
12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 1 of 25

ECE 661: Homework 10: Face Recognition and Object Detection

Fall 2014

Solutions

PART I. FACE RECOGNITION

In the first part, the task is to perform face recognition with PCA and LDA and the nearest-

neighborhood rule is applied for classification.

1. PCA (Principal Components Analysis)

To perform face recognition using PCA, both train and test images need to be vectorized

before any other operations. With the vectorized image, the covariance matrix C for train

images is first computed.

1.1 Estimate Covariance C of Training Image Set

Given N vectorized training images, 𝑥𝑖⃑⃑ ⃑ indicates the ith image, where i=0,1,2,…,N-1. To

compute the covariance matrix C, the mean vector with the N images can be computed

following

1

0

1 N

i
i

m x
N





  . (1)

And X is defined as

  1 2, ,..., NX x m x m x m    . (2)

Then X is normalized to achieve illumination invariance by subjecting it to the constraint

that 𝑥𝑖⃑⃑ ⃑
𝑇
𝑥𝑖⃑⃑ ⃑ = 1. To compute covariance C, the following equation can be used:

  
1

0

1 N
T

i

C XX
N





  . (3)

The eigenvectors 𝑤𝑖⃑⃑⃑⃑ of C corresponding to the K largest eigenvalues will

constitute the PCA feature set, denoted as WK. Different Ks are tested in this

homework. However, the direct Eigen decomposition of C can eat up significant

computational resources, therefore, a computational trick is applied to compute

the eigenvectors 𝑤𝑖⃑⃑⃑⃑ .

1.2 Compute Eigenvectors of C Using a Computational Trick

If 𝑤⃑⃑ represents an eigenvector of C, then it must satisfy

 TXX w w . (4)

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 2 of 25

Instead of computing the eigenvectors of C, the eigenvectors of XTX are first

computed, denoted as 𝑢⃑ . Their relations are shown in equation (5). The Eigen

decomposition of XTX is much easier than C, since XTX is much smaller than C.

 TX Xu u (5)

Then, to get 𝑤⃑⃑ from 𝑢⃑ , equation (5) is multiplied by X at both side, and

reformatted as

  TXX Xu Xu . (6)

Since C equals XXT, the eigenvectors of C can be computed following

 w Xu . (7)

The eigenvectors are then normalized to unit magnitude, so that the images can be

back projected into the eigenspace. The eigenvectors of largest K eigenvalues are

used in this homework.

1.3 Back Project both Train and Test Images for Testing

Both train and test images are back projected to the eigenspace following

 T
i iy W X , (8)

where W=[𝑤1⃑⃑ ⃑⃑ , 𝑤2⃑⃑ ⃑⃑ ,…, 𝑤𝐾⃑⃑⃑⃑ ⃑]. The trained feature with nearest distance is considered as the

target matching for a test feature.

2. LDA (Linear Discriminant Analysis)

The goal of LDA is to find the directions in the underlying vector space that are

maximally discriminating between the classes. In this case, two concepts are introduced,

the between-class scatter SB and the within-class scatter SW along a direction.

2. 1 Definition of between-class scatter SB and within-class scatter SW

For multiple classes, the between-class scatter is defined as

   
1

1 T
B i i

i

S m m m m



   (9)

where is the set of all classes and m is the global mean same as equation (1). The

within-class scatter is defined as

   
1 1

1 1 i
T

W k i k i
ii k

S x m x m

 

    (10)

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 3 of 25

where the subset of images corresponding to class i is denoted as i and im is the mean

image vector for class i.

2. 2 Goal of LDA

The goal of LDA is to find LDA eigenvectors W that can maximize the Fisher

Discriminant Function,

  
T

B

T
w

w S w
J w

w S w
 . (11)

However, instead of directly solving this problem, Yu and Yang’s algorithm is applied to

find the W, since SW can be singular in this case.

2. 3 Yu and Yang’s Algorithm

The first step of Yu and Yang’s algorithm is to perform an Eigen decomposition of SB.

