z Z X Z X   (15) 

where 11 1 12 1 1 1 1, ,..., ,..., ,...,W k kX x m x m x m x m x m      
 

. Therefore, the same 

computational trick in PCA can be performed here as well. 

The eigenvectors with largest eigenvalues are discarded, since much inter-class 

discriminatory information is contained in the smallest eigenvectors of SW. The matrix of 
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LDA eigenvectors that maximize the Fisher discriminant function defined in equation (11) 

can then be calculated following 

 ˆT T TW U Z .  (16) 

At last, W need to be normalized as well. 

2.4 Back Project both Train and Test Images for Testing 

Both train and test images are back projected to the eigenspace following 

  T
i iy W X m  ,  (17) 

where W=[𝑤1⃑⃑ ⃑⃑ , 𝑤2⃑⃑ ⃑⃑ ,…, 𝑤𝐾⃑⃑⃑⃑  ⃑]. The trained feature with nearest distance is considered as the 

target matching for a test feature.  

 

3. Comparison between PCA and LDA 

The accuracy of both approaches is calculated following 

  
Number of correctly recognized images

Total number of images
accuracy k  .  (18) 

Figure 1 represents the accuracy for both approaches. From Figure 1, it is observed that 

before reaching 100% recognition rate, LDA shows relatively higher accuracy than LDA 

in each number of eigenvectors. Also, LDA uses less number of eigenvectors to achieve 

100% recognition accuracy. LDA uses 5 eigenvectors to achieve 100% accuracy, while 

PCA uses 13. From computational point of view, PCA may be optimal for low 

dimensional representation, while from discrimination point of view, LDA shows better 

performance. 

There are also some example images for correct recognition and false recognition for 

both approaches shown in Section 4 from Figure 2 to Figure 5. Both PCA and LDA 

shows good performance under different illumination environments. 
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4. Examples of Recognition Results 

Figure 2 is an example of correctly recognized face. Figure 2 (a) is the test image and 

Figure 2 (b) is the recognized image. The distance between this two images is 1.1491e-5. 

 

Figure 3 is an example of false recognized face. Figure 3 (a) is the test image, Figure 3 (b) 

is the false recognized image and Figure 3 (c) is the correctly recognized image using 

more eigenvectors. The distance between (a) and (b) is the 4.618e-9 with number of 

eigenvectors of 1 and the distance between (a) and (c) is 0.0027 with number of 

eigenvectors of 3. 

 

Figure 1 Recognition accuracy of PCA and LDA. 

 

   
(a)                                        (b) 

Figure 2 Recognition accuracy of PCA and LDA. 
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(a) 

   
(b)                                    (c) 

Figure 3 Recognition accuracy of PCA and LDA. 
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PART II. OBJECT DETECTION 

In the second part, object detection using Cascaded AdaBoost classification is performed. In 

each stage of the cascade, a target false positive and true detection rate is required to achieve.  

1. AdaBoost Classifier 

AdaBoost stands for Adaptive Boosting, which means integrating a set of weak 

classifiers into a strong classifier. To train an AdaBoost classifier, it follows the steps 

listed below. 

1. 1 Haar Feature Extraction 

To build weak classifiers, the Haar features are extracted in this homework. Before 

feature extraction, the original image is required to convert to integral image at first. 

An integral image is calculated following 

    
,y

, ,
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i i
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I x y i x y

 

  ,  (19) 

which is the sum of the left-top corner pixels of each pixel. 

There are different types of Haar features, in this homework, the edge features are used, 

expressed as [0,1] and [1,0]T. To get all possible horizontal and vertical features, these 

two features are extended accordingly. The 1×2 feature is extended to 1×2, 1×4, 1×6, 1×8, 

1×10, …, horizontally and 2×2, 3×2, 4×2, 5×2, …, vertically. In this way, there are 

166000 features in total. 

All the features of each image are expressed as a column vector and all images’ features 

constitute a matrix of feature. 

