
Lecture 8: AES: The Advanced Encryption Standard

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

February 7, 2024

11:11pm

©2024 Avinash Kak, Purdue University

Goals:

• To review the overall structure of AES and to focus particularly on the

four steps used in each round of AES: (1) byte substitution, (2) shift
rows, (3) mix columns, and (4) add round key.

• Python and Perl implementations for creating the lookup tables for the
byte substitution steps in encryption and decryption.

• Python and Perl implementations of the Key Expansion Algorithms for

the 128 bit, 192 bit, and 256 bit AES.

• Perl implementations for creating histograms of the differentials and for
constructing linear approximation tables in attacks on block ciphers.

CONTENTS

Section Title Page

8.1 Salient Features of AES 3

8.2 The Encryption Key and Its Expansion 10

8.3 The Overall Structure of AES 12

8.4 The Four Steps in Each Round of Processing 15

8.5 The Substitution Bytes Step: SubBytes and 19
InvSubBytes

8.5.1 Traditional Explanation of Byte Substitution: 22
Constructing the 16× 16 Lookup Table

8.5.2 Python and Perl Implementations for the AES 27
Byte Substitution Step

8.6 The Shift Rows Step: ShiftRows and InvShiftRows 32

8.7 The Mix Columns Step: MixColumns and 34
InvMixColumns

8.8 The Key Expansion Algorithm 37

8.8.1 The Algorithmic Steps in Going from one 4-Word 41
Round Key to the Next 4-Word Round Key

8.8.2 Python and Perl Implementations of the Key 46
Expansion Algorithm

8.9 Differential, Linear, and Interpolation Attacks on 57
Block Ciphers

8.10 Homework Problems 91

2

Computer and Network Security by Avi Kak Lecture 8

Back to TOC

8.1 SALIENT FEATURES OF AES

• AES is a block cipher with a block length of 128 bits.

• AES allows for three different key lengths: 128, 192, or 256 bits.

Most of our discussion will assume that the key length is 128

bits. [With regard to using a key length other than 128 bits,

the main thing that changes in AES is how you generate the

key schedule from the key — an issue I address at the end of

Section 8.8.1. The notion of key schedule in AES is explained

in Sections 8.2 and 8.8.]

• Encryption consists of 10 rounds of processing for 128-bit keys,

12 rounds for 192-bit keys, and 14 rounds for 256-bit keys.

• Except for the last round in each case, all other rounds are

identical.

• Each round of processing includes one single-byte based

substitution step, a row-wise permutation step, a column-wise

mixing step, and the addition of the round key. The order in

which these four steps are executed is different for encryption

and decryption.

3

Computer and Network Security by Avi Kak Lecture 8

• To appreciate the use of “row” and “column” in the previous

bullet, you need to think of the input 128-bit block as consisting

of a 4× 4 array of bytes, arranged as follows:





















byte0 byte4 byte8 byte12
byte1 byte5 byte9 byte13
byte2 byte6 byte10 byte14
byte3 byte7 byte11 byte15





















• Notice that the first four bytes of a 128-bit input block

occupy the first column in the 4× 4 array of bytes. The next

four bytes occupy the second column, and so on.

• The 4× 4 array of bytes shown above is referred to as the state

array in AES. If you are trying to create your own

implementation of AES in Python, you will find following

statement, which uses the notion of list comprehension in

Python, very useful for creating an initialized structure that

looks like the state array of AES:

statearray = [[0 for x in range(4)] for x in range(4)]

Next, try the following calls in relation to the structure thus

created:

import sys

statearray = [[0 for x in range(4)] for x in range(4)]

print(statearray)

4

Computer and Network Security by Avi Kak Lecture 8

print(statearray[0])

print(statearray[2][3])

block = list(range(128))

print("\n\nblock: ", block)

for i in range(4):

for j in range(4):

statearray[j][i] = block[32*i + 8*j:32*i + 8*(j+1)]

for i in range(4):

sys.stdout.write("\n\n")

for j in range(4):

sys.stdout.write(str(statearray[i][j]))

sys.stdout.write("\t")

sys.stdout.write("\n\n")

This is a nice warm-up exercise before you start implementing

AES in Python.

• AES also has the notion of a word. A word consists of four

bytes, that is 32 bits. Therefore, each column of the state array

is a word, as is each row.

• Each round of processing works on the input state array and

produces an output state array.

• The output state array produced by the last round is rearranged

into a 128-bit output block.

• Unlike DES, the decryption algorithm differs substantially from

the encryption algorithm. Although, overall, very similar steps

5

Computer and Network Security by Avi Kak Lecture 8

are used in encryption and decryption, their implementations

are not identical and the order in which the steps are invoked is

different, as mentioned previously.

• AES, notified by NIST as a standard in 2001, is a slight

variation of the Rijndael cipher invented by two Belgian

cryptographers Joan Daemen and Vincent Rijmen. [Back in 1999, the

Rijndael cipher was one of the five chosen by NIST as a potential replacement for DES. The other four were:

MARS from IBM; RC6 from RSA Security; Serpent by Ross Anderson, Eli Biham, and Lars Knudsen; and

Twofish by a team led by the always-in-the-news cryptographer Bruce Schneier. Rijndael was selected from

these five after extensive testing that was open to public.]

• Whereas AES requires the block size to be 128 bits, the original

Rijndael cipher works with any block size (and any key size)

that is a multiple of 32 as long as it exceeds 128. The state

array for the different block sizes still has only four rows in the

Rijndael cipher. However, the number of columns depends on

size of the block. For example, when the block size is 192, the

Rijndael cipher requires a state array to consist of 4 rows and 6

columns.

• As explained in Lecture 3, DES was based on the Feistel

network. On the other hand, what AES uses is a

substitution-permutation network in a more general

sense. Each round of processing in AES involves byte-level

substitutions followed by word-level permutations. Speaking

6

Computer and Network Security by Avi Kak Lecture 8

generally, DES also involves substitutions and permutations,

except that the permutations are based on the Feistel notion of

dividing the input block into two halves, processing each half

separately, and then swapping the two halves.

• Like DES, AES is an iterated block cipher in which plaintext is

subject to multiple rounds of processing, with each round

applying the same overall transformation function to the

incoming block. [When we say that each round applies the same transformation function to the

incoming block, that similarity is at the functional level. However, the implementation of the transformation

function in each round involves a key that is specific to that round — this key is known as the round key.

Round keys are derived from the user-supplied encryption key.]

• Unlike DES, AES is an example of key-alternating block

ciphers. In such ciphers, each round first applies a

diffusion-achieving transformation operation — which may be a

combination of linear and nonlinear steps — to the entire

incoming block, which is then followed by the application of the

round key to the entire block. As you’ll recall, DES is based on

the Feistel structure in which, for each round, one-half of the

block passes through unchanged and the other half goes through

a transformation that depends on the S-boxes and the round

key. Key alternating ciphers lend themselves well to theoretical

analysis of the security of the ciphers.

• For another point of contrast between DES and AES, whereas

7

Computer and Network Security by Avi Kak Lecture 8

DES is a bit-oriented cipher, AES is a byte-oriented cipher.

[Remember, how in DES we segmented the right-half 32 bits of the incoming 64-bit block into eight segments

of 4-bits each. And how we prepended each 4-bit segment with the last bit of the previous 4-bit segment and

appended to each 4-bit segment the first bit of the next 4-bit segment. Subsequently, in order to find the

substitution 4-bits for an incoming 4-bit segment, we used the first and the last bit thus acquired for indexing

into the four rows of a 4× 16 S-box, while using the 4-bit segment itself for indexing into the columns of the

S-Box.] The substitution step in DES requires bit-level access to

the block coming into a round. On the other hand, all

operations in AES are purely byte-level, which makes for

convenient and fast software implementation of AES.

• About the security of AES, considering how many years have

passed since the cipher was introduced in 2001, all of the threats

against the cipher remain theoretical — meaning that their time

complexity is way beyond what any computer system will be

able to handle for a long time to come. [As you know, for the 128-bit key AES,

the worst-case time complexity for a brute-force attack would be 2128. Such a brute-force attack would be

considered to be an example of a theoretical attack since it is beyond the realm of any practical

implementation. There is a meet-in-the-middle attack called the biclique attack that very marginally improves

upon this time complexity to around 2126 — which is still just a theoretical attack. The biclique attack was

presented by Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger in their 2011 publication

“Biclique Cryptanalysis of the Full AES”.]

• AES was designed using the wide-trail strategy. As described

in the publication “Security of a Wide Trail Design” by Joan

Daemen and Vincent Rijmen, wide-trail design for a block

cipher involves: (1) A local nonlinear transformation (as

8

Computer and Network Security by Avi Kak Lecture 8

supplied by the substitution step in AES); and (2) A linear

mixing transformation that provides high diffusion. The phrase

“wide trail” refers to dispersal of the probabilities that one can

associate with the bits at certain specific positions in a bit block

as it propagates through the rounds.

• If you are seriously interested in the algebraic foundations of

AES and also of the attacks that are being attempted on the

cipher, I’d recommend the book “Algebraic Aspects of the

Advanced Encryption Standard,” by Carlos Cid, Sean

Murphy, and Matthew Robshaw. This book was originally

published by Springer, but is now available for free download on

the web. Just Google it.

• The AES standard is described in the following official

document:

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

9

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Computer and Network Security by Avi Kak Lecture 8

Back to TOC

8.2 THE ENCRYPTION KEY AND ITS
EXPANSION

• Assuming a 128-bit key, the key is also arranged in the form of

an array of 4× 4 bytes. As with the input block, the first word

from the key fills the first column of the array, and so on.

• The four column words of the key array are expanded into a

schedule of 44 words. (As to how exactly this is done, we will

explain that later in Section 8.8.) Each round consumes four

words from the key schedule.

• Figure 1 on the next page depicts the arrangement of the

encryption key in the form of 4-byte words and the expansion of

the key into a key schedule consisting of 44 4-byte words. Of

these, the first four words are used for adding to the input state

array before any round-based processing can begin, and the

remaining 40 words used for the ten rounds of processing that

are required for the case a 128-bit encryption key.

10

Computer and Network Security by Avi Kak Lecture 8

k
0

k
1

k
2

k
3

k
4

k
5

k
6

k
7

k
8

k
9

k
10

k
11

k
12

k
13

k
14

k
15

w
 0

w
 1

w
 2

w
 3

w
 4

w
 5

w
 42

w
 43

Figure 1: This figure shows the four words of the original

128-bit key being expanded into a key schedule consisting

of 44 words. Section 8.8 explains the procedure used for

this key expansion. (This figure is from Lecture 8 of “Computer and Network Security”

by Avi Kak)

11

Computer and Network Security by Avi Kak Lecture 8

Back to TOC

8.3 THE OVERALL STRUCTURE OF AES

• The overall structure of AES encryption/decryption is shown in

Figure 2.

• The number of rounds shown in Figure 2, 10, is for the case

when the encryption key is 128 bit long. (As mentioned earlier,

the number of rounds is 12 when the key is 192 bits, and 14

when the key is 256.)

• Before any round-based processing for encryption can begin, the

input state array is XORed with the first four words of the key

schedule. The same thing happens during decryption — except

that now we XOR the ciphertext state array with the last four

words of the key schedule.

• For encryption, each round consists of the following four steps:

1) Substitute bytes, 2) Shift rows, 3) Mix columns, and 4) Add

round key. The last step consists of XORing the output of the

previous three steps with four words from the key schedule.

• For decryption, each round consists of the following four steps:

1) Inverse shift rows, 2) Inverse substitute bytes, 3) Add

12

Computer and Network Security by Avi Kak Lecture 8

round key, and 4) Inverse mix columns. The third step consists

of XORing the output of the previous two steps with four words

from the key schedule. Note the differences between the order

in which substitution and shifting operations are carried out

in a decryption round vis-a-vis the order in which similar

operations are carried out in an encryption round.

• The last round for encryption does not involve the “Mix

columns” step. The last round for decryption does not involve

the “Inverse mix columns” step.

13

Computer and Network Security by Avi Kak Lecture 8

w
0 3

w

w w
4 7

w w
8 11

w w
40 43

w
0 3

w

w w
4 7

w w
8 11

w w
40 43

Round 1

Round 2

128 bit plaintext block

128 bit ciphertext block

Round 10

Add round key

Add round key

Round 10

Round 9

Round 8

128 bit plaintext block

128 bit ciphertext block

K
ey Schedule

AES Encryption AES Decryption

Figure 2: The overall structure of AES for the case of 128-

bit encryption key. (This figure is from Lecture 8 of “Computer and Network Security”

by Avi Kak)

14

Computer and Network Security by Avi Kak Lecture 8

Back to TOC

8.4 THE FOUR STEPS IN EACH ROUND
OF PROCESSING

Figure 3 shows the different steps that are carried out in each round

except the last one. [See the end of the previous section as to what steps are not allowed in the last

round.]