The eigenvalues are diagonalized and sorted in descending order. This will also yields a

matrix denoted as V, representing the corresponding eigenvectors. The same trick used in

PCA is also applied here to perform the Eigen decomposition. The first K eigenvectors

constitute matrix Y. Then a matrix Z is constructed following

 1/2
BZ YD (12)

where DB is the upper-left K×K sub-matrix of the diagonalized eigenvalues of SB,

 T
B BD Y S Y . (13)

To compute DB, instead of equation (13), we can apply the following equation

   
T

T T
BD Y M Y M (14)

where 1 2, ,...,M m m m m m m    
 

.

Then, the eigenvectors matrix U is computed by Eigen decomposition of T
WZ S Z . This

equation can be computed following

   
T

T T T
W W WZ S Z Z X Z X (15)

where 11 1 12 1 1 1 1, ,..., ,..., ,...,W k kX x m x m x m x m x m      
 

. Therefore, the same

computational trick in PCA can be performed here as well.

The eigenvectors with largest eigenvalues are discarded, since much inter-class

discriminatory information is contained in the smallest eigenvectors of SW. The matrix of

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 4 of 25

LDA eigenvectors that maximize the Fisher discriminant function defined in equation (11)

can then be calculated following

 ˆT T TW U Z . (16)

At last, W need to be normalized as well.

2.4 Back Project both Train and Test Images for Testing

Both train and test images are back projected to the eigenspace following

  T
i iy W X m  , (17)

where W=[𝑤1⃑⃑ ⃑⃑ , 𝑤2⃑⃑ ⃑⃑ ,…, 𝑤𝐾⃑⃑⃑⃑ ⃑]. The trained feature with nearest distance is considered as the

target matching for a test feature.

3. Comparison between PCA and LDA

The accuracy of both approaches is calculated following

  
Number of correctly recognized images

Total number of images
accuracy k  . (18)

Figure 1 represents the accuracy for both approaches. From Figure 1, it is observed that

before reaching 100% recognition rate, LDA shows relatively higher accuracy than LDA

in each number of eigenvectors. Also, LDA uses less number of eigenvectors to achieve

100% recognition accuracy. LDA uses 5 eigenvectors to achieve 100% accuracy, while

PCA uses 13. From computational point of view, PCA may be optimal for low

dimensional representation, while from discrimination point of view, LDA shows better

performance.

There are also some example images for correct recognition and false recognition for

both approaches shown in Section 4 from Figure 2 to Figure 5. Both PCA and LDA

shows good performance under different illumination environments.

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 5 of 25

4. Examples of Recognition Results

Figure 2 is an example of correctly recognized face. Figure 2 (a) is the test image and

Figure 2 (b) is the recognized image. The distance between this two images is 1.1491e-5.

Figure 3 is an example of false recognized face. Figure 3 (a) is the test image, Figure 3 (b)

is the false recognized image and Figure 3 (c) is the correctly recognized image using

more eigenvectors. The distance between (a) and (b) is the 4.618e-9 with number of

eigenvectors of 1 and the distance between (a) and (c) is 0.0027 with number of

eigenvectors of 3.

Figure 1 Recognition accuracy of PCA and LDA.

(a) (b)

Figure 2 Recognition accuracy of PCA and LDA.

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 6 of 25

(a)

(b) (c)

Figure 3 Recognition accuracy of PCA and LDA.

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 7 of 25

PART II. OBJECT DETECTION

In the second part, object detection using Cascaded AdaBoost classification is performed. In

each stage of the cascade, a target false positive and true detection rate is required to achieve.

1. AdaBoost Classifier

AdaBoost stands for Adaptive Boosting, which means integrating a set of weak

classifiers into a strong classifier. To train an AdaBoost classifier, it follows the steps

listed below.

1. 1 Haar Feature Extraction

To build weak classifiers, the Haar features are extracted in this homework. Before

feature extraction, the original image is required to convert to integral image at first.

An integral image is calculated following

    
,y

, ,

i i

i i
x x y

I x y i x y

 

  , (19)

which is the sum of the left-top corner pixels of each pixel.

There are different types of Haar features, in this homework, the edge features are used,

expressed as [0,1] and [1,0]T. To get all possible horizontal and vertical features, these

two features are extended accordingly. The 1×2 feature is extended to 1×2, 1×4, 1×6, 1×8,

1×10, …, horizontally and 2×2, 3×2, 4×2, 5×2, …, vertically. In this way, there are

166000 features in total.

All the features of each image are expressed as a column vector and all images’ features

constitute a matrix of feature.