1. 2 Build Weak Classifier 

Assume the final strong classifier is built with T weak classifiers, one weak classifier is 

denoted as ht. In this homework, one weak classifier is one row of the feature matrix, 

represented as f(x), where x = 1, 2, …, 166000.  

To find the best T weak classifiers, all the features are evaluated T times. For instance, to 

find the t weak classifier, all the features are evaluated one by one. 

For one feature f(x), it is then applied to all the training data to find the best threshold that 

can classify the training data with an optimal classification rate. Before the threshold is 

calculated, the current feature is first sorted ascendingly according to the feature’s value 

for each example. The threshold is then calculated following 

      min ,e S T S S T S            (20) 

where T+ is the total sum of positive example weights, T- is the total sum of negative 

example weights, S+ is the sum of positive weights below the current example and S- is 

the sum of negative weights below the current example. The feature with minimum error 

is used as the threshold is classify all the training images. 

The weight for each training image is initially equally assigned and updated in each 

iteration t finding the best weak classifier. The feature with smallest error is then selected 

as a weak classifier ht. 



12/16/2014 Ting Zhang zhan1013@purdue.edu 

Page 8 of 25 

 

After the t weak classifier is obtained, the weight for each training image is updated 

following  

 1
1, ,

i
e

t i t i tw w 


    (21) 
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The error is calculate following 

  ,mint t i t i i
i

w h x y     (22) 

where xi is a training image, and yi is the label for it. 

1. 3 Build Strong Classifier 

These T weak classifiers are then constitute a strong classifier. When performing the 

validation or testing process, this strong classifier can be used as 

  
 
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where  

 
1

logt
t




 .  

 

2. Cascaded AdaBoost Classifier 

To integrate Adaboost with Cascaded algorithm, the process of building one strong 

classifier using AdaBoost is repeated for several cascaded stages. 

2. 1 One stage of Cascaded AdaBoost 

In the beginning of each stage, the features used for this stage are updated according to 

the false recognized negative training images. Only those correctly recognized negative 

images and all the positive images are used in this stage. Then, a strong classifier is 

constructed following AdaBoost process. Instead of integrating T weak classifiers as a 

strong classifier, an additional condition is applied to determine the number of weak 

classifiers used. In this case, if the false positive rate under a certain strong classifier is 

smaller than 0.5, this strong classifier is considered as good enough and this stage is 

completed then. 

The false positive rate is calculated following 
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Number of misclassified negative images

false positive rate   
Number of negative images

 .  (24) 

 

3. Testing Results 

Besides false positive rate, false negative rate is also calculated for each cascaded stage,  

 
Number of misclassified positive images

false negative rate  
Number of positive images

 .  (25) 

Test images are validated using classifiers constructed from different cascaded stages and 

the false positive rate and false negative rate is shown in Figure 4. 

 

4. Training Parameters and Results 

The number of weak classifiers used in each cascaded stage is summarized in Table I. 

Table I Number of weak classifiers for each cascade stage. 

Stage 1 2 3 4 5 6 7 8 9 10 

Number of 

weak 

classifiers 

10 13 24 22 11 6 4 4 3 3 

 

Figure 4 Accuracy for cascaded AdaBoost Classification. 
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The Accumulative false positive rate for the cascade stages in training process is shown 

in Figure 5.  

 

 

 

 

 

Figure 5 Accuracy for cascaded AdaBoost Classification. 
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Appendix A. Matlab® Code 

I. Face Recognition with PCA and LDA 

1. PCA approach 

 
% Face recognition using PCA 
% ECE661: Computer vision 
% Fall 2014 
% Ting Zhang 
% zhan1013@purdue.edu 

  
clc 
clear all 

  
% define parameters 
Nperson = 30; 
Ntrials = 21; 
trainPath = 'ECE661_2014_hw10_DB1/train/'; 
testPath = 'ECE661_2014_hw10_DB1/test/'; 

  
% load training images 
[trainImg, ~, ~] = loadImages(trainPath, Nperson, Ntrials); 