STEP 1: (called SubBytes for byte-by-byte substitution during

the forward process) (The corresponding substitution step used

during decryption is called InvSubBytes.)

• This step consists of using a 16× 16 lookup table to find a

replacement byte for a given byte in the input state array.

• The entries in the lookup table are created by using the

notions of multiplicative inverses in GF (28) and bit

scrambling to destroy the bit-level correlations inside each

byte. [See Lecture 7 for what is meant by the notation GF (28).]

Section 8.5 explains this step in greater detail.

STEP 2: (called ShiftRows for shifting the rows of the state

array during the forward process) (The corresponding

transformation during decryption is denoted InvShiftRows

for Inverse Shift-Row Transformation.)

15

Computer and Network Security by Avi Kak Lecture 8

Add Round Key

Mix Columns

Shift Rows

Substitute Bytes Inverse Mix Columns

Add Round Key

Inverse Shift Rows

Inverse Substitute Bytes

Round Key

Round Key

Encryption Round Decryption Round

Figure 3: One round of encryption is shown at left and one

round of decryption at right. (This figure is from Lecture 8 of “Computer and

Network Security” by Avi Kak)

16

Computer and Network Security by Avi Kak Lecture 8

• The goal of this transformation is to scramble the byte order

inside each 128-bit block.

This step is explained in greater detail in Section 8.6.

STEP 3: (called MixColumns for mixing up of the bytes in

each column separately during the forward process) (The

corresponding transformation during decryption is denoted

InvMixColumns and stands for inverse mix column

transformation.) The goal is here is to further scramble up the

128-bit input block.

• The shift-rows step along with the mix-column step causes

each bit of the ciphertext to depend on every bit of the

plaintext after 10 rounds of processing.

• Recall the avalanche effect from our discussion on DES in

Lecture 3. In DES, one bit of plaintext affected roughly 31

bits of ciphertext. But now we want each bit of the plaintext

to affect every bit position of the ciphertext block of 128

bits. [The phrasing of this last sentence is important. The sentence does NOT

say that if you change one bit of the plaintext, the algorithm is guaranteed to

change every bit of the ciphertext. (Changing every bit of the ciphertext would

amount to reversing every bit of the block.) Since a bit can take on only two

values, on the average there will be many bits of the ciphertext that will be

identical to the plaintext bits in the same positions after you have changed one bit

of the plaintext. However, again on the average, when you change one bit of the

17

Computer and Network Security by Avi Kak Lecture 8

plaintext, you will see its effect spanning all of the 128 bits of the ciphertext

block. On the other hand, with DES, changing one bit of the plaintext affects

only 31 bit positions on the average.]

Section 8.7 explains this step in greater detail.

STEP 4: (called AddRoundKey for adding the round key to

the output of the previous step during the forward process)

(The corresponding step during decryption is denoted

InvAddRoundKey for inverse add round key

transformation.)

18

Computer and Network Security by Avi Kak Lecture 8

Back to TOC

8.5 THE SUBSTITUTE BYTES STEP:
SubBytes and InvSubBytes

• This is a byte-by-byte substitution using a rule that stays the

same in all encryption rounds. The byte-by-byte substitution

rule is different for the decryption chain, but again it stays the

same for all the rounds.

• The presentation in the rest of this section is organized as

follows:

– The modern way of explaining the byte substitution step

that allows us to find the substitute byte for a given byte by

simply looking up a pre-computed 256-element array of

numbers.

– The traditional way of explaining the byte substitution

step that involves using a 16× 16 lookup table.

– My Perl and Python implementations of the byte

substitution step. These implementations are based on the

modern explanation of the step. Obviously, as you would

expect, both explanations lead to the same final answer for

byte substitution.

19

Computer and Network Security by Avi Kak Lecture 8

• In the modern way of explaining the byte substitution step for

the encryption chain, let xin be a byte of the state array for

which we seek a substitute byte xout. We can write

xout = f(xin). The function f() involves two nonlinear

operations: (i) We first find the multiplicative inverse

x′ = xin
−1 in GF (28); and (ii) then we scramble the bits of x′

by XORing x′ with four different circularly rotated versions of

itself and with a special constant byte c = 0x63. The four

circular rotations are through 4, 5, 6, and 7 bit positions to the

right. As you will see later in this section, this bit scrambling

step can be expressed by the relation: xout = A · x′ + c.

• When using my BitVector module, the byte substitution step as

explained above can be implemented with just a couple of calls

to the module functions. The first operation of the step, which

involves calculating the multiplicative inverse of a byte x in

GF (28), can be carried out by invoking the function gf MI()

on the BitVector representation of x. The second operation

that requires XORing a byte with circularly shifted versions of

itself is even more trivial, as you will see in the Perl and Python

code shown later in this section.

• The modern explanation of the byte substitution step as

presented above applies equally well to the decryption chain,

except for the fact that you first apply the bit scrambling

operation to the byte and then you find its multiplicative

inverse in GF (28).

20

Computer and Network Security by Avi Kak Lecture 8

• The goal of the substitution step is to reduce the correlation

between the input bits and the output bits at the byte level.

The bit scrambling part of the substitution step ensures that

the substitution cannot be described in the form of evaluating

a simple mathematical function.

• I’ll now present the more traditional explanation of the byte

substitution step. As mentioned earlier, it involves using a

16× 16 table. To find the substitute byte for a given input byte,

we divide the input byte into two 4-bit patterns, each yielding

an integer value between 0 and 15. (We can represent these by

their hex values 0 through F.) One of the hex values is used as a

row index and the other as a column index for reaching into the

16× 16 lookup table.

• As explained in the next subsection, Section 8.5.1, the entries in

the lookup table are constructed by a combination of GF (28)

arithmetic and bit scrambling.

21

Computer and Network Security by Avi Kak Lecture 8

Back to TOC

8.5.1 Traditional Explanation of Byte Substitution:

Constructing the 16× 16 Lookup Table

• We first fill each cell of the 16× 16 table with the byte obtained

by joining together its row index and the column index. [The

row index of this table runs from hex 0 through hex F . Likewise, the column index

runs from hex 0 through hex F .]

• For example, for the cell located at row index 2 and column

indexed 7, we place hex 0x27 in the cell. So at this point the

table will look like

0 1 2 3 4 5 6 7 8 9

--

0 | 00 01 02 03 04 05 06 07 08 09

|

1 | 10 11 12 13 14 15 16 17 18 19

|

2 | 20 21 22 23 24 25 26 27 28 29

|

.........

.........

• We next replace the value in each cell by its multiplicative

inverse in GF (28) based on the irreducible polynomial

22

Computer and Network Security by Avi Kak Lecture 8

x8 + x4 + x3 + x + 1. The hex value 0x00 is replaced by

itself since this element has no multiplicative

inverse. [See Lecture 7 for what we mean by the multiplicative inverse of a byte

modulo an irreducible polynomial and as to why the zero byte has no multiplicative

inverse.] [If you are creating your own Python implementation

for AES and using the BitVector module, you can use the

function gf MI() of that module to calculate the multiplicative

inverses required for this table.]

• After the above step, let’s represent a byte stored in a cell of the

table by b7b6b5b4b3b2b1b0 where b7 is the MSB and b0 the LSB.

For example, the byte stored in the cell (9, 5) of the above table

is the multiplicative inverse (MI) of 0x95, which is 0x8A.

Therefore, at this point, the bit pattern stored in the cell with

row index 9 and column index 5 is 10001010, implying that b7 is

1 and b0 is 0. [Verify the fact that the MI of 0x95 is indeed 0x8A. The

polynomial representation of 0x95 (bit pattern: 10010101) is x7 + x4 + x2 + 1, and

the same for 0x8A (bit pattern: 10001010) is x7 + x3 + x. Now show that the product

of these two polynomials modulo the polynomial x8 + x4 + x3 + x+ 1 is indeed 1.]

• For bit scrambling, we next apply the following transformation

to each bit bi of the byte stored in a cell of the lookup table:

b′i = bi⊗b(i+4) mod 8⊗b(i+5) mod 8⊗b(i+6) mod 8⊗b(i+7) mod 8⊗ci

where ci is the i
th bit of a specially designated byte c whose hex

23

Computer and Network Security by Avi Kak Lecture 8

value is 0x63. (c7c6c5c4c3c2c1c0 ≡ 01100011)

• The above bit-scrambling step is better visualized as the

following matrix-vector operation. Note that all of the additions

in the product of the matrix and the vector are actually XOR

operations. That that should be so is made evident by

comparing the matrix-vector product form shown below with

the last equation on the previous page. [Because of the [A]~x+~b

appearance of this transformation, it is commonly referred to as the affine

transformation.]









































1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

















































































b0
b1
b2
b3
b4
b5
b6
b7









































⊗









































1
1
0

0
0

1
1

0









































• The very important role played by the c byte of value 0x63:

Consider the following two conditions on the SubBytes step:

(1) In order for the byte substitution step to be invertible, the

byte-to-byte mapping given to us by the 16× 16 table must be

one-one. That is, for each input byte, there must be a unique

output byte. And, to each output byte there must correspond

only one input byte. (2) No input byte should map to itself,

since a byte mapping to itself would weaken the cipher. Taking

24

Computer and Network Security by Avi Kak Lecture 8

multiplicative inverses in the construction of the table does give

us unique entries in the table for each input byte — except for

the input byte 0x00 since there is no MI defined for the all-zeros

byte. (See Section 4.6 of Lecture 4 for why that is the case.) If

it were not for the c byte, the bit scrambling step would also

leave the input byte 0x00 unchanged. With the affine mapping

shown above, the 0x00 input byte is mapped to 0x63. At the

same time, it preserves the one-one mapping for all other

bytes. [The last comment is important in light of the following fact: Assume for a moment

that there is no bit-scrambling and all you do is to take the MI of all the non-zero numbers.

Since each of the 255 non-zero numbers has a unique MI (and vice versa), there is bound to

exist an input 8-bit pattern whose MI will be 0x63. Therefore, just putting a non-zero entry

where there is 0 is not acceptable — you cannot have two different input bytes going into the

same output byte. So we are faced with the following dilemma: Leaving zero alone in the input

is not an option because that would cause an element of the input to come through to the

output without change. At the same time, just replacing the zero byte with some arbitrary

byte is also not an option, since the arbitrary byte is bound to be one of the 255 inverses in the

rest of the lookup table. This dilemma is resolved by the bit scrambling step. Through a math

derivation based on Affine Mapping one can show that the result of bit scrambling is a unique

and invertible input/output byte substitution, which at the same time does not let any byte go

through unchanged.]

• In addition to ensuring that every input byte is mapped to a

different and unique output byte, the bit-scrambling step also

breaks the correlation between the bits before the substitution

and the bits after the substitution.

25

Computer and Network Security by Avi Kak Lecture 8

• The 16× 16 table created in this manner is called the S-Box.

The S-Box is the same for all the bytes in the state array.

• The steps that go into constructing the 16× 16 lookup table are

reversed for the decryption table, meaning that you first apply

the reverse of the bit-scrambling operation to each byte, as

explained in the next step, and then you take its multiplicative

inverse in GF (28).

• For bit scrambling for decryption, you carry out the following

bit-level transformation in each cell of the table:

b′i = b(i+2) mod 8 ⊗ b(i+5) mod 8 ⊗ b(i+7) mod 8 ⊗ di

where di is the i
th bit of a specially designated byte d whose

hex value is 0x05. (d7d6d5d4d3d2d1ddc0 = 00000101) Finally,

you replace the byte in the cell by its multiplicative inverse in

GF (28). [IMPORTANT: You might ask whether decryption bit scrambling also maps 0x00

to its constant d. No that does not happen. For decryption, the goal of bit scrambling is to

reverse the effect of bit scrambling on the encryption side. The bit scrambling operation for

decryption maps 0x00 to 0x52.]

• The bytes c and d are chosen so that the S-box has no fixed

points. That is, we do not want S box(a) = a for any a.

Neither do we want S box(a) = ā where ā is the bitwise

complement of a.

26

Computer and Network Security by Avi Kak Lecture 8

Back to TOC

8.5.2 Python and Perl Implementations for the AES

Byte Substitution Step

• Section 8.5 and the Subsection 8.5.1 presented two different

ways of implementing the AES byte substitution step. As

stated earlier in Section 8.5, both these explanations are

equivalent — in the sense that either will result in the same

substitution byte for a given input byte.

