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ECE 661: Homework 10 

Fall 2014 

 

This homework consists of the following two parts: (1) Face recognition with PCA and 

LDA for dimensionality reduction and the nearest-neighborhood rule for classification; 

and (2) Object detection with the cascaded AdaBoost classifier. 

 

Part 1: Face Recognition using PCA/LDA “face space” and NN classification 

 

1. Introduction 

 

For the images that we are dealing with, the dimensionality tends to be very high. Let 

a face image I(x,y) be a two-dimensional N by N array of intensity values. An image 

may also be considered as a vector of dimension 2N , so that a typical image of size 128 

by 128 becomes a vector of dimension 228, or equivalently, a point in 228-dimensional 

space. An ensemble of images, then, maps to a collection of points in this huge space. 

Images of faces, being similar in overall configuration, will not be randomly distributed 

in this huge image space and thus can be described by a relatively low dimensional 

subspace. The main idea of the PCA/LDA analysis is to find the vector that best account 

for the distribution of face images within the entire image space. These vectors define 

the subspace of face images, which we call “face space” (see Figure 1). Each vector is 

of length 2N , describes an N by N image, and is a linear combination of the original 

face images. Because these vectors are the eigenvectors of the covariance matrix 

corresponding to the original face images, and because they are face-like in appearance, 

they are referred to as “Eigen Faces” for PCA and “Fisher Faces” for LDA. 

 
    (a)         (b)  

Figure 1. Illustration of reduced dimensional face space 

(a) The face space and the three projected images on it. Here u1 and u2 are the 

eigenfaces. (b) The projected face from the training database. 
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The goal of this part is to classify an unknown face image given a database of labeled 

face images using two different approaches, i.e. “Principle Component Analysis (PCA)” 

and “Linear Discriminant Analysis (LDA)”, to form a data subspace with reduced 

dimensions. 

 

2. Method of Solution 

 

2.1 PCA Eigen Faces Recognition 

 

In PCA, one would use the eigenvectors corresponding to the p largest eigenvalues of 

the covariance matrix to span the subspace. One needs to calculate the covariance 

matrix: 

𝐶 =
1

𝑁
∑(𝑥𝑖 − 𝑚)(𝑥𝑖 − 𝑚)𝑇

𝑁

𝑖=1

 

where 𝑚 is the mean vector of all training images 𝑥𝑖and 𝑁 is the number of training 

samples. The next step is to do the eigen-decomposition to get the eigenvectors and 

eigenvalues of the covariance matrix. If we want to construct a p-dimension subspace, 

we should use the eigenvectors corresponding to the p largest eigenvalues. 

 

However, since the dimension of covariance is very high, we need an algebraic trick to 

compute the eigenvalues and eigenvectors. Let  

𝑋 = [𝑥1 − 𝑚 𝑥2 − 𝑚 ⋯ 𝑥𝑁 − 𝑚] 

𝐶 =
1

𝑁
 𝑋𝑋𝑇 

What we need to compute is 𝑋𝑋𝑇𝑢 = 𝜆𝑢, however 𝑋𝑋𝑇 is huge. Instead we compute 

𝑋𝑇𝑋𝑣 = 𝜆′𝑣 where 𝑋𝑇𝑋 is N by N. Then 𝜆 = 𝜆′ and 𝑢 = 𝑋𝑣, the p largest 𝑢 are 

used as the new bases that span the subspace.  

 

Figure 2 shows the results of the mean face and top 8 eigenfaces using PLA and NN 

Neighbor classification. It can be found that instead of converting all images to gray 

level images, we keep the rgb color value which gives us more feature information than 

gray images only. 
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Figure 2. Mean face and top 8 PCA eigenfaces  

 

 

2.2 LDA Fisher Faces Recognition 

 

For LDA, the main idea is to find the p-dimension subspace that maximize the distance 

between the sets of classes and minimize the distance within each set of the classes. 

The between class covariance matrix, 𝑆𝐵and within class covariance matrix, 𝑆𝑊, are 

defined as the following 

𝑆𝐵 =
1

𝑁𝐶
∑(𝑚𝑗 − 𝑚)(𝑚𝑗 − 𝑚)𝑇

𝑁𝐶

𝑗=1

 

where 𝑚𝑗 is the mean of class j, and 𝑚 is the mean of all training data, 𝑁𝐶 is the 

number of classes. 

𝑆𝑊 =
1

𝑁𝐶
∑(

1

𝑁𝑗
∑(𝑥𝑖𝑗 − 𝑚𝑗)

𝑁𝑗

𝑖=1

(𝑥𝑖𝑗 − 𝑚𝑗)
𝑇

)

𝑁𝐶

𝑗=1

 

where 𝑁𝑗 is the number of elements of class j, 𝑥𝑖𝑗 is the ith element of class j. In order 
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to find the p-dimensional subspace on which the images projects results in maximizing 

the between-class variance and minimizing the within-class variance, we want to 

maximize the fisher discriminant function defined as the following. 

𝐽(𝑤) =
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
 

which can be converted to the equivalent problem of solving the following equation. 