  
% load testing images 
[testImg, ~, ~] = loadImages(testPath, Nperson, Ntrials); 

  
% load trained w 
w_pca = load('w_pca'); 
w = w_pca.w_pca.w; 
Neigen = w_pca.w_pca.Neigen; 

  
% test using different number of eigenvectors, from small to large 
accuracy = zeros(1, Neigen); 

  
for i = 1:Neigen 
    % get first i eigenvectors 
    partEigen = w(:,1:i); 

     
    % project training images 
    trainProjected = zeros(i, Nperson*Ntrials); 
    for j = 1:Nperson*Ntrials 
        trainProjected(:,j) = partEigen' * trainImg(:,j); 
    end 

     
    % project testing images 
    testProjected = zeros(i, Nperson*Ntrials); 
    for j = 1:Nperson*Ntrials 
        testProjected(:,j) = partEigen' * testImg(:,j); 
    end 

     
    % do recognition for each test image 
    for j = 1:Nperson*Ntrials 
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        % compute all distance with the trained image 
        distance = zeros(1,Nperson*Ntrials); 
        for k = 1:Nperson*Ntrials 
            distance(1,k) = norm(testProjected(:,j)-trainProjected(:,k))^2;  
        end 

         
        % get nearest as match 
        [~,matchIdx] = min(distance); 

         
        % determine accuracy for each test image 
        % get test person id 
        testPerson = floor((j-1)/Ntrials) + 1; 
        % get matched person id 
        matchPerson = floor((matchIdx-1)/Ntrials) + 1; 
        if testPerson == matchPerson 
            accuracy(1,i) = accuracy(1,i) + 1; 
        end 
        if testPerson ~= matchPerson 
            j; 
        end 
    end % end of recognition for each test image 
end % end of test for different number of eigen values 

  
% compute accuracy 
accuracy = accuracy / (Nperson*Ntrials); 
save('PCA_accuracy.dat', 'accuracy', '-ASCII'); 

  
% plot accuracy 
idx = 1:Neigen; 
plot(idx(1:25),accuracy(1:25),'r*-'); 
axis([1 25 0.84 1]); 

 

function [ normW, Neigen ] = myPCA( imgVec ) 
%myPCA Summary of this function goes here 
%   Detailed explanation goes here 

  
[~,col] = size(imgVec); 

  
%compute covariance matrix C = XXt 
%using XtX instead 
[V,D] = eig(imgVec'*imgVec); 
%sort eigenvalues from largest to smallest 
eigenValue = diag(D); 
[~,idx] = sort(-1.0 .* eigenValue); 
eigenValue = eigenValue(idx); 
V = V(:,idx); 

  
%for each image, get number of eigenvectors with eigenvalue greater than 1 
Neigen = 0; 
for i = 1:col 
    if eigenValue(i) > 1 
        Neigen = Neigen + 1; 
    end 
end 
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%compute w = Xu 
w = imgVec * V; 

  
%normalize w 
[row,col] = size(w); 
normW = zeros(row,col); 
for i = 1:col 
    normW(:,i) = w(:,i) / norm(w(:,i)); 
end 

  
end 

  

 
function trainPCA(  ) 
%trainPCA Summary of this function goes here 
%   Detailed explanation goes here 

  
filePath = 'ECE661_2014_hw10_DB1/train/'; 
[imgVec, ~, ~] = loadImages(filePath, 30, 21); 
[w, Neigen] = myPCA(imgVec); 

  
w_pca.w = w; 
w_pca.Neigen = Neigen; 
save('w_pca','w_pca'); 

  
end 

  
function [ normImgVec, imgVec, meanImg ] = loadImages( filePath, Nperson, 

Ntrial ) 
%loadImages Summary of this function goes here 
%   Detailed explanation goes here 

  
%get image size 
img = imread([filePath,'01_01.png']); 
imgGray = rgb2gray(img); 
[row,col] = size(imgGray); 
%define output vectors 
imgVec = zeros(row*col,Nperson*Ntrial); %each column is an image 