• This subsection shows my Python and Perl implementations of

the more modern explanation of byte substitution described in

Section 8.5. You will be surprised how easy it is to write this

code if you are using my BitVector module in Python and the

Algorithm::BitVector module in Perl.

• What follows is a Python implementation of the explanation.

The goal of the for loop is to construct a 256 element array of

lookup values for integers ranging from 0 through 255. For each

integer in the range 0 through 255, we first find its

multiplicative inverse in GF (28), then we XOR the result with

four different circularly rotated versions of the result, and also

XOR the result with the constant c = 0x63. We do the same

thing for the decryption lookup array, except that we first do

the XORing and then we compute the multiplicative inverse.

27

Computer and Network Security by Avi Kak Lecture 8

#!/usr/bin/env python

gen_tables.py

Avi Kak (February 15, 2015)

This is a Python implementation of the byte substitution explanations in Sections

8.5 and 8.5.1 of Lecture 8. In keeping with the explanation in Section 8.5, the

goal here is to construct two 256-element arrays for byte substitution, one for

the SubBytes step that goes into the encryption rounds of the AES algorithm, and

the other for the InvSubBytes step that goes into the decryption rounds.

import sys

from BitVector import *

AES_modulus = BitVector(bitstring=’100011011’)

subBytesTable = [] # SBox for encryption

invSubBytesTable = [] # SBox for decryption

def genTables():

c = BitVector(bitstring=’01100011’)

d = BitVector(bitstring=’00000101’)

for i in range(0, 256):

For the encryption SBox

a = BitVector(intVal = i, size=8).gf_MI(AES_modulus, 8) if i != 0 else BitVector(intVal=0)

For bit scrambling for the encryption SBox entries:

a1,a2,a3,a4 = [a.deep_copy() for x in range(4)]

a ^= (a1 >> 4) ^ (a2 >> 5) ^ (a3 >> 6) ^ (a4 >> 7) ^ c

subBytesTable.append(int(a))

For the decryption Sbox:

b = BitVector(intVal = i, size=8)

For bit scrambling for the decryption SBox entries:

b1,b2,b3 = [b.deep_copy() for x in range(3)]

b = (b1 >> 2) ^ (b2 >> 5) ^ (b3 >> 7) ^ d

check = b.gf_MI(AES_modulus, 8)

b = check if isinstance(check, BitVector) else 0

invSubBytesTable.append(int(b))

genTables()

print "SBox for Encryption:"

print subBytesTable

print "\nSBox for Decryption:"

print invSubBytesTable

And shown below is the Perl implementation for doing the same

thing:

28

Computer and Network Security by Avi Kak Lecture 8

#!/usr/bin/env perl

gen_tables.pl

Avi Kak (February 16, 2015)

This is a Perl implementation of the byte substitution explanations in Sections

8.5 and 8.5.1 of Lecture 8. In keeping with the explanation in Section 8.5, the

goal here is to construct two 256-element arrays for byte substitution, one for

the SubBytes step that goes into the encryption rounds of the AES algorithm, and

the other for the InvSubBytes step that goes into the decryption rounds.

use strict;

use warnings;

use Algorithm::BitVector;

my $AES_modulus = Algorithm::BitVector->new(bitstring => ’100011011’);

my @subBytesTable; # SBox for encryption

my @invSubBytesTable; # SBox for decryption

sub genTables {

my $c = Algorithm::BitVector->new(bitstring => ’01100011’);

my $d = Algorithm::BitVector->new(bitstring => ’00000101’);

foreach my $i (0..255) {

For the encryption SBox:

my $a = $i == 0 ? Algorithm::BitVector->new(intVal => 0) :

Algorithm::BitVector->new(intVal => $i, size => 8)->gf_MI($AES_modulus, 8);

For bit scrambling for the encryption SBox entries:

my ($a1,$a2,$a3,$a4) = map $a->deep_copy(), 0 .. 3;

$a ^= ($a1 >> 4) ^ ($a2 >> 5) ^ ($a3 >> 6) ^ ($a4 >> 7) ^ $c;

push @subBytesTable, int($a);

For the decryption Sbox:

my $b = Algorithm::BitVector->new(intVal => $i, size => 8);

For bit scrambling for the decryption SBox entries:

my ($b1,$b2,$b3) = map $b->deep_copy(), 0 .. 2;

$b = ($b1 >> 2) ^ ($b2 >> 5) ^ ($b3 >> 7) ^ $d;

my $check = $b->gf_MI($AES_modulus, 8);

$b = ref($check) eq ’Algorithm::BitVector’ ? $check : 0;

push @invSubBytesTable, int($b);

}

}

genTables();

print "SBox for Encryption:\n";

print "@subBytesTable\n";

print "\nSBox for Decryption:\n";

print "@invSubBytesTable\n";

29

Computer and Network Security by Avi Kak Lecture 8

The encryption S-Box that a correct implementation should return

is shown below: (Note that the values are shown as decimal integers)

99 124 119 123 242 107 111 197 48 1 103 43 254 215 171 118

202 130 201 125 250 89 71 240 173 212 162 175 156 164 114 192

183 253 147 38 54 63 247 204 52 165 229 241 113 216 49 21

4 199 35 195 24 150 5 154 7 18 128 226 235 39 178 117

9 131 44 26 27 110 90 160 82 59 214 179 41 227 47 132

83 209 0 237 32 252 177 91 106 203 190 57 74 76 88 207

208 239 170 251 67 77 51 133 69 249 2 127 80 60 159 168

81 163 64 143 146 157 56 245 188 182 218 33 16 255 243 210

205 12 19 236 95 151 68 23 196 167 126 61 100 93 25 115

96 129 79 220 34 42 144 136 70 238 184 20 222 94 11 219

224 50 58 10 73 6 36 92 194 211 172 98 145 149 228 121

231 200 55 109 141 213 78 169 108 86 244 234 101 122 174 8

186 120 37 46 28 166 180 198 232 221 116 31 75 189 139 138

112 62 181 102 72 3 246 14 97 53 87 185 134 193 29 158

225 248 152 17 105 217 142 148 155 30 135 233 206 85 40 223

140 161 137 13 191 230 66 104 65 153 45 15 176 84 187 22

And the decryption S-Box that a correct implementation should

return is shown below (again as decimal integers):

82 9 106 213 48 54 165 56 191 64 163 158 129 243 215 251

124 227 57 130 155 47 255 135 52 142 67 68 196 222 233 203

84 123 148 50 166 194 35 61 238 76 149 11 66 250 195 78

8 46 161 102 40 217 36 178 118 91 162 73 109 139 209 37

114 248 246 100 134 104 152 22 212 164 92 204 93 101 182 146

108 112 72 80 253 237 185 218 94 21 70 87 167 141 157 132

144 216 171 0 140 188 211 10 247 228 88 5 184 179 69 6

208 44 30 143 202 63 15 2 193 175 189 3 1 19 138 107

58 145 17 65 79 103 220 234 151 242 207 206 240 180 230 115

150 172 116 34 231 173 53 133 226 249 55 232 28 117 223 110

71 241 26 113 29 41 197 137 111 183 98 14 170 24 190 27

252 86 62 75 198 210 121 32 154 219 192 254 120 205 90 244

31 221 168 51 136 7 199 49 177 18 16 89 39 128 236 95

96 81 127 169 25 181 74 13 45 229 122 159 147 201 156 239

160 224 59 77 174 42 245 176 200 235 187 60 131 83 153 97

23 43 4 126 186 119 214 38 225 105 20 99 85 33 12 125

30

Computer and Network Security by Avi Kak Lecture 8

The Python and Perl scripts in this section can be downloaded from

the link associated with Lecture 8 at the “Lecture Notes” website.

Now ask yourself the following questions:

1. Why is the value decimal 99 in the upper-left corner of the

encryption look-up “table” presented in the upper half of the

previous page?

2. Why is the value decimal 0 in the 7th row and the 4th column of

the decryption lookup table in the lower half of the previous

page?

31

Computer and Network Security by Avi Kak Lecture 8

Back to TOC

8.6 THE SHIFT ROWS STEP: ShiftRows
and InvShiftRows

• This is where the array representation of the state array

becomes important.

• The ShiftRows transformation consists of (i) not shifting the

first row of the state array at all; (ii) circularly shifting the

second row by one byte to the left; (iii) circularly shifting the

third row by two bytes to the left; and (iv) circularly shifting

the last row by three bytes to the left.

• This operation on the state array can be represented by





















s0.0 s0,1 s0,2 s0,3
s1.0 s1,1 s1,2 s1,3
s2.0 s2,1 s2,2 s2,3
s3.0 s3,1 s3,2 s3,3





















===>





















s0.0 s0,1 s0,2 s0,3
s1.1 s1,2 s1,3 s1,0
s2.2 s2,3 s2,0 s2,1
s3.3 s3,0 s3,1 s3,2





















• Recall again that the input block is written column-wise. That

is the first four bytes of the input block fill the first column of

the state array, the next four bytes the second column, etc. As a

result, shifting the rows in the manner indicated scrambles up

the byte order of the input block.

32

Computer and Network Security by Avi Kak Lecture 8

• For decryption, the corresponding step shifts the rows in

exactly the opposite fashion. The first row is left unchanged,

the second row is shifted to the right by one byte, the third row

to the right by two bytes, and the last row to the right by three

bytes, all shifts being circular.





















s0.0 s0,1 s0,2 s0,3
s1.0 s1,1 s1,2 s1,3
s2.0 s2,1 s2,2 s2,3
s3.0 s3,1 s3,2 s3,3





















===>





















s0.0 s0,1 s0,2 s0,3
s1.3 s1,0 s1,1 s1,2
s2.2 s2,3 s2,0 s2,1
s3.1 s3,2 s3,3 s3,0





















33

Computer and Network Security by Avi Kak Lecture 8

Back to TOC

8.7 THE MIX COLUMNS STEP:
MixColumns and InvMixColumns

• This step replaces each byte of a column by a function of all the

bytes in the same column.

• More precisely, for encryption, each byte in a column is replaced

by two times that byte, plus three times the the next byte,

plus the byte that comes next, plus the byte that follows.

[The multiplications implied by the word ‘times’ and the additions implied by the

word ‘plus’ are meant to be carried out in GF (28) arithmetic, as explained in Lecture

7. If you are using the BitVector module in Python, it gives you the method

gf multiply modular() for carrying out such multiplications. The additions are

merely XOR operations, as you should know from Lecture 7. The Perl programmers

can do the same thing with the Algorithm::BitVector module.] The words

‘next’ and ‘follow’ refer to bytes in the same column, and their

meaning is circular, in the sense that the byte that is next to

the one in the last row is the one in the first row. [Note that by

‘two times’ and ‘three times’, we mean multiplications in GF (28) by the bit

patterns 00000010 and 00000011, respectively.]

• For the bytes in the first row of the state array, this operation

can be stated as

s′0,j = (0x02× s0,j) ⊗ (0x03× s1,j) ⊗ s2,j ⊗ s3,j

34

Computer and Network Security by Avi Kak Lecture 8

• For the bytes in the second row of the state array, this

operation can be stated as

s′1,j = s0,j ⊗ (0x02× s1,j) ⊗ (0x03× s2,j) ⊗ s3,j

• For the bytes in the third row of the state array, this

operation can be stated as

s′2,j = s0,j ⊗ s1,j ⊗ (0x02× s2,j) ⊗ (0x03× s3,j)

• And, for the bytes in the fourth row of the state array, this

operation can be stated as

s′3,j = (0x03× s0,j) ⊗ s1,j ⊗ s2,j ⊗ (0x02× s3,j)

• More compactly, the column operations can be shown as





















02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02





















×





















s0.0 s0,1 s0,2 s0,3
s1.0 s1,1 s1,2 s1,3
s2.0 s2,1 s2,2 s2,3
s3.0 s3,1 s3,2 s3,3





















=





















s′0.0 s′0,1 s′0,2 s′0,3
s′1.0 s′1,1 s′1,2 s′1,3
s′2.0 s′2,1 s′2,2 s′2,3
s′3.0 s′3,1 s′3,2 s′3,3





















where, on the left hand side, when a row of the leftmost matrix

multiples a column of the state array matrix, additions involved

are meant to be XOR operations.

