
1 of 15

ECE 661: Homework 10

Fall 2014

This homework consists of the following two parts: (1) Face recognition with PCA and

LDA for dimensionality reduction and the nearest-neighborhood rule for classification;

and (2) Object detection with the cascaded AdaBoost classifier.

Part 1: Face Recognition using PCA/LDA “face space” and NN classification

1. Introduction

For the images that we are dealing with, the dimensionality tends to be very high. Let

a face image I(x,y) be a two-dimensional N by N array of intensity values. An image

may also be considered as a vector of dimension 2N , so that a typical image of size 128

by 128 becomes a vector of dimension 228, or equivalently, a point in 228-dimensional

space. An ensemble of images, then, maps to a collection of points in this huge space.

Images of faces, being similar in overall configuration, will not be randomly distributed

in this huge image space and thus can be described by a relatively low dimensional

subspace. The main idea of the PCA/LDA analysis is to find the vector that best account

for the distribution of face images within the entire image space. These vectors define

the subspace of face images, which we call “face space” (see Figure 1). Each vector is

of length 2N , describes an N by N image, and is a linear combination of the original

face images. Because these vectors are the eigenvectors of the covariance matrix

corresponding to the original face images, and because they are face-like in appearance,

they are referred to as “Eigen Faces” for PCA and “Fisher Faces” for LDA.

 (a) (b)

Figure 1. Illustration of reduced dimensional face space

(a) The face space and the three projected images on it. Here u1 and u2 are the

eigenfaces. (b) The projected face from the training database.

2 of 15

The goal of this part is to classify an unknown face image given a database of labeled

face images using two different approaches, i.e. “Principle Component Analysis (PCA)”

and “Linear Discriminant Analysis (LDA)”, to form a data subspace with reduced

dimensions.

2. Method of Solution

2.1 PCA Eigen Faces Recognition

In PCA, one would use the eigenvectors corresponding to the p largest eigenvalues of

the covariance matrix to span the subspace. One needs to calculate the covariance

matrix:

𝐶 =
1

𝑁
∑(𝑥𝑖 − 𝑚)(𝑥𝑖 − 𝑚)𝑇

𝑁

𝑖=1

where 𝑚 is the mean vector of all training images 𝑥𝑖and 𝑁 is the number of training

samples. The next step is to do the eigen-decomposition to get the eigenvectors and

eigenvalues of the covariance matrix. If we want to construct a p-dimension subspace,

we should use the eigenvectors corresponding to the p largest eigenvalues.

However, since the dimension of covariance is very high, we need an algebraic trick to

compute the eigenvalues and eigenvectors. Let

𝑋 = [𝑥1 − 𝑚 𝑥2 − 𝑚 ⋯ 𝑥𝑁 − 𝑚]

𝐶 =
1

𝑁
 𝑋𝑋𝑇

What we need to compute is 𝑋𝑋𝑇𝑢 = 𝜆𝑢, however 𝑋𝑋𝑇 is huge. Instead we compute

𝑋𝑇𝑋𝑣 = 𝜆′𝑣 where 𝑋𝑇𝑋 is N by N. Then 𝜆 = 𝜆′ and 𝑢 = 𝑋𝑣, the p largest 𝑢 are

used as the new bases that span the subspace.

Figure 2 shows the results of the mean face and top 8 eigenfaces using PLA and NN

Neighbor classification. It can be found that instead of converting all images to gray

level images, we keep the rgb color value which gives us more feature information than

gray images only.

3 of 15

Figure 2. Mean face and top 8 PCA eigenfaces

2.2 LDA Fisher Faces Recognition

For LDA, the main idea is to find the p-dimension subspace that maximize the distance

between the sets of classes and minimize the distance within each set of the classes.

The between class covariance matrix, 𝑆𝐵and within class covariance matrix, 𝑆𝑊, are

defined as the following

𝑆𝐵 =
1

𝑁𝐶
∑(𝑚𝑗 − 𝑚)(𝑚𝑗 − 𝑚)𝑇

𝑁𝐶

𝑗=1

where 𝑚𝑗 is the mean of class j, and 𝑚 is the mean of all training data, 𝑁𝐶 is the

number of classes.

𝑆𝑊 =
1

𝑁𝐶
∑(

1

𝑁𝑗
∑(𝑥𝑖𝑗 − 𝑚𝑗)

𝑁𝑗

𝑖=1

(𝑥𝑖𝑗 − 𝑚𝑗)
𝑇

)

𝑁𝐶

𝑗=1

where 𝑁𝑗 is the number of elements of class j, 𝑥𝑖𝑗 is the ith element of class j. In order

4 of 15

to find the p-dimensional subspace on which the images projects results in maximizing

the between-class variance and minimizing the within-class variance, we want to

maximize the fisher discriminant function defined as the following.

𝐽(𝑤) =
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤

which can be converted to the equivalent problem of solving the following equation.