  
%load images into 1D vectors 
for i = 1:Nperson 
    for j = 1:Ntrial 
        img = imread([filePath,num2str2digit(i),'_',num2str2digit(j),'.png']); 
        %figure; 
        %imshow(img); 
        imgGray = rgb2gray(img); 
        [row,col] = size(imgGray); 
        oneVec = reshape(imgGray',row*col,1); 
        imgVec(:,(i-1)*Ntrial+j) = oneVec; 
    end 
end 

  
%compute mean of all images 
meanImg = mean(imgVec,2); 
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%normalize images using the mean 
normImgVec = zeros(row*col,Nperson*Ntrial); 
for i = 1:Nperson*Ntrial 
    normImgVec(:,i) = (imgVec(:,i) - meanImg) / norm(imgVec(:,i) - meanImg); 
end 

  
end 

  
%% convert num to 2 digit string 
function str = num2str2digit(num) 
if num<10 
    str = ['0',num2str(num)]; 
else 
    str = num2str(num); 
end 
end 

 

2. LDA approach 
 

% Face recognition using LDA 
% ECE661: Computer vision 
% Fall 2014 
% Ting Zhang 
% zhan1013@purdue.edu 

  
clc 
clear all 

  
% define parameters 
Nperson = 30; 
Ntrials = 21; 
trainPath = 'ECE661_2014_hw10_DB1/train/'; 
testPath = 'ECE661_2014_hw10_DB1/test/'; 

  
% load training images 
[~,trainImg, meanTrain] = loadImages(trainPath, Nperson, Ntrials); 

  
% load testing images 
[~,testImg, meanTest] = loadImages(testPath, Nperson, Ntrials); 

  
% get trained data 
[vecU, Z] = myLDA(trainImg,meanTrain,Nperson,Ntrials); 

  
% test using different number of eigenvalues 
Neigen = 30; 
accuracy = zeros(1, Neigen); 

  
for i = 1:Neigen 
    % compute part eigenvector U 
    partVecU = vecU(:,1:i); 
    W = Z * partVecU; 

     
    % normalize W 
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    for j = 1:i 
        W(:,j) = W(:,j) / norm(W(:,j)); 
    end 

     
    % project training images 
    trainProjected = zeros(i, Nperson*Ntrials); 
    for j = 1:Nperson*Ntrials 
        trainProjected(:,j) = W' * (trainImg(:,j)-meanTrain); 
    end 

     
    % project testing images 
    testProjected = zeros(i, Nperson*Ntrials); 
    for j = 1:Nperson*Ntrials 
        testProjected(:,j) = W' * (testImg(:,j)-meanTest); 
    end 

     
    % do recognition for each test image 
    for j = 1:Nperson*Ntrials 

        
        % compute all distance with the trained image 
        distance = zeros(1,Nperson*Ntrials); 
        for k = 1:Nperson*Ntrials 
            distance(1,k) = norm(testProjected(:,j)-trainProjected(:,k))^2;  
        end 

         
        % get nearest as match 
        [~,matchIdx] = min(distance); 

         
        % determine accuracy for each test image 
        % get test person id 
        testPerson = floor((j-1)/Ntrials) + 1; 
        % get matched person id 
        matchPerson = floor((matchIdx-1)/Ntrials) + 1; 
        if testPerson == matchPerson 
            accuracy(1,i) = accuracy(1,i) + 1; 
        end 
    end % end of recognition for each test image 

     
end 

  
% compute accuracy 
accuracy = accuracy / (Nperson*Ntrials); 
save('LDA_accuracy.dat', 'accuracy', '-ASCII'); 

  
% plot accuracy 
idx = 1:Neigen; 
plot(idx(1:25),accuracy(1:25),'r*-'); 
axis([1 25 0.84 1]); 

  
function [ vecU, Z ] = myLDA( imgVec, mean, Nperson, Ntrials ) 
%myLDA Summary of this function goes here 
%   Detailed explanation goes here 