35

Computer and Network Security by Avi Kak Lecture 8

• The corresponding transformation during decryption is given by




















0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E





















×





















s0.0 s0,1 s0,2 s0,3
s1.0 s1,1 s1,2 s1,3
s2.0 s2,1 s2,2 s2,3
s3.0 s3,1 s3,2 s3,3





















=





















s′0.0 s′0,1 s′0,2 s′0,3
s′1.0 s′1,1 s′1,2 s′1,3
s′2.0 s′2,1 s′2,2 s′2,3
s′3.0 s′3,1 s′3,2 s′3,3





















36

Computer and Network Security by Avi Kak Lecture 8

Back to TOC

8.8 THE KEY EXPANSION ALGORITHM

• Each round has its own round key that is derived from the

original 128-bit encryption key in the manner described in this

section. One of the four steps of each round, for both

encryption and decryption, involves XORing of the round key

with the state array.

• The AES Key Expansion algorithm is used to derive the

128-bit round key for each round from the original 128-bit

encryption key. As you’ll see, the logic of the key expansion

algorithm is designed to ensure that if you change one bit of

the encryption key, it should affect the round keys for several

rounds.

• In the same manner as the 128-bit input block is arranged in

the form of a state array, the algorithm first arranges the 16

bytes of the encryption key in the form of a 4× 4 array of bytes,

as shown at the top of the next page.

37

Computer and Network Security by Avi Kak Lecture 8





















k0 k4 k8 k12
k1 k5 k9 k13
k2 k6 k10 k14
k3 k7 k11 k15





















⇓

[w0 w1 w2 w3]

• The first four bytes of the encryption key constitute the word

w0, the next four bytes the word w1, and so on.

• The algorithm subsequently expands the words [w0, w1, w2, w3]

into a 44-word key schedule that can be labeled

w0, w1, w2, w3,, w43

• Of these, the words [w0, w1, w2, w3] are bitwise XOR’ed with

the input block before the round-based processing begins.

• The remaining 40 words of the key schedule are used four

words at a time in each of the 10 rounds.

• The above two statements are also true for decryption, except

for the fact that we now reverse the order of the words in the

38

Computer and Network Security by Avi Kak Lecture 8

key schedule, as shown in Figure 2: The last four words of the

key schedule are bitwise XOR’ed with the 128-bit ciphertext

block before any round-based processing begins. Subsequently,

each of the four words in the remaining 40 words of the key

schedule are used in each of the ten rounds of processing.

• Now comes the difficult part: How does the Key Expansion

Algorithm expand four words w0, w1, w2, w3 into the 44

words w0, w1, w2, w3, w4, w5,, w43 ?

• The key expansion algorithm will be explained in the next

subsection with the help of Figure 4. As shown in the figure, the

key expansion takes place on a four-word to four-word basis, in

the sense that each grouping of four words decides what the

next grouping of four words will be.

39

Computer and Network Security by Avi Kak Lecture 8

w w w w

w w w w

w w w w

g

g

0 1 2 3

4 5 6 7

8 9 10 11

Figure 4: The key expansion takes place on a four-word to

four-word basis as shown here. (This figure is from Lecture 8 of “Computer

and Network Security” by Avi Kak)

40

Computer and Network Security by Avi Kak Lecture 8

Back to TOC

8.8.1 The Algorithmic Steps in Going from a 4-Word

Round Key to the Next 4-Word Round Key

• We now come to the heart of the key expansion algorithm we

talked about in the previous section — generating the four

words of the round key for a given round from the corresponding

four words of the round key for the previous round.

• Let’s say that we have the four words of the round key for the

ith round:

wi wi+1 wi+2 wi+3

For these to serve as the round key for the ith round, i must be

a multiple of 4. These will obviously serve as the round key for

the (i/4)th round. For example, w4, w5, w6, w7 is the round key

for round 1, the sequence of words w8, w9, w10, w11 the round

key for round 2, and so on.

• Now we need to determine the words

wi+4 wi+5 wi+6 wi+7

from the words wi wi+1 wi+2 wi+3.

41

Computer and Network Security by Avi Kak Lecture 8

• From Figure 4, we write

wi+5 = wi+4 ⊗ wi+1 (1)

wi+6 = wi+5 ⊗ wi+2 (2)

wi+7 = wi+6 ⊗ wi+3 (3)

Note that except for the first word in a new 4-word grouping,

each word is an XOR of the previous word and the

corresponding word in the previous 4-word grouping.

• So now we only need to figure out wi+4. This is the beginning

word of each 4-word grouping in the key expansion. The

beginning word of each round key is obtained by:

wi+4 = wi ⊗ g(wi+3) (4)

That is, the first word of the new 4-word grouping is to be

obtained by XOR’ing the first word of the last grouping with

what is returned by applying a function g() to the last word of

the previous 4-word grouping.

• The function g() consists of the following three steps:

– Perform a one-byte left circular rotation on the argument 4-byte
word.

– Perform a byte substitution for each byte of the word returned by
the previous step by using the same 16× 16 lookup table as used in

42

Computer and Network Security by Avi Kak Lecture 8

the SubBytes step of the encryption rounds. [The SubBytes step was

explained in Section 8.5]

– XOR the bytes obtained from the previous step with what is known
as a round constant. The round constant is a word whose three

rightmost bytes are always zero. Therefore, XOR’ing with the round
constant amounts to XOR’ing with just its leftmost byte.

• The round constant for the ith round is denoted Rcon[i].

Since, by specification, the three rightmost bytes of the round

constant are zero, we can write it as shown below. The left hand

side of the equation below stands for the round constant to be

used in the ith round. The right hand side of the equation says

that the rightmost three bytes of the round constant are zero.

Rcon[i] = (RC[i], 0x00, 0x00, 0x00)

• The only non-zero byte in the round constants, RC[i], obeys

the following recursion:

RC[1] = 0x01

RC[j] = 0x02× RC[j − 1]

Recall from Lecture 7 that multiplication by 0x02 amounts to

multiplying the polynomial corresponding to the bit pattern

RC[j − 1] by x.

43

Computer and Network Security by Avi Kak Lecture 8

• The addition of the round constants is for the purpose of

destroying any symmetries that may have been introduced by

the other steps in the key expansion algorithm.

• The presentation of the key expansion algorithm so far in this

section was based on the assumption of a 128 bit key. As was

mentioned in Section 8.1, AES calls for a larger number of

rounds in Figure 2 when you use either of the two other

possibilities for key lengths: 192 bits and 256 bits. A key length

of 192 bits entails 12 rounds and a key length of 256 bits entails

14 rounds. (However, the length of the input block remains

unchanged at 128 bits.) The key expansion algorithm must

obviously generate a longer schedule for the 12 rounds required

by a 192 bit key and the 14 rounds required by a 256 bit keys.

Keeping in mind how we used the key schedule for the case of a

128 bit key, we are going to need 52 words in the key schedule

for the case of 192-bit keys and 60 words for the case of 256-bit

keys — with round-based processing remaining the same as

described in Section 8.4. [Consider what happens when the key length is 192 bits: Since

the round-based processing and the size of the input block remain the same as described earlier in this

lecture, each round will still use only 4 words of the key schedule. Just as we organized the 128-bit key in the

form of 4 key words for the purpose of key expansion, we organize the 192 bit key in the form of six words.

The key expansion algorithm will take us from six words to six words — for a total of nine key-expansion

steps — with each step looking the same as what we described at the beginning of this section. Yes, it is true

that the key expansion will now generate a total of 54 words while we need only 52 — we simply ignore the

last two words of the key schedule. With regard to the details of going from the six words of the jth

key-expansion step to the six words of the (j + 1)th key expansion step, let’s focus on going from the initial

44

Computer and Network Security by Avi Kak Lecture 8

(w0, w1, w2, w3, w4, w5) to (w6, w7, w8, w9, w10, w11). We generate the last five words of the latter from

the last five words of the former through straightforward XORing as was the case earlier in this section. As

for the first word of the latter, we generate it from the first and the last words of the former through the g

function again as described earlier. The g function itself remains unchanged.]

• The cool thing about the 128-bit key is that you can think of

the key expansion being in one-one correspondence with the

rounds. However, that is no longer the case with, say, the

192-bit keys. Now you have to think of key expansion as

something that is divorced even conceptually from round-based

processing of the input block.

• The key expansion algorithm ensures that AES has no weak

keys. A weak key is a key that reduces the security of a

cipher in a predictable manner. For example, DES is known to

have weak keys. Weak keys of DES are those that produce

identical round keys for each of the 16 rounds. An example of

DES weak key is when it consists of alternating ones and zeros.

This sort of a weak key in DES causes all the round keys to

become identical, which, in turn, causes the encryption to

become self-inverting. That is, plain text encrypted and then

encrypted again will lead back to the same plain text. (Since

the small number of weak keys of DES are easily recognized, it

is not considered to be a problem with that cipher.)

45

Computer and Network Security by Avi Kak Lecture 8

Back to TOC

8.8.2 Python and Perl Implementations of the Key

Expansion Algorithm

• In this section, I’ll first present a Python implementation of the

key expansion algorithm described in the previous subsection.

That will be followed by a Perl implementation of the same.

• With regard to key expansion, the main focus of the previous

subsection was the 128-bit AES. Toward the end of the previous

subsection, I briefly described the modifications needed for the

case of 192-bit and 256-bit AES. The goal of the

implementation shown in this section is to clarify the various

steps for all three cases.

• When you execute the Python code shown below, it will prompt

you for AES key size — obviously, the number you enter must

be one of 128, 192, and 256.

• Subsequently, it will prompt you for the key. You are allowed to

enter any number of characters for the key. If the length of the

key you enter is shorter than what is needed to fill the full width

of the AES key size, the script appends the character ’0’ to your

key to bring it up to the required size. On the other hand, if

you enter a key longer than what is needed, it will only use the

46

Computer and Network Security by Avi Kak Lecture 8

number of characters it needs.

47

Computer and Network Security by Avi Kak Lecture 8

#!/usr/bin/env python

gen_key_schedule.py

Avi Kak (April 10, 2016; bug fix: January 27, 2017; doc errors fixed: February 2, 2018)

This script is for demonstrating the AES algorithm for generating the

key schedule.

It will prompt you for the key size, which must be one of 128, 192, 256.

It will also prompt you for a key. If the key you enter is shorter

than what is needed for the AES key size, we add zeros on the right of

the key so that its length is as needed by the AES key size.

import sys

from BitVector import *

AES_modulus = BitVector(bitstring=’100011011’)

def main():

key_words = []

keysize, key_bv = get_key_from_user()

if keysize == 128:

key_words = gen_key_schedule_128(key_bv)

elif keysize == 192:

key_words = gen_key_schedule_192(key_bv)

elif keysize == 256:

key_words = gen_key_schedule_256(key_bv)

else:

sys.exit("wrong keysize --- aborting")

key_schedule = []

print("\nEach 32-bit word of the key schedule is shown as a sequence of 4 one-byte integers:")

for word_index,word in enumerate(key_words):

keyword_in_ints = []

for i in range(4):

keyword_in_ints.append(word[i*8:i*8+8].intValue())

if word_index % 4 == 0: print("\n")

print("word %d: %s" % (word_index, str(keyword_in_ints)))

key_schedule.append(keyword_in_ints)

num_rounds = None

if keysize == 128: num_rounds = 10

if keysize == 192: num_rounds = 12

if keysize == 256: num_rounds = 14

round_keys = [None for i in range(num_rounds+1)]

for i in range(num_rounds+1):

round_keys[i] = (key_words[i*4] + key_words[i*4+1] + key_words[i*4+2] +

key_words[i*4+3]).get_bitvector_in_hex()

print("\n\nRound keys in hex (first key for input block):\n")

for round_key in round_keys:

print(round_key)

def gee(keyword, round_constant, byte_sub_table):

’’’

48

Computer and Network Security by Avi Kak Lecture 8

This is the g() function you see in Figure 4 of Lecture 8.

’’’

rotated_word = keyword.deep_copy()

rotated_word << 8

newword = BitVector(size = 0)

for i in range(4):

newword += BitVector(intVal = byte_sub_table[rotated_word[8*i:8*i+8].intValue()], size = 8)

newword[:8] ^= round_constant

round_constant = round_constant.gf_multiply_modular(BitVector(intVal = 0x02), AES_modulus, 8)

return newword, round_constant

def gen_key_schedule_128(key_bv):

byte_sub_table = gen_subbytes_table()

We need 44 keywords in the key schedule for 128 bit AES. Each keyword is 32-bits

wide. The 128-bit AES uses the first four keywords to xor the input block with.