1. 2 Build Weak Classifier

Assume the final strong classifier is built with T weak classifiers, one weak classifier is

denoted as ht. In this homework, one weak classifier is one row of the feature matrix,

represented as f(x), where x = 1, 2, …, 166000.

To find the best T weak classifiers, all the features are evaluated T times. For instance, to

find the t weak classifier, all the features are evaluated one by one.

For one feature f(x), it is then applied to all the training data to find the best threshold that

can classify the training data with an optimal classification rate. Before the threshold is

calculated, the current feature is first sorted ascendingly according to the feature’s value

for each example. The threshold is then calculated following

      min ,e S T S S T S          (20)

where T+ is the total sum of positive example weights, T- is the total sum of negative

example weights, S+ is the sum of positive weights below the current example and S- is

the sum of negative weights below the current example. The feature with minimum error

is used as the threshold is classify all the training images.

The weight for each training image is initially equally assigned and updated in each

iteration t finding the best weak classifier. The feature with smallest error is then selected

as a weak classifier ht.

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 8 of 25

After the t weak classifier is obtained, the weight for each training image is updated

following

 1
1, ,

i
e

t i t i tw w 


  (21)

where

0 ,correctly classified

 and
1 ,otherwise 1

t
i t

t

e






 


.

The error is calculate following

  ,mint t i t i i
i

w h x y   (22)

where xi is a training image, and yi is the label for it.

1. 3 Build Strong Classifier

These T weak classifiers are then constitute a strong classifier. When performing the

validation or testing process, this strong classifier can be used as

  
 

1 1

1
1 ,

2

0 ,otherwise

T T

t t t
t t

h x
C x

 
 




 



  (23)

where

1

logt
t




 .

2. Cascaded AdaBoost Classifier

To integrate Adaboost with Cascaded algorithm, the process of building one strong

classifier using AdaBoost is repeated for several cascaded stages.

2. 1 One stage of Cascaded AdaBoost

In the beginning of each stage, the features used for this stage are updated according to

the false recognized negative training images. Only those correctly recognized negative

images and all the positive images are used in this stage. Then, a strong classifier is

constructed following AdaBoost process. Instead of integrating T weak classifiers as a

strong classifier, an additional condition is applied to determine the number of weak

classifiers used. In this case, if the false positive rate under a certain strong classifier is

smaller than 0.5, this strong classifier is considered as good enough and this stage is

completed then.

The false positive rate is calculated following

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 9 of 25

Number of misclassified negative images

false positive rate
Number of negative images

 . (24)

3. Testing Results

Besides false positive rate, false negative rate is also calculated for each cascaded stage,

Number of misclassified positive images

false negative rate
Number of positive images

 . (25)

Test images are validated using classifiers constructed from different cascaded stages and

the false positive rate and false negative rate is shown in Figure 4.

4. Training Parameters and Results

The number of weak classifiers used in each cascaded stage is summarized in Table I.

Table I Number of weak classifiers for each cascade stage.

Stage 1 2 3 4 5 6 7 8 9 10

Number of

weak

classifiers

10 13 24 22 11 6 4 4 3 3

Figure 4 Accuracy for cascaded AdaBoost Classification.

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 10 of 25

The Accumulative false positive rate for the cascade stages in training process is shown

in Figure 5.

Figure 5 Accuracy for cascaded AdaBoost Classification.

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 11 of 25

Appendix A. Matlab® Code

I. Face Recognition with PCA and LDA

1. PCA approach

% Face recognition using PCA
% ECE661: Computer vision
% Fall 2014
% Ting Zhang
% zhan1013@purdue.edu

clc
clear all

% define parameters
Nperson = 30;
Ntrials = 21;
trainPath = 'ECE661_2014_hw10_DB1/train/';
testPath = 'ECE661_2014_hw10_DB1/test/';

% load training images
[trainImg, ~, ~] = loadImages(trainPath, Nperson, Ntrials);

% load testing images
[testImg, ~, ~] = loadImages(testPath, Nperson, Ntrials);

% load trained w
w_pca = load('w_pca');
w = w_pca.w_pca.w;
Neigen = w_pca.w_pca.Neigen;

% test using different number of eigenvectors, from small to large
accuracy = zeros(1, Neigen);

for i = 1:Neigen
 % get first i eigenvectors
 partEigen = w(:,1:i);