  
% define image size 
imgSize = 128*128; 
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% compute mean for each class 
sumImg = zeros(imgSize,Nperson*Ntrials); 

  
for i = 1:Nperson*Ntrials 
    classIdx = floor((i-1)/Ntrials) + 1; 
    sumImg(:,classIdx) = sumImg(:,classIdx) + imgVec(:,i); 
end 
meani = sumImg / Ntrials; 

  
% build mi-m 
meani_m = zeros(imgSize, Nperson); 
for i = 1:Nperson 
    meani_m(:,i) = meani(:,i) - mean; 
end 

  
% compute SB 
SB = meani_m * meani_m'; 
% ensure SB is not singular 
[vecSB,valSB] = eig(meani_m' * meani_m); 
[~,idx] = sort(-1 .* diag(valSB)); 
V = meani_m * vecSB; 

  
Nfeatures = 30; 
% build Y, DB, Z 
Y = V(:,1:Nfeatures); 
DB = Y' * meani_m * meani_m' * Y; 
Z = Y * DB^(-0.5); 

  
% build xk-mi 
xk_meani = zeros(imgSize, Ntrials); 
for i = 1:Nperson*Ntrials 
    classIdx = floor((i-1)/Ntrials) + 1; 
    xk_meani(:,i) = imgVec(:,i) - meani(:,classIdx); 
end 
% compute Zt*Sw*Z = Z' * (xk-meani) * (xk-meani)' * Z 
Zt_xk_meani = Z' * xk_meani; 
% eigendecompostion to get U 
[vecU,valU] = eig(Zt_xk_meani*Zt_xk_meani'); 
% diagnolize eigenvalues of U 
DU = diag(valU); 

  
end 
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II. Object Detection with Cascaded AdaBoost Classifier 

1. Feature Extraction 

function [ features, Npos, Nneg ] = getHaar( filePath ) 
%getHaar Summary of this function goes here 
%   Detailed explanation goes here 

  
% load images 
row = 20; 
col = 40; 
posFilePath = [filePath 'positive/']; 
negFilePath = [filePath 'negative/']; 
posImg = loadImagesAdaBoost(posFilePath, row, col); 
negImg = loadImagesAdaBoost(negFilePath, row, col); 

  
% get total number of images 
Nimg = size(posImg,3) + size(negImg,3); 
Npos = size(posImg,3); 
Nneg = size(negImg,3); 

  
Nfeatures = 166000; 
features = zeros(Nfeatures, Nimg); 
for i = 1:Nimg 
    if i <= size(posImg,3) 
        % convert to integral image 
        intImg = zeros(row+1,col+1); 
        intImg(2:row+1,2:col+1) = cumsum(cumsum(posImg(:,:,i)),2); 
        % compute features 
        features(:,i) = computeFeature(intImg); 
    else 
        % convert to integral image 
        intImg = zeros(row+1,col+1); 
        intImg(2:row+1,2:col+1) = cumsum(cumsum(negImg(:,:,i-

size(posImg,3))),2); 
        % compute features 
        features(:,i) = computeFeature(intImg); 
    end 
end 

  
features_adaboost.features = features; 
features_adaboost.Npos = Npos; 
features_adaboost.Nneg = Nneg; 

  
save('features_adaboost_test.mat', 'features_adaboost', '-mat', '-v7.3'); 
%save('features_adaboost_train.mat', 'features_adaboost', '-mat', '-v7.3'); 
end 

  
%% load images 
function imgs = loadImagesAdaBoost(filePath, row, col) 

  
% get images in 'filePath' 
files = dir([filePath '*.png']); 
imgs = zeros(row,col,length(files)); 
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for i = 1: length(files) 
    img = imread([filePath files(i).name]); 
    imgGray = double(rgb2gray(img)); 
    imgs(:,:,i) = imgGray; 
end 

  
end 

  
%% compute Haar features 
function feature = computeFeature(I, row, col) 

  
feature = zeros(166000,1); 