Subsequently, each of the 10 rounds uses 4 keywords from the key schedule. We will

store all 44 keywords in the following list:

key_words = [None for i in range(44)]

round_constant = BitVector(intVal = 0x01, size=8)

for i in range(4):

key_words[i] = key_bv[i*32 : i*32 + 32]

for i in range(4,44):

if i%4 == 0:

kwd, round_constant = gee(key_words[i-1], round_constant, byte_sub_table)

key_words[i] = key_words[i-4] ^ kwd

else:

key_words[i] = key_words[i-4] ^ key_words[i-1]

return key_words

def gen_key_schedule_192(key_bv):

byte_sub_table = gen_subbytes_table()

We need 52 keywords (each keyword consists of 32 bits) in the key schedule for

192 bit AES. The 192-bit AES uses the first four keywords to xor the input

block with. Subsequently, each of the 12 rounds uses 4 keywords from the key

schedule. We will store all 52 keywords in the following list:

key_words = [None for i in range(52)]

round_constant = BitVector(intVal = 0x01, size=8)

for i in range(6):

key_words[i] = key_bv[i*32 : i*32 + 32]

for i in range(6,52):

if i%6 == 0:

kwd, round_constant = gee(key_words[i-1], round_constant, byte_sub_table)

key_words[i] = key_words[i-6] ^ kwd

else:

key_words[i] = key_words[i-6] ^ key_words[i-1]

return key_words

def gen_key_schedule_256(key_bv):

byte_sub_table = gen_subbytes_table()

We need 60 keywords (each keyword consists of 32 bits) in the key schedule for

256 bit AES. The 256-bit AES uses the first four keywords to xor the input

block with. Subsequently, each of the 14 rounds uses 4 keywords from the key

schedule. We will store all 60 keywords in the following list:

key_words = [None for i in range(60)]

round_constant = BitVector(intVal = 0x01, size=8)

49

Computer and Network Security by Avi Kak Lecture 8

for i in range(8):

key_words[i] = key_bv[i*32 : i*32 + 32]

for i in range(8,60):

if i%8 == 0:

kwd, round_constant = gee(key_words[i-1], round_constant, byte_sub_table)

key_words[i] = key_words[i-8] ^ kwd

elif (i - (i//8)*8) < 4:

key_words[i] = key_words[i-8] ^ key_words[i-1]

elif (i - (i//8)*8) == 4:

key_words[i] = BitVector(size = 0)

for j in range(4):

key_words[i] += BitVector(intVal =

byte_sub_table[key_words[i-1][8*j:8*j+8].intValue()], size = 8)

key_words[i] ^= key_words[i-8]

elif ((i - (i//8)*8) > 4) and ((i - (i//8)*8) < 8):

key_words[i] = key_words[i-8] ^ key_words[i-1]

else:

sys.exit("error in key scheduling algo for i = %d" % i)

return key_words

def gen_subbytes_table():

subBytesTable = []

c = BitVector(bitstring=’01100011’)

for i in range(0, 256):

a = BitVector(intVal = i, size=8).gf_MI(AES_modulus, 8) if i != 0 else BitVector(intVal=0)

a1,a2,a3,a4 = [a.deep_copy() for x in range(4)]

a ^= (a1 >> 4) ^ (a2 >> 5) ^ (a3 >> 6) ^ (a4 >> 7) ^ c

subBytesTable.append(int(a))

return subBytesTable

def get_key_from_user():

key = keysize = None

if sys.version_info[0] == 3:

keysize = int(input("\nAES Key size: "))

assert any(x == keysize for x in [128,192,256]), \

"keysize is wrong (must be one of 128, 192, or 256) --- aborting"

key = input("\nEnter key (any number of chars): ")

else:

keysize = int(raw_input("\nAES Key size: "))

assert any(x == keysize for x in [128,192,256]), \

"keysize is wrong (must be one of 128, 192, or 256) --- aborting"

key = raw_input("\nEnter key (any number of chars): ")

key = key.strip()

key += ’0’ * (keysize//8 - len(key)) if len(key) < keysize//8 else key[:keysize//8]

key_bv = BitVector(textstring = key)

return keysize,key_bv

main()

• Shown below is a terminal session with the code:

50

Computer and Network Security by Avi Kak Lecture 8

• AES Key size: 128

Enter key (any number of chars): hello

Each 32-bit word of the key schedule is shown as a sequence of 4 one-byte integers:

word 0: [104, 101, 108, 108]

word 1: [111, 48, 48, 48]

word 2: [48, 48, 48, 48]

word 3: [48, 48, 48, 48]

word 4: [109, 97, 104, 104]

word 5: [2, 81, 88, 88]

word 6: [50, 97, 104, 104]

word 7: [2, 81, 88, 88]

word 8: [190, 11, 2, 31]

word 9: [188, 90, 90, 71]

word 10: [142, 59, 50, 47]

word 11: [140, 106, 106, 119]

word 12: [184, 9, 247, 123]

word 13: [4, 83, 173, 60]

word 14: [138, 104, 159, 19]

word 15: [6, 2, 245, 100]

word 16: [199, 239, 180, 20]

word 17: [195, 188, 25, 40]

word 18: [73, 212, 134, 59]

word 19: [79, 214, 115, 95]

word 20: [33, 96, 123, 144]

word 21: [226, 220, 98, 184]

word 22: [171, 8, 228, 131]

word 23: [228, 222, 151, 220]

word 24: [28, 232, 253, 249]

word 25: [254, 52, 159, 65]

word 26: [85, 60, 123, 194]

word 27: [177, 226, 236, 30]

word 28: [196, 38, 143, 49]

word 29: [58, 18, 16, 112]

word 30: [111, 46, 107, 178]

word 31: [222, 204, 135, 172]

word 32: [15, 49, 30, 44]

word 33: [53, 35, 14, 92]

word 34: [90, 13, 101, 238]

word 35: [132, 193, 226, 66]

word 36: [108, 169, 50, 115]

word 37: [89, 138, 60, 47]

word 38: [3, 135, 89, 193]

word 39: [135, 70, 187, 131]

51

Computer and Network Security by Avi Kak Lecture 8

word 40: [0, 67, 222, 100]

word 41: [89, 201, 226, 75]

word 42: [90, 78, 187, 138]

word 43: [221, 8, 0, 9]

Round keys in hex (first key for input block):

68656c6c6f3030303030303030303030

6d616868025158583261686802515858

be0b021fbc5a5a478e3b322f8c6a6a77

b809f77b0453ad3c8a689f130602f564

c7efb414c3bc192849d4863b4fd6735f

21607b90e2dc62b8ab08e483e4de97dc

1ce8fdf9fe349f41553c7bc2b1e2ec1e

c4268f313a1210706f2e6bb2decc87ac

0f311e2c35230e5c5a0d65ee84c1e242

6ca93273598a3c2f038759c18746bb83

0043de6459c9e24b5a4ebb8add080009

• What you see in hex above are 11 round keys, each 128 bit long,

for the 10 rounds that will be used when the user supplied

encryption key is 128 bits long. As you know by this time, the

first round key listed above is what you need to XOR the input

block with before any encryption rounds.

• Shown below is a Perl implementation of the Python script

shown earlier in this subsection. Note that the Perl script

requires you have installed at least Version 1.26 of the

Algorithm::BitVector module.

#!/usr/bin/perl -w

gen_key_schedule.pl

Avi Kak (February 2, 2018)

This script is for demonstrating the AES algorithm for generating the

key schedule.

It will prompt you for the key size, which must be one of 128, 192, 256.

52

Computer and Network Security by Avi Kak Lecture 8

It will also prompt you for a key. If the key you enter is shorter

than what is needed for the AES key size, we add zeros on the right of

the key so that its length is as needed by the AES key size.

use strict;

use warnings;

use Algorithm::BitVector 1.26;

my $AES_modulus = Algorithm::BitVector->new(bitstring => ’100011011’);

my @key_words;

my ($keysize, $key_bv) = get_key_from_user();

if ($keysize == 128) {

@key_words = gen_key_schedule_128($key_bv);

} elsif ($keysize == 192) {

@key_words = gen_key_schedule_192($key_bv);

} elsif ($keysize == 256) {

@key_words = gen_key_schedule_256($key_bv);

} else {

die "wrong keysize --- aborting";

}

my @key_schedule;

print "\nEach 32-bit word of the key schedule is shown as a sequence of 4 one-byte integers:\n";

foreach my $word_index (0..@key_words-1) {

my $word = $key_words[$word_index];

my @keyword_in_ints;

foreach my $i (0..3) {

push @keyword_in_ints, int($word->get_slice([$i*8..($i+1)*8]))

}

if ($word_index % 4 == 0) {

print "\n";

}

print "word $word_index: @keyword_in_ints\n";

push @key_schedule, "@keyword_in_ints";

}

my $num_rounds;

if ($keysize == 128) { $num_rounds = 10; }

if ($keysize == 192) { $num_rounds = 12; }

if ($keysize == 256) { $num_rounds = 14; }

my @round_keys = (undef) x ($num_rounds+1);

foreach my $i (0..$num_rounds) {

$round_keys[$i] = ($key_words[$i*4] + $key_words[$i*4+1] + $key_words[$i*4+2] +

$key_words[$i*4+3])->get_bitvector_in_hex();

}

print("\n\nRound keys in hex (first key for input block):\n\n");

foreach my $round_key (@round_keys) {

print "$round_key\n";

}

53

Computer and Network Security by Avi Kak Lecture 8

This is the g() function you see in Figure 4 of Lecture 8.

sub gee {

my ($keyword, $round_constant, $byte_sub_table) = @_;

my $rotated_word = $keyword->deep_copy();

$rotated_word = $rotated_word << 8;

my $newword = Algorithm::BitVector->new(size => 0);

foreach my $i (0..3) {

$newword += Algorithm::BitVector->new(intVal =>

$byte_sub_table->[int($rotated_word->get_slice([8*$i..8*($i+1)]))], size => 8);

}

$newword->set_slice([0..8], $newword->get_slice([0..8]) ^ $round_constant);

$round_constant = $round_constant->gf_multiply_modular(Algorithm::BitVector->new(intVal => 0x02),

$AES_modulus, 8);

return $newword, $round_constant;

}

sub gen_key_schedule_128 {

my $key_bv = shift;

my $byte_sub_table = gen_subbytes_table();

We need 44 keywords in the key schedule for 128 bit AES. Each keyword is 32-bits

wide. The 128-bit AES uses the first four keywords to xor the input block with.

Subsequently, each of the 10 rounds uses 4 keywords from the key schedule. We will

store all 44 keywords in the list key_words in this function.

my @key_words = (undef) x 44;

my $round_constant = Algorithm::BitVector->new(intVal => 0x01, size => 8);

($key_words[0],$key_words[1],$key_words[2],$key_words[3]) =

map $key_bv->get_slice([$_*32..($_+1)*32]), 0..3;

foreach my $i (4..43) {

if ($i%4 == 0) {

my $kwd;

($kwd, $round_constant) = gee($key_words[$i-1], $round_constant, $byte_sub_table);

$key_words[$i] = $key_words[$i-4] ^ $kwd;

} else {

$key_words[$i] = $key_words[$i-4] ^ $key_words[$i-1];

}

}

return @key_words;

}

sub gen_key_schedule_192 {

my $key_bv = shift;

my $byte_sub_table = gen_subbytes_table();

We need 52 keywords (each keyword consists of 32 bits) in the key schedule for

192 bit AES. The 192-bit AES uses the first four keywords to xor the input

block with. Subsequently, each of the 12 rounds uses 4 keywords from the key

schedule. We will store all 52 keywords in the following list:

my @key_words = (undef) x 52;

my $round_constant = Algorithm::BitVector->new(intVal => 0x01, size => 8);

foreach my $i (0..5) {

$key_words[$i] = $key_bv->get_slice([$i*32 .. ($i+1)*32]);

}

foreach my $i (6..51) {

if ($i%6 == 0) {

my $kwd;

54

Computer and Network Security by Avi Kak Lecture 8

($kwd, $round_constant) = gee($key_words[$i-1], $round_constant, $byte_sub_table);

$key_words[$i] = $key_words[$i-6] ^ $kwd;

} else {

$key_words[$i] = $key_words[$i-6] ^ $key_words[$i-1];

}

}

return @key_words;

}

sub gen_key_schedule_256 {

my $key_bv = shift;

my $byte_sub_table = gen_subbytes_table();

We need 60 keywords (each keyword consists of 32 bits) in the key schedule for

256 bit AES. The 256-bit AES uses the first four keywords to xor the input

block with. Subsequently, each of the 14 rounds uses 4 keywords from the key

schedule. We will store all 60 keywords in the following list:

my @key_words = (undef) x 60;

my $round_constant = Algorithm::BitVector->new(intVal => 0x01, size => 8);

foreach my $i (0..7) {

$key_words[$i] = $key_bv->get_slice([$i*32 .. ($i+1)*32]);