𝑆𝐵𝑤 = 𝜆𝑆𝑊𝑤 

I tried to use the method that professor told in class, which is finding eigenvectors 

𝑆𝐵𝑤′ = 𝜆𝑤′, then compute 𝑤 = 𝑆𝑊
−1𝑤′. However, we know that 𝑆𝑊  is huge, and 

computing its inverse is nearly impossible. So there is no way but to use Yu and Yang’s 

algorithm to directly solve the eigen-decomposition problem. 

i) Using the same trick to get the eigenvectors , eigenvalues of 𝑆𝐵 

𝑆𝐵 = 𝑌𝑇𝐷𝐵𝑌 

ii) Discard the smallest eigenvector and eigenvalue of from 𝑌 and 𝐷𝐵 

iii) Construct 𝑍 as 

𝑍 = 𝑌𝐷𝐵

−
1
2 

iv) Define matrix 

𝑆𝐵𝑊 = 𝑍𝑇𝑆𝑊𝑍 

v) Using the same trick to get the eigenvectors, eigenvalues of 𝑆𝐵𝑊 

𝑆𝐵𝑊 = 𝑈𝑇𝐷𝑊𝑈 

vi) Sort the eigenvectors in the increasing order. 

vii) Define matrix 𝑊 = 𝑍𝑈 

viii) The bases are the first p vectors of 𝑊 

 

Figure 3 shows the results of the mean face and top 8 eigenfaces using LDA and NN 

Neighbor classification. It can be found that instead of converting all images to gray 

level images, we keep the rgb color value which gives us more feature information 

than gray images only. 
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Figure 3. Mean face and top 8 LDA fisherfaces 

 

2.3 Nearest Neighbor Classification 

 

After getting the p bases of the subspace, all training images and testing images are 

projected onto the subspace. The similarity score based on cosine mahalanobis distance 

is calculated between an input face image and each of the training images.  

 

Defining the accuracy of classification as: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

# 𝑜𝑓 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
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Figure 4. An example of the similarity matrix 

 

Figure 5. ROC and CMC curves for PCA+MAHCOS 
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Figure 6. ROC and CMC curves for LDA+MAHCOS 
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Figure 7. PCA/LDA accuracy versus subspace dimensions using gray images only 

 

Table 1. Some performance metrics 

 
rank one 

recognition rate 
equal error rate 

minimal half total 

error rate 

verification rate 

at 1% FAR 

PCA 3.33% 48.54% 48.04% 63.33% 

LDA 100% 0% 0% 100% 

 

 

2.4 Discussion 

 

(1) In this homework, we use R,G,B information instead of gray image only. The merit 

is more useful information are kept to help improve the accuracy of face detection. By 

comparing my results with the results in previous homework which used gray image 

only (see Figure 5,6,7), I found that it is more efficient and accurate using more useful 

information for classification, however, the cost is as the features are tripled, the time 

efficiency is relatively lower. This challenge can be solved by using parallel computing, 

such as MPI or OpenMP in the future. 

 

(2) During feature matching process, Cosine Mahalanobis Distance, rather than 

Euclidean Distance, was adopted for Nearest neighbor classification. It is more intrinsic 

to measure similarity using Mahalanobis Distance, especially in abstract projected 

subspace, as the Euclidean Distance at this moment cannot represent the real differences 
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between two datasets. 

 

(3) PCA v.s. LDA 

By comparing the ROC and CMC curves (see Figure 5, 6 and Table 1), it can be found 

that LDA is much more efficient than PCA. The reason could be PCA does not separate 

the classes as well as LDA. 

 

2.5 Source Codes (Matlab) 

See attached zip file. 

  



10 of 15 

 

Part 2: Object Detection with Cascaded AdaBoost Classification 

 

1. Introduction 

 

This goal of this part is to design a car detector using the Viola and Jones approach. It 

is a two-class classification for each sliding window that scans through the image, i.e., 

cars or non-cars. The merit of using such approach is it can cascade multiple strong 

AdaBoost classifiers, each of which comes from several weak classifiers. 

 

2. Method of Solution 

 

Figure 8 illustrates the general outline for cascaded AdaBoost classification. It consists 

of four main modules, which will be explained step by step in the following. 

AdaBoost 1

Raw training 

images

Haar-like 

features

Weak 

classifiers

Integral image

Iteratively weighting 

and threshold control   

AdaBoost 2 AdaBoost iT TTest image

Combining into

one strong classifier

No cars

F F F

Cars... T

... ...

Until false positive 

rate <0.5

Until no false 
positive samples

1

2

3

4 4 4

 

Figure 8. General process for Cascaded AdaBoost Classification 

 

2.1. Computing the integral image (summed area table) for Haar-like features 

 

In this project, we use Haar-like features consisting of two types, vertical ones and 

horizontal ones. In order to calculate feature values efficiently, integral image (or 

summed area table) is employed (see both equation and Figure 9 below). 

𝑆(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑥, 𝑦)

𝑦≤𝑗𝑥≤𝑖
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where 𝐼(𝑥, 𝑦) is the grayscale image pixel value at position (𝑥, 𝑦). 