  
%extract horizontal feature 
cnt = 1; 
for h = 1:20 
    for w = 1:20 
        for i = 1:21-h 
            for j = 1:41-2*w 
                rect1=[i,j,w,h]; 
                rect2=[i,j+w,w,h]; 
                feature(cnt)=sumRect(I, rect2)-sumRect(I, rect1); 
                cnt=cnt+1; 
            end 
        end 
    end 
end 

  
for h = 1:10 
    for w = 1:40 
        for i = 1:21-2*h 
            for j = 1:41-w 
                rect1=[i,j,w,h]; 
                rect2=[i+h,j,w,h]; 
                feature(cnt)=sumRect(I, rect1)-sumRect(I, rect2); 
                cnt=cnt+1; 
            end 
        end 
    end 
end 

  

  
end 

  
%% 
function [rectsum] = sumRect(I, rect_four)  

  
% given four corner points in the integral image  
% to calculate the sum of pixels inside the rectangular.  

  
row_start = rect_four(1);  
col_start = rect_four(2);  
width = rect_four(3); 
height = rect_four(4);  
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one = I(row_start, col_start);  
two = I(row_start, col_start+width);  
three = I(row_start+height, col_start);  
four = I(row_start+height, col_start+width);  

  
rectsum = four + one - (two + three); 
end 

  

 

2. Training Process 

% Object detection training process using Cascaded AdaBoost Classification 
% ECE661: Computer vision 
% Fall 2014 
% Ting Zhang 
% zhan1013@purdue.edu 

  
clc 
clear all 

  
% get features 
featureFile = load('features_adaboost.mat'); 
features = featureFile.features_adaboost.features; 
Npos = featureFile.features_adaboost.Npos; 
Nneg = featureFile.features_adaboost.Nneg; 

  

  
S = 20; 
idx = 1: Npos+Nneg; 

  
for i = 1:S 
    idx = myCascade(features, Npos, idx, i); 

     
    % stop is all negatives are detection correctly 
    if length(idx)==Npos 
        break; 
    end 
end 

  
function [idx] = myCascade(featuresAll, Npos, idxPrevious, stage) 
%myCascade Summary of this function goes here 
%   Detailed explanation goes here 

  
% update negative number 
Nneg = length(idxPrevious) - Npos; 
Ntotal = Npos + Nneg; 

  
% update features 
features = featuresAll(:,idxPrevious); 

  
% initialize weights to equally assigned 
weight = zeros(Ntotal,1); 
% initialize labels for posiive and negative samples 
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label = zeros(Ntotal,1);  
for i = 1:Ntotal 
    if i <= Npos 
        weight(i) = 0.5 / Npos; 
        label(i) = 1; 
    else 
        weight(i) = 0.5 / Nneg; 
    end 
end 

  
%% adaboost process 
T = 40; 
strongClaResult = zeros(Ntotal,1); 
alpha = zeros(T,1); 
ht = zeros(4,T); 
hResult = zeros(Ntotal,T); 

  
for t = 1:T 
    % normalize  weights 
    weight = weight ./ sum(weight); 
    % get the best weak classifier and the detection result 
    h = getClassifier(features, weight, label, Npos); 
    % store result 
    ht(1,t) = h.currentMin; 
    ht(2,t) = h.p; 
    ht(3,t) = h.featureIdx; 
    ht(4,t) = h.theta; 
    hResult(:,t) = h.bestResult; 
    % get min error 
    err = h.currentMin; 
    % get trust fact alphat = 0.5 * ln((1-et)/et) 
    alpha(t) = log((1-err)/err); 

     
    % update weight 
    weight = weight .* (err/(1-err)) .^ (1-xor(label,h.bestResult)); 

     
    % strong classifier 
    strongCla = hResult(:,1:t) * alpha(1:t,:); 
    threshold = min(strongCla(1:Npos)); 

     
    for i = 1:Ntotal 
        if strongCla(i) >= threshold 
            strongClaResult(i) = 1; 
        else 
            strongClaResult(i) = 0; 
        end 
    end 