}

foreach my $i (8..59) {

if ($i%8 == 0) {

my $kwd;

($kwd, $round_constant) = gee($key_words[$i-1], $round_constant, $byte_sub_table);

$key_words[$i] = $key_words[$i-8] ^ $kwd;

} elsif (($i - int($i/8)*8) < 4) {

$key_words[$i] = $key_words[$i-8] ^ $key_words[$i-1];

} elsif (($i - int($i/8)*8) == 4) {

$key_words[$i] = Algorithm::BitVector->new(size => 0);

foreach my $j (0..3) {

$key_words[$i] += Algorithm::BitVector->new(intVal =>

int($byte_sub_table->[int($key_words[$i-1]->get_slice([8*$j..8*($j+1)]))]), size => 8);

}

$key_words[$i] = $key_words[$i] ^ $key_words[$i-8];

} elsif ((($i - int($i/8)*8) > 4) && (($i - int($i/8)*8) < 8)) {

$key_words[$i] = $key_words[$i-8] ^ $key_words[$i-1];

} else {

die "error in key scheduling algo for i = $i\n";

}

}

return @key_words;

}

sub gen_subbytes_table {

my @subBytesTable; # SBox for encryption

my $c = Algorithm::BitVector->new(bitstring => ’01100011’);

my $d = Algorithm::BitVector->new(bitstring => ’00000101’);

foreach my $i (0..255) {

For the encryption SBox:

my $a = $i == 0 ? Algorithm::BitVector->new(intVal => 0) :

Algorithm::BitVector->new(intVal => $i, size => 8)->gf_MI($AES_modulus, 8);

For bit scrambling for the encryption SBox entries:

my ($a1,$a2,$a3,$a4) = map $a->deep_copy(), 0 .. 3;

$a ^= ($a1 >> 4) ^ ($a2 >> 5) ^ ($a3 >> 6) ^ ($a4 >> 7) ^ $c;

55

Computer and Network Security by Avi Kak Lecture 8

push @subBytesTable, int($a);

}

return \@subBytesTable;

}

sub get_key_from_user {

my ($key, $keysize);

print "\nAES key size: ";

while ($keysize = <STDIN>) {

chomp $keysize;

if (($keysize != 128) && ($keysize != 192) && ($keysize != 256)) {

die "\nkeysize is wrong (must be one of 128, 192, or 256) --- aborting";

}

last;

}

print "\nEnter key (any number of chars): ";

while ($key = <STDIN>) {

chomp $key;

last;

}

if (length $key < int($keysize/8)) {

$key .= ’0’ x ($keysize/8 - length $key);

}

my $key_bv = Algorithm::BitVector->new(textstring => $key);

return $keysize, $key_bv;

}

• Running the script shown above should yield exactly the same

results as the Python script shown earlier in this subsection.

56

Computer and Network Security by Avi Kak Lecture 8

Back to TOC

8.9 DIFFERENTIAL, LINEAR, AND
INTERPOLATION ATTACKS ON BLOCK

CIPHERS

• This section is for a reader who is curious as to why the

substitution step in AES involves taking the MI of each byte in

GF (28) and bit scrambling. As you might have realized already,

that is the only nonlinear step in mapping a plaintext block to a

ciphertext block in AES.

• Back in the 1990’s (this is the decade preceding the

development of the Rijndael cipher which is the precursor to the

AES standard) there was much interest in investigating the

block ciphers of the day (DES being the most prominent) from

the standpoint of their vulnerabilities to differential and linear

cryptanalysis. The MI byte substitution step in AES is

meant to protect it against such cryptanalysis. At

around the same time, it was shown by Jakobsen and Knudsen

in 1997 that block ciphers whose SBoxes were based on

polynomial arithmetic in Galois fields could be vulnerable to a

new attack that they referred to as the interpolation

attack. The bit scrambling part of the SBox in AES is meant

to be a protection against the interpolation attack. [As mentioned

earlier in Section 3.2.2 of Lecture 3, the differential attack was first described by Biham and Shamir in a

57

Computer and Network Security by Avi Kak Lecture 8

paper titled “Differential Cryptanalysis of DES-like Cryptosystems” that appeared in the Journal of

Cryptology in 1991. The linear attack was firs described by Matsui in a publication titled “Linear

Cryptanalysis Method for DES Ciphers,” in “Lecture Notes in Computer Science, no. 764. Finally, the

interpolation attack by first described by Jakobsen and Knudsen in a publication titled “The Interpolation

Attack on Block Ciphers” that appeared in Lecture Notes in Computer Science, Haifa, 1997.]

• Therefore, in order to fully appreciate the SBox in AES, you

have to have some understanding of these three forms of

cryptanalysis. The phrases “differential cryptanalysis” and

“linear cryptanalysis” are synonymous with “differential attack”

and “linear attack”.

• The rest of this section reviews these three attacks briefly. [You

will get more out of this section if you first read the tutorial ”A Tutorial on Linear and Differential

Cryptanalysis” by Howard Heys of the Memorial University of Newfoundland. Googling that author’s name

will take you directly to the tutorial.]

• Starting our discussion with the differential attack, it is

based on the following concepts:

– How a differential (meaning an XOR of two bit blocks)

propagates through a sequence of rounds is independent of

the round keys. [As you’ll recall from the note in small-font blue in Section

3.3.2 of Lecture 3, differential cryptanalysis is a chosen plaintext attack in which

the attacker feeds plaintext bit blocks pairs, X1 and X2, with known differences

∆X = X1 ⊗X2 between them, into the cipher while observing the differences

∆Y = Y1 ⊗ Y2 between the corresponding ciphertext blocks. We refer to ∆X as

58

Computer and Network Security by Avi Kak Lecture 8

the input differential and ∆Y as the output differential. The fact that the

propagation of a differential is NOT affected by the round keys can be established

in the following manner: Consider just one round and let’s say that K is the

round key. Let’s further say that the output of the round is what is produced by

the SBox XOR’ed with the round key. For two different inputs X1 and X2 to the

round, let Y ′

1
and Y ′

2
denote the outputs of the SBox and and let Y1 and Y2 denote

the final output of the round. We have Y1 = K ⊗ Y ′

1
and Y2 = K ⊗ Y ′

2
. The

differential ∆Y = Y1 ⊗ Y2 for the output after key mixing is related to the other

differentials by ∆Y = Y1 ⊗ Y2 = K ⊗ Y ′

1
⊗K ⊗ Y ′

2
= Y ′

1
⊗ Y ′

2
. Therefore,

the mapping between the input and the output differentials of a round

is not a function of the round key.]

– If one is not careful, the byte substitution step in an SBox

can create significant correlations between the input

differentials and the output differentials.

– The correlations between the input differentials and the

output differentials, when they are significant, can be

exploited to make good guesses for the bits of the last round

key.

• Therefore, our first order of business is to understand the

relationship between the input and the output differentials for a

given choice of the SBox.

• The Perl script shown next, find differentials correlations.pl,

calculates a 2D histogram of the relationship between the input

59

Computer and Network Security by Avi Kak Lecture 8

and the output differentials. The statements in lines (B8) and

(B9), with one of the lines commented-out, give you two choices

for the operation of the SBox. If you use the statement in line

(B8), the byte substitutions will consist of replacing each byte

by its MI in GF (28) that is based on the AES modulus. On the

other hand, if you use the currently commented-out statement

in line (B9), the byte substitution will take place according to

the lookup table supplied through line (A9). [Yes, to be precise, the MI

based byte substitution could also be carried out through a lookup table. That is, just because one SBox is

based on MI calculations and the other on looking up a table is NOT the fundamental difference between the

two. The lookup table supplied through line (A9) was arrived at by experimenting with several such choices

made possible by the commented out statements in lines (A7) and (A8). The call to shuffle() in line (A7)

gives a pseudorandom permutation of the 256 one-byte words. Based on a dozen runs of the script, the

permutation shown in line (A9) yielded the best inhomogeneous histogram for the input/output differentials.

The reader may wish to carry out such experiments on his/her own and possibly make a different choice for

the lookup table in line (A9).]

• The portion of the script starting with line (F1) is just for

displaying the histogram of the input/output differentials and,

therefore, not central to understand what we mean by the

differentials here and the correlations between the input

differentials and the output differentials.

#!/usr/bin/perl -w

find_differentials_correlations.pl

Avi Kak (March 4, 2015)

This script creates a histogram of the mapping between the input differentials

60

Computer and Network Security by Avi Kak Lecture 8

and the output differentials for an SBox. You have two choices for the SBox ---

as reflected by lines (B8) and (B9) of the script. For a given input byte, the

statement in line (B8) returns the MI (multiplicative inverse) of the byte in

GF(2^8) based on the AES modulus. And the statement in line (B8) returns a byte

through a user-specified table lookup. The table for this is specified in line

(A9). More generally, such a table can be created by a random permutation

through the commented-out statements in lines (A7) and (A8).

use strict;

use Algorithm::BitVector;

use Graphics::GnuplotIF;

$|++;

my $debug = 1;

my $AES_modulus = Algorithm::BitVector->new(bitstring => ’100011011’); #(A1)

my $M = 64; # CHANGE THIS TO 256 FOR A COMPLETE CALCULATION #(A2)

This parameter control the range of inputs

bytes for creating the differentials. With

its value set to 64, only the differentials

for the bytes whose int values are between 0

and 63 are tried.

Initialize the histogram:

my $differential_hist; #(A3)

foreach my $i (0..255) { #(A4)

foreach my $j (0..255) { #(A5)

$differential_hist->[$i][$j] = 0; #(A6)

}

}

When SBox is based on lookup, we will use the "table" created by randomly

permuting the the number from 0 to 255:

#my $lookuptable = shuffle([0..255]); #(A7)

#my @lookuptable = @$lookuptable; #(A8)

my @lookuptable = qw(213 170 104 116 66 14 76 219 200 42 22 17 241 197 41 216 85 140

183 244 235 6 118 208 74 218 99 44 1 89 11 205 195 125 47 236 113

237 131 109 102 9 21 220 59 154 119 148 38 120 13 217 16 100 191 81

240 196 122 83 177 229 142 35 88 48 167 0 29 153 163 146 166 77 79

43 10 194 232 189 238 164 204 111 69 51 126 62 211 242 70 214 247 55

202 78 239 114 184 112 228 84 152 187 45 49 175 58 253 72 95 19 37

73 145 87 198 71 159 34 91 168 250 255 8 121 96 50 141 181 67 26 243

130 68 61 24 105 210 172 139 136 128 157 133 80 93 39 2 143 161 186 33

144 178 30 92 138 169 86 249 252 155 193 63 223 203 245 129 4 171

115 3 40 151 7 188 231 174 25 23 207 180 56 46 206 215 227 162 199

97 147 182 149 108 36 132 5 12 103 110 209 160 137 53 224 185 173

20 222 246 28 179 134 75 254 57 60 234 52 165 225 248 31 230 156

124 233 158 27 18 94 65 32 54 106 192 221 190 101 98 251 212 150

201 117 127 107 176 226 135 123 82 15 64 90); #(A9)

This call creates the 2D plaintext/ciphertext differential histogram:

gen_differential_histogram(); #(A10)

The call shown below will show that part of the histogram for which both

the input and the output differentials are in the range (32, 63).

61

Computer and Network Security by Avi Kak Lecture 8

display_portion_of_histogram(32, 64); #(A11)

plot_portion_of_histogram($differential_hist, 32, 64); #(A12)

The following call makes a hardcopy of the plot:

plot_portion_of_histogram($differential_hist, 32, 64, 3); #(A13)

sub gen_differential_histogram { #(B1)

foreach my $i (0 .. $M-1) { #(B2)

print "\ni=$i\n" if $debug; #(B3)

foreach my $j (0 .. $M-1) { #(B4)

print ". " if $debug; #(B5)

my ($a, $b) = (Algorithm::BitVector->new(intVal => $i, size => 8),

Algorithm::BitVector->new(intVal => $j, size => 8)); #(B6)

my $input_differential = int($a ^ $b); #(B7)

Of the two statements shown below, you must comment out one depending

on what type of an SBox you want:

my ($c, $d) = (get_sbox_output_MI($a), get_sbox_output_MI($b)); #(B8)

my ($c, $d) = (get_sbox_output_lookup($a), get_sbox_output_lookup($b)); #(B9)

my $output_differential = int($c ^ $d); #(B10)

$differential_hist->[$input_differential][$output_differential]++; #(B11)

}

}

}

sub get_sbox_output_MI { #(C1)

my $in = shift; #(C2)

return int($in) != 0 ? $in->gf_MI($AES_modulus, 8) : #(C3)

Algorithm::BitVector->new(intVal => 0); #(C4)

}

sub get_sbox_output_lookup { #(D1)

my $in = shift; #(D2)

return Algorithm::BitVector->new(intVal => $lookuptable[int($in)], size => 8); #(D3)

}

Fisher-Yates shuffle:

sub shuffle { #(E1)

my $arr_ref = shift; #(E2)

my $i = @$arr_ref; #(E3)

while ($i--) { #(E4)

my $j = int rand($i + 1); #(E5)

@$arr_ref[$i, $j] = @$arr_ref[$j, $i]; #(E6)

} #(E7)

return $arr_ref; #(E8)

}

##################### Support Routines for Displaying the Histogram ########################

Displays in your terminal window the bin counts in the two-dimensional histogram

for the input/output mapping of the differentials. You can control the portion of

the 2D histogram that is output by using the first argument to set the lower bin

index and the second argument the upper bin index along both dimensions.