 % project training images
 trainProjected = zeros(i, Nperson*Ntrials);
 for j = 1:Nperson*Ntrials
 trainProjected(:,j) = partEigen' * trainImg(:,j);
 end

 % project testing images
 testProjected = zeros(i, Nperson*Ntrials);
 for j = 1:Nperson*Ntrials
 testProjected(:,j) = partEigen' * testImg(:,j);
 end

 % do recognition for each test image
 for j = 1:Nperson*Ntrials

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 12 of 25

 % compute all distance with the trained image
 distance = zeros(1,Nperson*Ntrials);
 for k = 1:Nperson*Ntrials
 distance(1,k) = norm(testProjected(:,j)-trainProjected(:,k))^2;
 end

 % get nearest as match
 [~,matchIdx] = min(distance);

 % determine accuracy for each test image
 % get test person id
 testPerson = floor((j-1)/Ntrials) + 1;
 % get matched person id
 matchPerson = floor((matchIdx-1)/Ntrials) + 1;
 if testPerson == matchPerson
 accuracy(1,i) = accuracy(1,i) + 1;
 end
 if testPerson ~= matchPerson
 j;
 end
 end % end of recognition for each test image
end % end of test for different number of eigen values

% compute accuracy
accuracy = accuracy / (Nperson*Ntrials);
save('PCA_accuracy.dat', 'accuracy', '-ASCII');

% plot accuracy
idx = 1:Neigen;
plot(idx(1:25),accuracy(1:25),'r*-');
axis([1 25 0.84 1]);

function [normW, Neigen] = myPCA(imgVec)
%myPCA Summary of this function goes here
% Detailed explanation goes here

[~,col] = size(imgVec);

%compute covariance matrix C = XXt
%using XtX instead
[V,D] = eig(imgVec'*imgVec);
%sort eigenvalues from largest to smallest
eigenValue = diag(D);
[~,idx] = sort(-1.0 .* eigenValue);
eigenValue = eigenValue(idx);
V = V(:,idx);

%for each image, get number of eigenvectors with eigenvalue greater than 1
Neigen = 0;
for i = 1:col
 if eigenValue(i) > 1
 Neigen = Neigen + 1;
 end
end

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 13 of 25

%compute w = Xu
w = imgVec * V;

%normalize w
[row,col] = size(w);
normW = zeros(row,col);
for i = 1:col
 normW(:,i) = w(:,i) / norm(w(:,i));
end

end

function trainPCA()
%trainPCA Summary of this function goes here
% Detailed explanation goes here

filePath = 'ECE661_2014_hw10_DB1/train/';
[imgVec, ~, ~] = loadImages(filePath, 30, 21);
[w, Neigen] = myPCA(imgVec);

w_pca.w = w;
w_pca.Neigen = Neigen;
save('w_pca','w_pca');

end

function [normImgVec, imgVec, meanImg] = loadImages(filePath, Nperson,

Ntrial)
%loadImages Summary of this function goes here
% Detailed explanation goes here

%get image size
img = imread([filePath,'01_01.png']);
imgGray = rgb2gray(img);
[row,col] = size(imgGray);
%define output vectors
imgVec = zeros(row*col,Nperson*Ntrial); %each column is an image

%load images into 1D vectors
for i = 1:Nperson
 for j = 1:Ntrial
 img = imread([filePath,num2str2digit(i),'_',num2str2digit(j),'.png']);
 %figure;
 %imshow(img);
 imgGray = rgb2gray(img);
 [row,col] = size(imgGray);
 oneVec = reshape(imgGray',row*col,1);
 imgVec(:,(i-1)*Ntrial+j) = oneVec;
 end
end

%compute mean of all images
meanImg = mean(imgVec,2);

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 14 of 25

%normalize images using the mean
normImgVec = zeros(row*col,Nperson*Ntrial);
for i = 1:Nperson*Ntrial
 normImgVec(:,i) = (imgVec(:,i) - meanImg) / norm(imgVec(:,i) - meanImg);
end

end

%% convert num to 2 digit string
function str = num2str2digit(num)
if num<10
 str = ['0',num2str(num)];
else
 str = num2str(num);
end
end