     
    % compute positive accuracy 
    posAccuracy(t) = sum(strongClaResult(1:Npos)) / Npos; 
    % compute negative accuracy 
    negAccuracy(t) = sum(strongClaResult(Npos+1:end)) / Nneg; 

     
    if posAccuracy(t)==1 && negAccuracy(t) <= 0.5 
        break; 
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    end 

     
    fprintf('t = %d\n', t); 
end 

  
%% update for next cascaded iteration 

  
% sort negative, if there is false deteciton, there will be 1 at the end 
[sortedNeg, idxNeg] = sort(strongClaResult(Npos+1:end)); 
% get false detection negative index 
for i = 1:Nneg 
    if sortedNeg(i) > 0 
        idxNeg = idxNeg(i:end); 
        break; 
    end 
end 

  
% get sample index for next cascaded iteration 
idx = [1:Npos, Npos+idxNeg']; 

  
% save trained data 
save(['strongCla_',num2str(stage),'.mat'],'strongCla','-mat', '-v7.3'); 
save(['negAccuracy_',num2str(stage),'.mat'],'negAccuracy','-mat', '-v7.3'); 
% polarity, theta  for each classifier 
save(['ht_',num2str(stage),'.mat'],'ht','-mat', '-v7.3'); 
% alpha for each weak classifier 
save(['alpha_',num2str(stage),'.mat'],'alpha','-mat', '-v7.3'); 
% indices for classifier h's feature  
save(['idxForNext',num2str(stage),'.mat'],'idx','-mat', '-v7.3');  
% threshold for whole strong classifier --- may not be used 
save(['threshold_',num2str(stage),'.mat'],'threshold','-mat', '-v7.3'); 
end 

  

 
function h = getClassifier(features, weight, label, Npos) 
%getClassifier Summary of this function goes here 
%   Detailed explanation goes here 

  
% define parameters 
Nfeatures = size(features,1); 
Nimgs = size(features,2); 
h.currentMin = inf; 

  
tPos = repmat(sum(weight(1:Npos,1)), Nimgs,1); 
tNeg = repmat(sum(weight(Npos+1:Nimgs,1)), Nimgs,1); 

  
% search each feature as a classifier 
for i = 1: Nfeatures 
    % get one feature for all images 
    oneFeature = features(i,:); 
    % sort feature to thresh for postive and negative 
    [sortedFeature, sortedIdx] = sort(oneFeature, 'ascend'); 
    % sort weights and labels 
    sortedWeight = weight(sortedIdx); 
    sortedLabel = label(sortedIdx); 
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    % select threshold 
    sPos = cumsum(sortedWeight .* sortedLabel); 
    sNeg = cumsum(sortedWeight) - sPos; 
    errPos = sPos + (tNeg - sNeg); 
    errNeg = sNeg + (tPos - sPos); 

     
    % choose the threshold with small error 
    allErrMin = min(errPos, errNeg); 
    [errMin, idxMin] = min(allErrMin); 

     
    % result 
    result = zeros(Nimgs,1); 
    if errPos(idxMin) <= errNeg(idxMin) 
        p = -1; 
        result(idxMin+1:end) = 1; 
        result(sortedIdx) = result; 
    else 
        p = 1; 
        result(1:idxMin) = 1; 
        result(sortedIdx) = result; 
    end 

     
    % get best parameters 
    if errMin < h.currentMin 
        h.currentMin = errMin; 
        if idxMin==1 
            h.theta = sortedFeature(1) - 0.5; 
        elseif idxMin==Nfeatures; 
            h.theta = sortedFeature(Nfeatures) + 0.5; 
        else 
            h.theta = (sortedFeature(idxMin)+sortedFeature(idxMin-1))/2; 
        end 

         
        h.p = p; 
        h.featureIdx = i; 
        h.bestResult = result; 
    end 

     
end % end of search each feature 

  
end 

 