Therefore, what you see is always a square portion of the overall histogram.

sub display_portion_of_histogram { #(F1)

my $lower = shift; #(F2)

62

Computer and Network Security by Avi Kak Lecture 8

my $upper = shift; #(F3)

foreach my $i ($lower .. $upper - 1) { #(F4)

print "\n"; #(F5)

foreach my $j ($lower .. $upper - 1) { #(F6)

print "$differential_hist->[$i][$j] "; #(F7)

}

}

}

Displays with a 3-dimensional plot a square portion of the histogram. Along both

the X and the Y directions, the lower bound on the bin index is supplied by the

SECOND argument and the upper bound by the THIRD argument. The last argument is

needed only if you want to make a hardcopy of the plot. The last argument is set

to the number of second the plot will be flashed in the terminal screen before it

is dumped into a ‘.png’ file.

sub plot_portion_of_histogram {

my $hist = shift; #(G1)

my $lower = shift; #(G2)

my $upper = shift; #(G3)

my $pause_time = shift; #(G4)

my @plot_points = (); #(G5)

my $bin_width = my $bin_height = 1.0; #(G6)

my ($x_min, $y_min, $x_max, $y_max) = ($lower, $lower, $upper, $upper); #(G7)

foreach my $y ($y_min..$y_max-1) { #(G8)

foreach my $x ($x_min..$x_max-1) { #(G9)

push @plot_points, [$x, $y, $hist->[$y][$x]]; #(G10)

}

}

@plot_points = sort {$a->[0] <=> $b->[0]} @plot_points; #(G11)

@plot_points = sort {$a->[1] <=> $b->[1] if $a->[0] == $b->[0]} @plot_points; #(G12)

my $temp_file = "__temp.dat"; #(G13)

open(OUTFILE , ">$temp_file") or die "Cannot open temporary file: $!"; #(G14)

my ($first, $oldfirst); #(G15)

$oldfirst = $plot_points[0]->[0]; #(G16)

foreach my $sample (@plot_points) { #(G17)

$first = $sample->[0]; #(G18)

if ($first == $oldfirst) { #(G19)

my @out_sample; #(G20)

$out_sample[0] = $sample->[0]; #(G21)

$out_sample[1] = $sample->[1]; #(G22)

$out_sample[2] = $sample->[2]; #(G23)

print OUTFILE "@out_sample\n"; #(G24)

} else { #(G25)

print OUTFILE "\n"; #(G26)

}

$oldfirst = $first; #(G27)

}

print OUTFILE "\n";

close OUTFILE;

my $argstring = <<"END"; #(G28)

set xrange [$x_min:$x_max]

set yrange [$y_min:$y_max]

set view 80,15

set hidden3d

splot "$temp_file" with lines

63

Computer and Network Security by Avi Kak Lecture 8

END

unless (defined $pause_time) { #(G29)

my $hardcopy_name = "output_histogram.png"; #(G30)

my $plot1 = Graphics::GnuplotIF->new(); #(G31)

$plot1->gnuplot_cmd(’set terminal png’, "set output \"$hardcopy_name\""); #(G32)

$plot1->gnuplot_cmd($argstring); #(G33)

my $plot2 = Graphics::GnuplotIF->new(persist => 1); #(G34)

$plot2->gnuplot_cmd($argstring); #(G35)

} else { #(G36)

my $plot = Graphics::GnuplotIF->new(); #(G37)

$plot->gnuplot_cmd($argstring); #(G38)

$plot->gnuplot_pause($pause_time); #(G39)

}

}

• For an accurate and complete calculation of the input/output

differentials histogram, you’d need to change the value of $M in

line (A2) to 256. That would result in a large 256× 256

histogram of integer values. For the purpose of our explanation

here, we will make do with $M = 64. The resulting histogram

would not be an accurate depiction of the reality. Nonetheless,

it will suffice for the purpose of the explanation that follows.

• If you run the script with the SBox as specified in line (B8), you

will end up with a display of numbers as shown below for the

portion of the differentials histogram that is bounded by bin

index values ranging from 32 to 63 in both directions. To

understand these values, let’s look at the first nonzero entry in

the first row, which happens to be in the column indexed 40.

Recognizing that the first row corresponds to the bin index 32,

that nonzero count of 2 means that in all of the runs of the loop

in lines (B1) through (B11) of the script, there were 2 cases

when the input differential was ∆X = 00100000 (integer value

= 32) and the output differential was ∆Y = 00101000 (integer

64

Computer and Network Security by Avi Kak Lecture 8

value = 40).

0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0

0 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 2 0 2 2 0 0 0

0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 2 0

2 2 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 2

2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 2 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0

0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

0 2 0 2 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

2 0 0 0 0 2 0 0 0 0 2 0 0 0 2 0 0 2 0 0 0 2 0 0 0 0 0 0 2 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 2 0 0

0 2 0 2 0 2 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 2 4 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0

0 2 0 0 0 0 0 0 0 0 2 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0

2 0 0 2 0 2 0 0 0 0

0 2 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

0 0 2 0 2 2 0

0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0

• Note that some of the bin counts in the portion of the

histogram shown above are as large as 4. A 3D plot of this

portion of the histogram as shown in Figure 8.5 is meant to

make it easier to see how many such bins exist in the portion of

65

Computer and Network Security by Avi Kak Lecture 8

Figure 5: Shown is a portion of the histogram of the in-

put/output differentials for an SBox consisting of MI in

GF (28). (This figure is from Lecture 8 of “Computer and Network Security” by Avi Kak)

the histogram plotted.

• If you comment out line (B8) and uncomment line (B9) to

change to the second option for the SBox, the same histogram

will look like what is shown in Figure 8.6. Recall that the

second option consists of doing byte substitution through the

lookup table in line (A9).

• As you can see in Figure 8.6, the second option for the SBox

generates a more non-uniform histogram for the input/output

differentials. Ideally, for any input differential ∆X , you would

want the output differential ∆Y to be distributed uniformly

66

Computer and Network Security by Avi Kak Lecture 8

Figure 6: Shown is a portion of the histogram of the in-

put/output differentials for an SBox that carries out byte

substitutions by looking up the table supplied in line (A9).

(This figure is from Lecture 8 of “Computer and Network Security” by Avi Kak)

with a probability of 1/2n for an n-bit block cipher. (This

would translate into a count of 1 in every bin except for the

(0, 0) bin for reasons explained in the small-font note at the end

of this bullet.) That way, the output differentials will give an

attacker no clues regarding either the plaintext or the

encryption key. However, attaining this ideal is theoretically

impossible. [As to why the theoretical ideal is impossible to attain, let’s first review some of the

more noteworthy features of such a histogram: (1) If we had shown the entire histogram, especially if the cell

at (0, 0) was included in the histogram display, you would see the largest peak located over the (0, 0) bin and

the bin count associated with this peak would be 256. This is a result of the fact that, in the double loop in

lines (B1) through (B11) of the script find differentials correlations.pl, as we scan through 256

different values for the first input byte, and, for each input byte, as we scan through 256 values for the second

input byte, there will be 256 cases when the first and the second bytes are identical. Therefore, for these 256

67

Computer and Network Security by Avi Kak Lecture 8

cases, we will have ∆X = 0, and also ∆Y = 0. This would give us a count of 256 over the (0, 0) bin. (2)

Another feature that all such histograms possess is that every non-zero bin count is even. This is on account

of the fact that in the double loop in lines (B1) through (B11) of the script, the same ∆X occurs in multiples

of 2 since ∆X = Xi ⊗Xj = Xj ⊗Xi. (3) The sum of all the counts in each row and each column must add

up to 256. That is because, every differential in the input must map one of 256 possible differentials at the

output. (4) Therefore, for best such histograms (that is, histograms with no biases in how the input and the

output differentials are related), half the randomly located bins in each row would contain a count of 2 (this

would not apply to the bins in the topmost row or the leftmost column). (5) For all the reasons stated here,

the ideal of having a count of 1 in each bin of the 256 × 256 bins of the histogram is clearly not achievable —

even theoretically.]

• As the value of the variable $M in line (A2) of the script

find differen tials correlations.pl approaches 256, with the MI

option for the SBox in line (B8), you will see more and more

bins showing the best possible count of 2 in the histogram of

Figure 8.5. On the other hand, with the table lookup option in

line (B9) for the SBox, you will see the histogram in Figure 8.6

staying just as non-uniform as it is now — with the max peaks

becoming somewhat larger.

• The Perl script that follows, differential attack toy example.pl, is a

demonstration of how the sort of non-uniformities in the

histogram of the input/output differentials can be exploited to

recover some portions of the key for at least the last round of a

block cipher. However, note that this script is only a toy

example just to get across the ideas involved in mounting a

differential attack on a block cipher. The logic presented in this

68

Computer and Network Security by Avi Kak Lecture 8

script would not work by any stretch of imagination on any

realistic block cipher.

• The script differential attack toy example.pl mounts a differential

attack on the encryption scheme in lines (C1) through (C14) of

the code. The SBox byte substitution is based on table lookup

using the table supplied through line (A9). The byte returned

by table lookup is XOR’ed with the round key. The round key

is shifted circularly by one bit position to the right for the next

round key. [For a more realistic simple example of a differential attack that

involves both an SBox and permutations in each round, the reader should look up the

previously mentioned tutorial “A Tutorial on Linear and Differential Cryptanalysis”

by Howard Heys. The block size in that tutorial is 4 bits.]

• The beginning part of the differential attack toy example.pl script

that follows is the same as in the script

find differentials correlations.pl that you saw earlier in this

section. That’s because, as mentioned earlier, a differential

attack exploits the predictability of the ciphertext differentials

vis-a-vis the plaintext differentials. Therefore, lines (A14)

through (A27) of the script are devoted to the calculation of a

2D histogram that measures the joint probabilities of occurrence

of the input and the output differentials. As the comment lines

explain, note how the information generated is saved on the disk

in the form of DBM files. So, as you are experimenting with the

attack logic in lines (B1) through (B26) of the script and

running the script over and over, you would not need to

69

Computer and Network Security by Avi Kak Lecture 8

generate the plaintext/ciphertext differentials histogram each

time. You can start from ground zero (that is, you can

re-generate the histogram) at any time provided you first call

clean_db_files.pl

to clear out the DBM files in your directory. The script

clean db files.pl is included in the code you can download from

the lectures notes website.

• The plaintext/ciphertext differentials histogram is converted

into the hash %worst differentials in line (A22). In case you are

wondering why we couldn’t make do with the disk-based

%worst differentials db hash that is defined in line (A14), it is

because the latter does not support the exists() function that we

need in line (B10) of the script. The keys in both these hashes

are the plaintext differentials and, for each key, the value the

ciphertext differential where the histogram count exceeds the

specified threshold. [Potential source of confusion: Please do not confuse

the use of “key” as in the <key,value> pairs that are stored in a Perl hash with the

use of key as in “encryption key.”]

• Finally, we mount the attack in line (A29). The attack itself is

implemented in lines (B1) through (B26). If you only specify

one round in line (A2), the goal of the attack would be estimate

the encryption key as specified by line (A3). However, if the

number of rounds exceeds 1, the goal of the attack is to

70

Computer and Network Security by Avi Kak Lecture 8

estimate the key in the last round key. The attack logic consists

simply of scanning through all possible plaintext differentials

and using only those that form the keys in the

%worst differentials hash, finding the corresponding the

ciphertext differentials. Once we have chosen a plaintext pair,

and, therefore a plaintext differential, in line (B8), we apply

partial decryption to the corresponding ciphertext bytes in lines

(B21) and (B22). Subsequently, in line (B24), we check whether

the differential formed by the two partial decryptions exists in

our %worst differentials hash for each candidate last-round key. If

this condition is satisfied, a vote is cast for that candidate key.