 

Figure 9. Illustration of how integral image works 

 

Then the Haar-like features can be computed efficiently using a few values from 

summed area table. 

𝑓 = −𝑆(𝑥1, 𝑦1) + 𝑆(𝑥2, 𝑦2) + 2𝑆(𝑥3, 𝑦3) − 2𝑆(𝑥4, 𝑦4) − 𝑆(𝑥5, 𝑦5) + 𝑆(𝑥6, 𝑦6) 

 

Figure 10. Haar-like edge features 

 

2.2 Constituting weak classifiers by iteratively weighting and threshold control  

 

For each feature, the images are sorted according to their feature values in ascending 

order. Computing the following number for each threshold: 

𝑒 = min (𝑆+ + (𝑇− − 𝑆−), 𝑆− + (𝑇+ − 𝑆+)) 

where 𝑆+ and 𝑆− are the sums of the weights of positive and negative samples from 

the smallest one to current threshold respectively. 𝑇+  and 𝑇−  are the sums of all 

positive and negative samples respectively. If the former is less than the later, the 

decision rule is the following “if feature value is less than the threshold, the data point 

is classified as positive” and we say the polarity is 1. 
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Figure 11. Weighting linear combination of T hypotheses and threshold control 

The algorithm shown in Figure 11 can be described as following:  

T hypotheses are constructed each using a single feature. The final hypothesis is a 

weighted linear combination of the T hypotheses where the weights are inversely 

proportional to the training errors. 

 Given example images (x1, y1), … , (xn, yn) where yi = 0,1 for negative and 

positive examples respectively. n are the total training set number. 

 Initialize weights w1,j=
1

2𝑚
,

1

2𝑙
 for yi =0, 1 respectively, where m and l are the 

number of negatives and positives respectively. 

 For t=1,…,T: 

1) Normalize the weight, ϖ𝑡,𝑖= 
ϖ𝑡,𝑖

∑ ϖ𝑡,𝑖 𝑛
𝑗=1

 

2) Select the best weak classifier with respect to the weighted error 

𝜀𝑖 = 𝑚𝑖𝑛𝑓,𝑝,θ ∑ ϖ𝑖|h(𝑥𝑖, f, p, θ) − 𝑦𝑖 |

𝑖

 

3) Define ht(x)= h(x, 𝑓𝑖 , 𝑝𝑡, θ𝑡), where ft, pt and θ𝑡 are the minimizers of 𝜀𝑡 

4) Update the weights: 

𝒲𝑡+1,𝑖𝒲𝑡,𝑖𝛽𝑡
1−𝑒𝑖Where ei=0 if example xi is classified correctly, ei=1 

otherwise, and 

𝛽𝑡 =
𝜀𝑖

1 − 𝜀𝑖
 

 

2.3 Combining weak classifiers to a single AdaBoost strong classifier 

 

The decision of whether a sample is positive or negative is determined by the following: 
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𝐶(𝑥) = {1 𝑖𝑓 ∑ 𝛼𝑡ℎ𝑡(𝑥)

𝑇

𝑡=1

≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Note that the threshold is chosen to be the minimum of ∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1  for all positive 

training data being classified as positive. The procedure of finding best features 

continues until the false positive rate is less than 0.5 (see Figure 12). 

 

 

Figure 12. Output of the iteratively features selection process 

 

2.4 Cascading AdaBoost classifiers for car detection 

 

The purpose of cascading classifiers is to lower the false positive rate. We feed all 

samples that have been classified as positive to the next classifier. By adding more 

stages, there will be less negative sample being classified as positive. We stop adding 

stages when all negative samples are correctly classified (see Figure 8 module 4). 

 

  

<0.5, stop iteration 

<0.5, stop iteration 
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3. Testing Procedure 

 

From the training process, we acquired all the parameters of the cascaded classifiers. 

Feed the query sample to the first classifier, if it is classified as negative, then it is done; 

if it is classified as positive, we feed this sample into the next classifier. 

 

Table 2. Log of training process 

Stage 
Negative Sample # for 

next iteration 

Feature # 

week classifier 
False Positive Rate 

1 862 9 0.4903 

2 316 14 0.3666 

3 141 7 0.4462 

4 65 9 0.4610 

5 26 10 0.4000 

6 6 5 0.2308 

7 1 3 0.3333 

8 0 1 0 

 

 

Figure 13. Accumulative false-positive rate for training process 
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Table 3. Log of testing process 

Stage 
False 

Positive # 

False 

Negative # 

Cumulative False 

Positive Rate 

Cumulative False 

Negative Rate 

1 209 4 0.4750 0.0225 

2 87 11 0.1977 0.0843 

3 83 1 0.1886 0.0899 

4 74 4 0.1682 0.1124 

5 52 20 0.1182 0.2247 

6 35 12 0.0796 0.2921 

7 35 0 0.0796 0.2921 

8 209 0 0.0796 0.2921 

 

 
Figure 14. Accumulative false-positive and false-negative rate for test process 

 

4. Source Codes (Matlab) 

See attached zip code, it was adapted based on the previous codes of student Sirui Hu 

and Chyuan-Tyng Wu. 
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