𝑆𝐵𝑤 = 𝜆𝑆𝑊𝑤

I tried to use the method that professor told in class, which is finding eigenvectors

𝑆𝐵𝑤′ = 𝜆𝑤′, then compute 𝑤 = 𝑆𝑊
−1𝑤′. However, we know that 𝑆𝑊 is huge, and

computing its inverse is nearly impossible. So there is no way but to use Yu and Yang’s

algorithm to directly solve the eigen-decomposition problem.

i) Using the same trick to get the eigenvectors , eigenvalues of 𝑆𝐵

𝑆𝐵 = 𝑌𝑇𝐷𝐵𝑌

ii) Discard the smallest eigenvector and eigenvalue of from 𝑌 and 𝐷𝐵

iii) Construct 𝑍 as

𝑍 = 𝑌𝐷𝐵

−
1
2

iv) Define matrix

𝑆𝐵𝑊 = 𝑍𝑇𝑆𝑊𝑍

v) Using the same trick to get the eigenvectors, eigenvalues of 𝑆𝐵𝑊

𝑆𝐵𝑊 = 𝑈𝑇𝐷𝑊𝑈

vi) Sort the eigenvectors in the increasing order.

vii) Define matrix 𝑊 = 𝑍𝑈

viii) The bases are the first p vectors of 𝑊

Figure 3 shows the results of the mean face and top 8 eigenfaces using LDA and NN

Neighbor classification. It can be found that instead of converting all images to gray

level images, we keep the rgb color value which gives us more feature information

than gray images only.

5 of 15

Figure 3. Mean face and top 8 LDA fisherfaces

2.3 Nearest Neighbor Classification

After getting the p bases of the subspace, all training images and testing images are

projected onto the subspace. The similarity score based on cosine mahalanobis distance

is calculated between an input face image and each of the training images.

Defining the accuracy of classification as:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑜𝑓 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

6 of 15

Figure 4. An example of the similarity matrix

Figure 5. ROC and CMC curves for PCA+MAHCOS

7 of 15

Figure 6. ROC and CMC curves for LDA+MAHCOS

8 of 15

Figure 7. PCA/LDA accuracy versus subspace dimensions using gray images only

Table 1. Some performance metrics

rank one

recognition rate
equal error rate

minimal half total

error rate

verification rate

at 1% FAR

PCA 3.33% 48.54% 48.04% 63.33%

LDA 100% 0% 0% 100%

2.4 Discussion

(1) In this homework, we use R,G,B information instead of gray image only. The merit

is more useful information are kept to help improve the accuracy of face detection. By

comparing my results with the results in previous homework which used gray image

only (see Figure 5,6,7), I found that it is more efficient and accurate using more useful

information for classification, however, the cost is as the features are tripled, the time

efficiency is relatively lower. This challenge can be solved by using parallel computing,

such as MPI or OpenMP in the future.

(2) During feature matching process, Cosine Mahalanobis Distance, rather than

Euclidean Distance, was adopted for Nearest neighbor classification. It is more intrinsic

to measure similarity using Mahalanobis Distance, especially in abstract projected

subspace, as the Euclidean Distance at this moment cannot represent the real differences

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

accuracyPCA

accuracyLDA

9 of 15

between two datasets.

(3) PCA v.s. LDA

By comparing the ROC and CMC curves (see Figure 5, 6 and Table 1), it can be found

that LDA is much more efficient than PCA. The reason could be PCA does not separate

the classes as well as LDA.

2.5 Source Codes (Matlab)

See attached zip file.

10 of 15

Part 2: Object Detection with Cascaded AdaBoost Classification

1. Introduction

This goal of this part is to design a car detector using the Viola and Jones approach. It

is a two-class classification for each sliding window that scans through the image, i.e.,

cars or non-cars. The merit of using such approach is it can cascade multiple strong

AdaBoost classifiers, each of which comes from several weak classifiers.

2. Method of Solution

Figure 8 illustrates the general outline for cascaded AdaBoost classification. It consists

of four main modules, which will be explained step by step in the following.

AdaBoost 1

Raw training

images

Haar-like

features

Weak

classifiers

Integral image

Iteratively weighting

and threshold control

AdaBoost 2 AdaBoost iT TTest image

Combining into

one strong classifier

No cars

F F F

Cars... T

... ...

Until false positive

rate <0.5

Until no false
positive samples

1

2

3

4 4 4

Figure 8. General process for Cascaded AdaBoost Classification

2.1. Computing the integral image (summed area table) for Haar-like features

In this project, we use Haar-like features consisting of two types, vertical ones and

horizontal ones. In order to calculate feature values efficiently, integral image (or

summed area table) is employed (see both equation and Figure 9 below).

𝑆(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑥, 𝑦)

𝑦≤𝑗𝑥≤𝑖

11 of 15

where 𝐼(𝑥, 𝑦) is the grayscale image pixel value at position (𝑥, 𝑦).