2. LDA approach

% Face recognition using LDA
% ECE661: Computer vision
% Fall 2014
% Ting Zhang
% zhan1013@purdue.edu

clc
clear all

% define parameters
Nperson = 30;
Ntrials = 21;
trainPath = 'ECE661_2014_hw10_DB1/train/';
testPath = 'ECE661_2014_hw10_DB1/test/';

% load training images
[~,trainImg, meanTrain] = loadImages(trainPath, Nperson, Ntrials);

% load testing images
[~,testImg, meanTest] = loadImages(testPath, Nperson, Ntrials);

% get trained data
[vecU, Z] = myLDA(trainImg,meanTrain,Nperson,Ntrials);

% test using different number of eigenvalues
Neigen = 30;
accuracy = zeros(1, Neigen);

for i = 1:Neigen
 % compute part eigenvector U
 partVecU = vecU(:,1:i);
 W = Z * partVecU;

 % normalize W

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 15 of 25

 for j = 1:i
 W(:,j) = W(:,j) / norm(W(:,j));
 end

 % project training images
 trainProjected = zeros(i, Nperson*Ntrials);
 for j = 1:Nperson*Ntrials
 trainProjected(:,j) = W' * (trainImg(:,j)-meanTrain);
 end

 % project testing images
 testProjected = zeros(i, Nperson*Ntrials);
 for j = 1:Nperson*Ntrials
 testProjected(:,j) = W' * (testImg(:,j)-meanTest);
 end

 % do recognition for each test image
 for j = 1:Nperson*Ntrials

 % compute all distance with the trained image
 distance = zeros(1,Nperson*Ntrials);
 for k = 1:Nperson*Ntrials
 distance(1,k) = norm(testProjected(:,j)-trainProjected(:,k))^2;
 end

 % get nearest as match
 [~,matchIdx] = min(distance);

 % determine accuracy for each test image
 % get test person id
 testPerson = floor((j-1)/Ntrials) + 1;
 % get matched person id
 matchPerson = floor((matchIdx-1)/Ntrials) + 1;
 if testPerson == matchPerson
 accuracy(1,i) = accuracy(1,i) + 1;
 end
 end % end of recognition for each test image

end

% compute accuracy
accuracy = accuracy / (Nperson*Ntrials);
save('LDA_accuracy.dat', 'accuracy', '-ASCII');

% plot accuracy
idx = 1:Neigen;
plot(idx(1:25),accuracy(1:25),'r*-');
axis([1 25 0.84 1]);

function [vecU, Z] = myLDA(imgVec, mean, Nperson, Ntrials)
%myLDA Summary of this function goes here
% Detailed explanation goes here

% define image size
imgSize = 128*128;

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 16 of 25

% compute mean for each class
sumImg = zeros(imgSize,Nperson*Ntrials);

for i = 1:Nperson*Ntrials
 classIdx = floor((i-1)/Ntrials) + 1;
 sumImg(:,classIdx) = sumImg(:,classIdx) + imgVec(:,i);
end
meani = sumImg / Ntrials;

% build mi-m
meani_m = zeros(imgSize, Nperson);
for i = 1:Nperson
 meani_m(:,i) = meani(:,i) - mean;
end

% compute SB
SB = meani_m * meani_m';
% ensure SB is not singular
[vecSB,valSB] = eig(meani_m' * meani_m);
[~,idx] = sort(-1 .* diag(valSB));
V = meani_m * vecSB;

Nfeatures = 30;
% build Y, DB, Z
Y = V(:,1:Nfeatures);
DB = Y' * meani_m * meani_m' * Y;
Z = Y * DB^(-0.5);

% build xk-mi
xk_meani = zeros(imgSize, Ntrials);
for i = 1:Nperson*Ntrials
 classIdx = floor((i-1)/Ntrials) + 1;
 xk_meani(:,i) = imgVec(:,i) - meani(:,classIdx);
end
% compute Zt*Sw*Z = Z' * (xk-meani) * (xk-meani)' * Z
Zt_xk_meani = Z' * xk_meani;
% eigendecompostion to get U
[vecU,valU] = eig(Zt_xk_meani*Zt_xk_meani');
% diagnolize eigenvalues of U
DU = diag(valU);

end

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 17 of 25

II. Object Detection with Cascaded AdaBoost Classifier

1. Feature Extraction

function [features, Npos, Nneg] = getHaar(filePath)
%getHaar Summary of this function goes here
% Detailed explanation goes here