3. Testing Process  
 

% Object detection using Cascaded AdaBoost Classification 
% ECE661: Computer vision 
% Fall 2014 
% Ting Zhang 
% zhan1013@purdue.edu 

  
clc 
clear all 

  
% get test features 
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testFeatureFile = load('features_adaboost_test.mat'); 
testFeatures = testFeatureFile.features_adaboost.features; 
Npos = testFeatureFile.features_adaboost.Npos; 
Nneg = testFeatureFile.features_adaboost.Nneg; 

  
S = 10; 

  
% for computing accuracy for each stage 
fp = zeros(S,1); 
fn = zeros(S,1); 

  
% test for each stage 
for i = 1:S 
    fprintf('Test stage: %d\n', i); 

     
    % load classifier infor 
    htFile = load(['ht_' num2str(i) '.mat']); 
    ht = htFile.ht; 
    alphaFile = load(['alpha_' num2str(i) '.mat']); 
    alpha = alphaFile.alpha; 
    strongThFile = load(['threshold_' num2str(i) '.mat']); 
    strongTh = strongThFile.threshold; 

     
    % get t 
    t = 0; 
    for j = 1:size(ht,2) 
        if ht(:,j)==0 
            break; 
        end 
        t = t + 1; 
    end 

     
    % build polarity 
    p = ht(2,1:t); 
    % build each weak classifier threshold 
    theta = ht(4,1:t); 
    % build selected features 
    fIdx = ht(3,1:t); 
    % build alpha 
    alpha = alpha(1:t,1); 

     
    % do classification 
    result = adaBoostClassify(testFeatures, alpha, p, theta, fIdx, t, 

strongTh); 

     
    % compute accuracy 
    fn(i) = (Npos - sum(result(1:Npos))) / Npos; 
    fp(i) = sum(result(Npos+1:end)) / Nneg; 
end 

  
% plot result of training 
noStage = 10; 
fp_rate = zeros(noStage,1); 
for i=1:noStage 
    fp_rate = fp(1:i); 
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    for j=2:i 
        if fp_rate(j)==0 
            fp_rate(j)=fp_rate(j-1); 
            break; 
        end 
    end 
    falsepos_acc = cumprod(fp_rate); 
end 
fn_rate = zeros(noStage,1); 
for i=1:noStage 
    fn_rate = fn(1:i); 
    for j=2:i 
        if fn_rate(j)==0 
            fn_rate(j)=fn_rate(j-1); 
            break; 
        end 
    end 
    falseneg_acc = cumprod(fn_rate); 
end 

  
% save result 
save('false_negative_rate.mat','fn','-mat', '-v7.3'); 
save('false_positive_rate.mat','fp','-mat', '-v7.3'); 

  
save('false_negative_rate_1.mat','falseneg_acc','-mat', '-v7.3'); 
save('false_positive_rate_1.mat','falsepos_acc','-mat', '-v7.3'); 
% plot result 

  
function [ result ] = adaBoostClassify( featuresAll, alpha, p, theta, fIdx, T, 

strongTh ) 
%adaBoostClassify Summary of this function goes here 
%   Detailed explanation goes here 

  
% get number of test images 
Nimgs = size(featuresAll,2); 

  
% result for each weak classifier 
weakResult = zeros(Nimgs,T); 

  
% classify using every weak classiier 
for t = 1:T 
    % get classifier feature 
    feature = featuresAll(fIdx(t),:); 

     
    % do classification for each test image 
    for i = 1:Nimgs 
        if p(t)*feature(i) <= p(t)*theta(t) 
            weakResult(i,t) = 1; 
        end 
    end 
end 

  
% build strong classifier 
strongCla = weakResult(:,1:T) * alpha(1:T,:); 
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% compute strong classifier thershold 
strongThreshold = 0.5 * sum(alpha(1:T,1)); 

  
% get final classification result 
result = zeros(Nimgs,1); 

  
for i = 1:Nimgs 
    %if strongCla(i) >= strongTh 
    if strongCla(i) >= strongThreshold 
        result(i) = 1; 
    end 
end 

  
end 

  

 

 

 

 