Figure 9. Illustration of how integral image works

Then the Haar-like features can be computed efficiently using a few values from

summed area table.

𝑓 = −𝑆(𝑥1, 𝑦1) + 𝑆(𝑥2, 𝑦2) + 2𝑆(𝑥3, 𝑦3) − 2𝑆(𝑥4, 𝑦4) − 𝑆(𝑥5, 𝑦5) + 𝑆(𝑥6, 𝑦6)

Figure 10. Haar-like edge features

2.2 Constituting weak classifiers by iteratively weighting and threshold control

For each feature, the images are sorted according to their feature values in ascending

order. Computing the following number for each threshold:

𝑒 = min (𝑆+ + (𝑇− − 𝑆−), 𝑆− + (𝑇+ − 𝑆+))

where 𝑆+ and 𝑆− are the sums of the weights of positive and negative samples from

the smallest one to current threshold respectively. 𝑇+ and 𝑇− are the sums of all

positive and negative samples respectively. If the former is less than the later, the

decision rule is the following “if feature value is less than the threshold, the data point

is classified as positive” and we say the polarity is 1.

12 of 15

Figure 11. Weighting linear combination of T hypotheses and threshold control

The algorithm shown in Figure 11 can be described as following:

T hypotheses are constructed each using a single feature. The final hypothesis is a

weighted linear combination of the T hypotheses where the weights are inversely

proportional to the training errors.

 Given example images (x1, y1), … , (xn, yn) where yi = 0,1 for negative and

positive examples respectively. n are the total training set number.

 Initialize weights w1,j=
1

2𝑚
,

1

2𝑙
 for yi =0, 1 respectively, where m and l are the

number of negatives and positives respectively.

 For t=1,…,T:

1) Normalize the weight, ϖ𝑡,𝑖=
ϖ𝑡,𝑖

∑ ϖ𝑡,𝑖 𝑛
𝑗=1

2) Select the best weak classifier with respect to the weighted error

𝜀𝑖 = 𝑚𝑖𝑛𝑓,𝑝,θ ∑ ϖ𝑖|h(𝑥𝑖, f, p, θ) − 𝑦𝑖 |

𝑖

3) Define ht(x)= h(x, 𝑓𝑖 , 𝑝𝑡, θ𝑡), where ft, pt and θ𝑡 are the minimizers of 𝜀𝑡

4) Update the weights:

𝒲𝑡+1,𝑖𝒲𝑡,𝑖𝛽𝑡
1−𝑒𝑖Where ei=0 if example xi is classified correctly, ei=1

otherwise, and

𝛽𝑡 =
𝜀𝑖

1 − 𝜀𝑖

2.3 Combining weak classifiers to a single AdaBoost strong classifier

The decision of whether a sample is positive or negative is determined by the following:

13 of 15

𝐶(𝑥) = {1 𝑖𝑓 ∑ 𝛼𝑡ℎ𝑡(𝑥)

𝑇

𝑡=1

≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Note that the threshold is chosen to be the minimum of ∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1 for all positive

training data being classified as positive. The procedure of finding best features

continues until the false positive rate is less than 0.5 (see Figure 12).

Figure 12. Output of the iteratively features selection process

2.4 Cascading AdaBoost classifiers for car detection

The purpose of cascading classifiers is to lower the false positive rate. We feed all

samples that have been classified as positive to the next classifier. By adding more

stages, there will be less negative sample being classified as positive. We stop adding

stages when all negative samples are correctly classified (see Figure 8 module 4).

<0.5, stop iteration

<0.5, stop iteration

14 of 15

3. Testing Procedure

From the training process, we acquired all the parameters of the cascaded classifiers.

Feed the query sample to the first classifier, if it is classified as negative, then it is done;

if it is classified as positive, we feed this sample into the next classifier.

Table 2. Log of training process

Stage
Negative Sample # for

next iteration

Feature #

week classifier
False Positive Rate

1 862 9 0.4903

2 316 14 0.3666

3 141 7 0.4462

4 65 9 0.4610

5 26 10 0.4000

6 6 5 0.2308

7 1 3 0.3333

8 0 1 0

Figure 13. Accumulative false-positive rate for training process

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8

False Positive Rate

15 of 15

Table 3. Log of testing process

Stage
False

Positive #

False

Negative #

Cumulative False

Positive Rate

Cumulative False

Negative Rate

1 209 4 0.4750 0.0225

2 87 11 0.1977 0.0843

3 83 1 0.1886 0.0899

4 74 4 0.1682 0.1124

5 52 20 0.1182 0.2247

6 35 12 0.0796 0.2921

7 35 0 0.0796 0.2921

8 209 0 0.0796 0.2921

Figure 14. Accumulative false-positive and false-negative rate for test process

4. Source Codes (Matlab)

See attached zip code, it was adapted based on the previous codes of student Sirui Hu

and Chyuan-Tyng Wu.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8

False Positive

False Negative