% load images
row = 20;
col = 40;
posFilePath = [filePath 'positive/'];
negFilePath = [filePath 'negative/'];
posImg = loadImagesAdaBoost(posFilePath, row, col);
negImg = loadImagesAdaBoost(negFilePath, row, col);

% get total number of images
Nimg = size(posImg,3) + size(negImg,3);
Npos = size(posImg,3);
Nneg = size(negImg,3);

Nfeatures = 166000;
features = zeros(Nfeatures, Nimg);
for i = 1:Nimg
 if i <= size(posImg,3)
 % convert to integral image
 intImg = zeros(row+1,col+1);
 intImg(2:row+1,2:col+1) = cumsum(cumsum(posImg(:,:,i)),2);
 % compute features
 features(:,i) = computeFeature(intImg);
 else
 % convert to integral image
 intImg = zeros(row+1,col+1);
 intImg(2:row+1,2:col+1) = cumsum(cumsum(negImg(:,:,i-

size(posImg,3))),2);
 % compute features
 features(:,i) = computeFeature(intImg);
 end
end

features_adaboost.features = features;
features_adaboost.Npos = Npos;
features_adaboost.Nneg = Nneg;

save('features_adaboost_test.mat', 'features_adaboost', '-mat', '-v7.3');
%save('features_adaboost_train.mat', 'features_adaboost', '-mat', '-v7.3');
end

%% load images
function imgs = loadImagesAdaBoost(filePath, row, col)

% get images in 'filePath'
files = dir([filePath '*.png']);
imgs = zeros(row,col,length(files));

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 18 of 25

for i = 1: length(files)
 img = imread([filePath files(i).name]);
 imgGray = double(rgb2gray(img));
 imgs(:,:,i) = imgGray;
end

end

%% compute Haar features
function feature = computeFeature(I, row, col)

feature = zeros(166000,1);

%extract horizontal feature
cnt = 1;
for h = 1:20
 for w = 1:20
 for i = 1:21-h
 for j = 1:41-2*w
 rect1=[i,j,w,h];
 rect2=[i,j+w,w,h];
 feature(cnt)=sumRect(I, rect2)-sumRect(I, rect1);
 cnt=cnt+1;
 end
 end
 end
end

for h = 1:10
 for w = 1:40
 for i = 1:21-2*h
 for j = 1:41-w
 rect1=[i,j,w,h];
 rect2=[i+h,j,w,h];
 feature(cnt)=sumRect(I, rect1)-sumRect(I, rect2);
 cnt=cnt+1;
 end
 end
 end
end

end

%%
function [rectsum] = sumRect(I, rect_four)

% given four corner points in the integral image
% to calculate the sum of pixels inside the rectangular.

row_start = rect_four(1);
col_start = rect_four(2);
width = rect_four(3);
height = rect_four(4);

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 19 of 25

one = I(row_start, col_start);
two = I(row_start, col_start+width);
three = I(row_start+height, col_start);
four = I(row_start+height, col_start+width);

rectsum = four + one - (two + three);
end

2. Training Process

% Object detection training process using Cascaded AdaBoost Classification
% ECE661: Computer vision
% Fall 2014
% Ting Zhang
% zhan1013@purdue.edu

clc
clear all

% get features
featureFile = load('features_adaboost.mat');
features = featureFile.features_adaboost.features;
Npos = featureFile.features_adaboost.Npos;
Nneg = featureFile.features_adaboost.Nneg;

S = 20;
idx = 1: Npos+Nneg;

for i = 1:S
 idx = myCascade(features, Npos, idx, i);

 % stop is all negatives are detection correctly
 if length(idx)==Npos
 break;
 end
end

function [idx] = myCascade(featuresAll, Npos, idxPrevious, stage)
%myCascade Summary of this function goes here
% Detailed explanation goes here

% update negative number
Nneg = length(idxPrevious) - Npos;
Ntotal = Npos + Nneg;

% update features
features = featuresAll(:,idxPrevious);

% initialize weights to equally assigned
weight = zeros(Ntotal,1);
% initialize labels for posiive and negative samples

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 20 of 25

label = zeros(Ntotal,1);
for i = 1:Ntotal
 if i <= Npos
 weight(i) = 0.5 / Npos;
 label(i) = 1;
 else
 weight(i) = 0.5 / Nneg;
 end
end

%% adaboost process
T = 40;
strongClaResult = zeros(Ntotal,1);
alpha = zeros(T,1);
ht = zeros(4,T);
hResult = zeros(Ntotal,T);

for t = 1:T
 % normalize weights
 weight = weight ./ sum(weight);
 % get the best weak classifier and the detection result
 h = getClassifier(features, weight, label, Npos);
 % store result
 ht(1,t) = h.currentMin;
 ht(2,t) = h.p;
 ht(3,t) = h.featureIdx;
 ht(4,t) = h.theta;
 hResult(:,t) = h.bestResult;
 % get min error
 err = h.currentMin;
 % get trust fact alphat = 0.5 * ln((1-et)/et)
 alpha(t) = log((1-err)/err);

 % update weight
 weight = weight .* (err/(1-err)) .^ (1-xor(label,h.bestResult));

 % strong classifier
 strongCla = hResult(:,1:t) * alpha(1:t,:);
 threshold = min(strongCla(1:Npos));

 for i = 1:Ntotal
 if strongCla(i) >= threshold
 strongClaResult(i) = 1;
 else
 strongClaResult(i) = 0;
 end
 end

 % compute positive accuracy
 posAccuracy(t) = sum(strongClaResult(1:Npos)) / Npos;
 % compute negative accuracy
 negAccuracy(t) = sum(strongClaResult(Npos+1:end)) / Nneg;

 if posAccuracy(t)==1 && negAccuracy(t) <= 0.5
 break;

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 21 of 25

 end

 fprintf('t = %d\n', t);
end

%% update for next cascaded iteration

% sort negative, if there is false deteciton, there will be 1 at the end
[sortedNeg, idxNeg] = sort(strongClaResult(Npos+1:end));
% get false detection negative index
for i = 1:Nneg
 if sortedNeg(i) > 0
 idxNeg = idxNeg(i:end);
 break;
 end
end

% get sample index for next cascaded iteration
idx = [1:Npos, Npos+idxNeg'];

% save trained data
save(['strongCla_',num2str(stage),'.mat'],'strongCla','-mat', '-v7.3');
save(['negAccuracy_',num2str(stage),'.mat'],'negAccuracy','-mat', '-v7.3');
% polarity, theta for each classifier
save(['ht_',num2str(stage),'.mat'],'ht','-mat', '-v7.3');
% alpha for each weak classifier
save(['alpha_',num2str(stage),'.mat'],'alpha','-mat', '-v7.3');
% indices for classifier h's feature
save(['idxForNext',num2str(stage),'.mat'],'idx','-mat', '-v7.3');
% threshold for whole strong classifier --- may not be used
save(['threshold_',num2str(stage),'.mat'],'threshold','-mat', '-v7.3');
end

function h = getClassifier(features, weight, label, Npos)
%getClassifier Summary of this function goes here
% Detailed explanation goes here

% define parameters
Nfeatures = size(features,1);
Nimgs = size(features,2);
h.currentMin = inf;

tPos = repmat(sum(weight(1:Npos,1)), Nimgs,1);
tNeg = repmat(sum(weight(Npos+1:Nimgs,1)), Nimgs,1);

% search each feature as a classifier
for i = 1: Nfeatures
 % get one feature for all images
 oneFeature = features(i,:);
 % sort feature to thresh for postive and negative
 [sortedFeature, sortedIdx] = sort(oneFeature, 'ascend');
 % sort weights and labels
 sortedWeight = weight(sortedIdx);
 sortedLabel = label(sortedIdx);

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 22 of 25

 % select threshold
 sPos = cumsum(sortedWeight .* sortedLabel);
 sNeg = cumsum(sortedWeight) - sPos;
 errPos = sPos + (tNeg - sNeg);
 errNeg = sNeg + (tPos - sPos);

 % choose the threshold with small error
 allErrMin = min(errPos, errNeg);
 [errMin, idxMin] = min(allErrMin);

 % result
 result = zeros(Nimgs,1);
 if errPos(idxMin) <= errNeg(idxMin)
 p = -1;
 result(idxMin+1:end) = 1;
 result(sortedIdx) = result;
 else
 p = 1;
 result(1:idxMin) = 1;
 result(sortedIdx) = result;
 end

 % get best parameters
 if errMin < h.currentMin
 h.currentMin = errMin;
 if idxMin==1
 h.theta = sortedFeature(1) - 0.5;
 elseif idxMin==Nfeatures;
 h.theta = sortedFeature(Nfeatures) + 0.5;
 else
 h.theta = (sortedFeature(idxMin)+sortedFeature(idxMin-1))/2;
 end

 h.p = p;
 h.featureIdx = i;
 h.bestResult = result;
 end

end % end of search each feature

end

3. Testing Process

% Object detection using Cascaded AdaBoost Classification
% ECE661: Computer vision
% Fall 2014
% Ting Zhang
% zhan1013@purdue.edu

clc
clear all

% get test features

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 23 of 25

testFeatureFile = load('features_adaboost_test.mat');
testFeatures = testFeatureFile.features_adaboost.features;
Npos = testFeatureFile.features_adaboost.Npos;
Nneg = testFeatureFile.features_adaboost.Nneg;

S = 10;

% for computing accuracy for each stage
fp = zeros(S,1);
fn = zeros(S,1);

% test for each stage
for i = 1:S
 fprintf('Test stage: %d\n', i);

 % load classifier infor
 htFile = load(['ht_' num2str(i) '.mat']);
 ht = htFile.ht;
 alphaFile = load(['alpha_' num2str(i) '.mat']);
 alpha = alphaFile.alpha;
 strongThFile = load(['threshold_' num2str(i) '.mat']);
 strongTh = strongThFile.threshold;

 % get t
 t = 0;
 for j = 1:size(ht,2)
 if ht(:,j)==0
 break;
 end
 t = t + 1;
 end

 % build polarity
 p = ht(2,1:t);
 % build each weak classifier threshold
 theta = ht(4,1:t);
 % build selected features
 fIdx = ht(3,1:t);
 % build alpha
 alpha = alpha(1:t,1);

 % do classification
 result = adaBoostClassify(testFeatures, alpha, p, theta, fIdx, t,

strongTh);

 % compute accuracy
 fn(i) = (Npos - sum(result(1:Npos))) / Npos;
 fp(i) = sum(result(Npos+1:end)) / Nneg;
end

% plot result of training
noStage = 10;
fp_rate = zeros(noStage,1);
for i=1:noStage
 fp_rate = fp(1:i);

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 24 of 25

 for j=2:i
 if fp_rate(j)==0
 fp_rate(j)=fp_rate(j-1);
 break;
 end
 end
 falsepos_acc = cumprod(fp_rate);
end
fn_rate = zeros(noStage,1);
for i=1:noStage
 fn_rate = fn(1:i);
 for j=2:i
 if fn_rate(j)==0
 fn_rate(j)=fn_rate(j-1);
 break;
 end
 end
 falseneg_acc = cumprod(fn_rate);
end

% save result
save('false_negative_rate.mat','fn','-mat', '-v7.3');
save('false_positive_rate.mat','fp','-mat', '-v7.3');

save('false_negative_rate_1.mat','falseneg_acc','-mat', '-v7.3');
save('false_positive_rate_1.mat','falsepos_acc','-mat', '-v7.3');
% plot result

function [result] = adaBoostClassify(featuresAll, alpha, p, theta, fIdx, T,

strongTh)
%adaBoostClassify Summary of this function goes here
% Detailed explanation goes here

% get number of test images
Nimgs = size(featuresAll,2);

% result for each weak classifier
weakResult = zeros(Nimgs,T);

% classify using every weak classiier
for t = 1:T
 % get classifier feature
 feature = featuresAll(fIdx(t),:);

 % do classification for each test image
 for i = 1:Nimgs
 if p(t)*feature(i) <= p(t)*theta(t)
 weakResult(i,t) = 1;
 end
 end
end

% build strong classifier
strongCla = weakResult(:,1:T) * alpha(1:T,:);

12/16/2014 Ting Zhang zhan1013@purdue.edu

Page 25 of 25

% compute strong classifier thershold
strongThreshold = 0.5 * sum(alpha(1:T,1));

% get final classification result
result = zeros(Nimgs,1);

for i = 1:Nimgs
 %if strongCla(i) >= strongTh
 if strongCla(i) >= strongThreshold
 result(i) = 1;
 end
end

end