#!/usr/bin/perl -w

differential_attack_toy_example.pl

Avi Kak (March 4, 2015)

This script is a toy example to illustrate some of the key elements of a

differential attack on a block cipher.

We assume that our block size is one byte and the SBox consists of finding a

substitute byte by table lookup. We further assume that each round consists of

one byte substitution step followed by xor’ing the substituted byte with the

round key. The round key is the encryption key that is circularly shifted to the

right by one position for each round.

Since you are likely to run this script repeatedly as you experiment with

different strategies for estimating the subkey used in the last round, the script

makes it easy to do so by writing the information that is likely to stay constant

from one run to the next to disk-based DBM files. The script creates the

following DBM files:

##

worst_differentials.dir and worst_differentials.pag -- See Line (A14)

##

These DBM files are created the very first time you run this script. Your

subsequent runs of this script will be much faster since this DBM database

would not need to be created again. Should there be a need to run the script

starting from ground zero, you can clear the DBM files created in your directory

by calling the script:

##

71

Computer and Network Security by Avi Kak Lecture 8

clean_db_files.pl

##

Finally, if you set the number of tries in Line (A10) to a large number and you

are tired of waiting, you can kill the script at any time you wish. To see the

vote counts accumulated up to that point for the different possible candidates

for the last round key, just run the script:

##

get_vote_counts.pl

##

The scripts clean_db_files.pl and get_vote_counts.pl are in the gzipped archive

that goes with Lecture 8 at the lecture notes web site.

use strict;

use Algorithm::BitVector;

$|++;

my $debug = 1;

my $AES_modulus = Algorithm::BitVector->new(bitstring => ’100011011’); #(A1)

my $number_of_rounds = 1; #(A2)

my $encryption_key = Algorithm::BitVector->new(bitstring => ’10001011’); #(A3)

my $differential_hist; #(A4)

my %decryption_inverses; #(A5)

my %worst_differentials; #(A6)

my @worst_input_differentials; #(A7)

my @worst_output_differentials; #(A8)

my $hist_threshold = 8; #(A9)

my $tries = 500; #(A10)

unlink glob "votes.*"; #(A11)

dbmopen my %votes_for_keys, "votes", 0644

or die "cannot create DBM file: $!"; #(A12)

This lookup table is used for the byte substituion step during encryption in the

subroutine defined in lines (C1) through (C14). By experimenting with the script

differentials_frequency_calculator.pl this lookup table was found to yield a good

non-uniform histogram for the plaintext/ciphertext differentials.

my @lookuptable = qw(213 170 104 116 66 14 76 219 200 42 22 17 241 197 41 216 85 140

183 244 235 6 118 208 74 218 99 44 1 89 11 205 195 125 47 236 113

237 131 109 102 9 21 220 59 154 119 148 38 120 13 217 16 100 191 81

240 196 122 83 177 229 142 35 88 48 167 0 29 153 163 146 166 77 79

43 10 194 232 189 238 164 204 111 69 51 126 62 211 242 70 214 247 55

202 78 239 114 184 112 228 84 152 187 45 49 175 58 253 72 95 19 37

73 145 87 198 71 159 34 91 168 250 255 8 121 96 50 141 181 67 26 243

130 68 61 24 105 210 172 139 136 128 157 133 80 93 39 2 143 161 186 33

144 178 30 92 138 169 86 249 252 155 193 63 223 203 245 129 4 171

115 3 40 151 7 188 231 174 25 23 207 180 56 46 206 215 227 162 199

97 147 182 149 108 36 132 5 12 103 110 209 160 137 53 224 185 173

20 222 246 28 179 134 75 254 57 60 234 52 165 225 248 31 230 156

124 233 158 27 18 94 65 32 54 106 192 221 190 101 98 251 212 150

201 117 127 107 176 226 135 123 82 15 64 90); #(A13)

In what follows, we first check if the worst_differentials DBM files were created

previously by this script. If they are already on the disk, create the disk-based

hash %worst_differentials_db from the data in those files. If not, create the DBM

72

Computer and Network Security by Avi Kak Lecture 8

files so that they can subsequently be populated by the call in line (A18).

[IMPORTANT: In a more realistic attack logic, you will need to create a more

general version of the code in lines (A14) through (A21) so that you find the

histogram for the plaintext/ciphertext differentials not for just one round, but

for all the rounds involved. See the tutorial by Howard Heys for this important

point.]

dbmopen my %worst_differentials_db, "worst_differentials", 0644

or die "Can’t open DBM file: $!"; #(A14)

unless (keys %worst_differentials_db) { #(A15)

foreach my $i (0..255) { #(A16)

foreach my $j (0..255) { #(A17)

$differential_hist->[$i][$j] = 0; #(A18)

}

}

gen_differential_histogram(); #(A19)

The call shown below will show that part of the histogram for which both

the input and the output differentials are in the range (32, 63).

display_portion_of_histogram(32, 64) if $debug; #(A20)

From the 2D input/output histogram for the differentials, now represent that

information has a hash in which the keys are the plaintext differentials and

the value associated with each key the ciphertext differential whose histogram

count exceeds the supplied threshold:

find_most_probable_differentials($hist_threshold); #(A21)

}

%worst_differentials = %worst_differentials_db; #(A22)

die"no candidates for differentials: $!" if keys %worst_differentials == 0; #(A23)

@worst_input_differentials = sort {$a <=> $b} keys %worst_differentials; #(A24)

@worst_output_differentials = @worst_differentials{@worst_input_differentials}; #(A25)

if ($debug) {

print "\nworst input differentials: @worst_input_differentials\n"; #(A26)

print "\nworst output differentials: @worst_output_differentials\n"; #(A27)

}

The following call makes a hash that does the opposite of what is achieved by

indexing into the lookup table of line (A13). It fills the hash

’%decryption_inverses’ with <key,value> pairs, with the keys being the ciphertext

bytes and the values being the corresponding plaintext bytes.

find_inverses_for_decryption(); #(A28)

estimate_last_round_key(); #(A29)

Now print out the ten most voted for keys. To see the votes for all possible keys,

execute the script get_vote_counts.pl separately after running this script.

print "no votes for any candidates for the last round key\n"

if keys %votes_for_keys == 0; #(A30)

if (scalar keys %votes_for_keys) { #(A31)

my @vote_sorted_keys =

sort {$votes_for_keys{$b} <=> $votes_for_keys{$a}} keys %votes_for_keys; #(A32)

print "\nDisplaying the keys with the largest number of votes: @vote_sorted_keys[0..9]\n";

#(A33)

}

################################### Subroutines ###

The differential attack:

73

Computer and Network Security by Avi Kak Lecture 8

sub estimate_last_round_key { #(B1)

my $attempted = 0; #(B2)

foreach my $i (2..255) { #(B3)

print "+ " if $debug; #(B4)

my $plaintext1 = Algorithm::BitVector->new(intVal => $i, size => 8); #(B5)

foreach my $j (2..255) { #(B6)

my $plaintext2 = Algorithm::BitVector->new(intVal => $j, size => 8); #(B7)

my $input_differential = $plaintext1 ^ $plaintext2; #(B8)

next if int($input_differential) < 2; #(B9)

next unless exists $worst_differentials{int($input_differential)}; #(B10)

print "- " if $debug; #(B11)

my ($ciphertext1, $ciphertext2) = #(B12)

(encrypt($plaintext1, $encryption_key), encrypt($plaintext2, $encryption_key));

my $output_differential = $ciphertext1 ^ $ciphertext2; #(B13)

next if int($output_differential) < 2; #(B14)

last if $attempted++ > $tries; #(B15)

print " attempts made $attempted " if $attempted % 500 == 0; #(B16)

print "| " if $debug; #(B17)

foreach my $key (0..255) { #(B18)

print ". " if $debug; #(B19)

my $key_bv = Algorithm::BitVector->new(intVal => $key, size => 8); #(B20)

my $partial_decrypt_int1 = $decryption_inverses{int($ciphertext1 ^ $key_bv)};

#(B21)

my $partial_decrypt_int2 = $decryption_inverses{int($ciphertext2 ^ $key_bv)};

#(B22)

my $delta = $partial_decrypt_int1 ^ $partial_decrypt_int2; #(B23)

if (exists $worst_differentials{$delta}) { #(B24)

print " voted " if $debug; #(B25)

$votes_for_keys{$key}++; #(B26)

}

}

}

}

}

sub encrypt { #(C1)

my $plaintext = shift; # must be a bitvector #(C2)

my $key = shift; # must be a bitvector #(C3)

my $round_input = $plaintext; #(C4)

my $round_output; #(C5)

my $round_key = $key; #(C6)

if ($number_of_rounds > 1) { #(C7)

foreach my $round (0..$number_of_rounds-1) { #(C8)

$round_output = get_sbox_output_lookup($round_input) ^ $round_key; #(C9)

$round_input = $round_output; #(C10)

$round_key = $round_key >> 1; #(C11)

}

} else { #(C12)

$round_output = get_sbox_output_lookup($round_input) ^ $key; #(C13)

}

return $round_output; #(C14)

}

Since the SubBytes step in encryption involves taking the square of a byte in

GF(2^8) based on AES modulus, for invSubBytes step for decryption will involve

74

Computer and Network Security by Avi Kak Lecture 8

taking square-roots of the bytes in GF(2^8). This subroutine calculates these

square-roots.

sub find_inverses_for_decryption { #(D1)

foreach my $i (0 .. @lookuptable - 1) {

$decryption_inverses{$lookuptable[$i]} = $i;

}

}

This function represents the histogram of the plaintext/ciphertext differentials

in the form of a hash in which the keys are the plaintext differentials and the

value for each plaintext differential the ciphertext differential where the

histogram count exceeds the threshold.

sub find_most_probable_differentials { #(F1)

my $threshold = shift; #(F2)

foreach my $i (0..255) { #(F3)

foreach my $j (0..255) { #(F4)

$worst_differentials_db{$i} = $j if $differential_hist->[$i][$j] > $threshold;#(F5)

}

}

}

This subroutine generates a 2D histogram in which one axis stands for the

plaintext differentials and the other axis the ciphertext differentials. The

count in each bin is the number of times that particular relationship is seen

between the plaintext differentials and the ciphertext differentials.

sub gen_differential_histogram { #(G1)

foreach my $i (0 .. 255) { #(G2)

print "\ngen_differential_hist: i=$i\n" if $debug; #(G3)

foreach my $j (0 .. 255) { #(G4)

print ". " if $debug; #(G5)

my ($a, $b) = (Algorithm::BitVector->new(intVal => $i, size => 8),

Algorithm::BitVector->new(intVal => $j, size => 8)); #(G6)

my $input_differential = int($a ^ $b); #(G7)

my ($c, $d) = (get_sbox_output_lookup($a), get_sbox_output_lookup($b)); #(B9)

my $output_differential = int($c ^ $d); #(G9)

$differential_hist->[$input_differential][$output_differential]++; #(G10)

}

}

}

sub get_sbox_output_lookup { #(D1)

my $in = shift; #(D2)

return Algorithm::BitVector->new(intVal => $lookuptable[int($in)], size => 8); #(D3)

}

Displays in your terminal window the bin counts in the two-dimensional histogram

for the input/output mapping of the differentials. You can control the portion of

the 2D histogram that is output by using the first argument to set the lower bin

index and the second argument the upper bin index along both dimensions.

Therefore, what you see is always a square portion of the overall histogram.

sub display_portion_of_histogram { #(J1)

my $lower = shift; #(J2)

my $upper = shift; #(J3)

foreach my $i ($lower .. $upper - 1) { #(J4)

print "\n"; #(J5)

75

Computer and Network Security by Avi Kak Lecture 8

foreach my $j ($lower .. $upper - 1) { #(J6)

print "$differential_hist->[$i][$j] "; #(J7)

}

}

}

• When you run the script for just one round, that is, when you

set the value of the variable $number_of_rounds to 1 in line

(A2), you should get the following answer for the ten encryption

keys that received the largest number of notes (in decreasing

order of the number of votes received):

139 51 200 225 108 216 161 208 26 140

This answer is how you’d expect it to be since the decimal 139

is equivalent to the binary 10001011, which is the encryption

key set in line (A3) of the script. For a more detail look at the

distribution of the votes for the keys, execute the script:

get_vote_counts.pl

This script will return an answer like

139: 501 51: 40 200: 40 225: 40 108: 39 ...

where the number following the colon is the number for votes

for the integer value of the encryption key shown at the left of

the colon.

• If you run the attack script with the number of rounds set to 2

in line (A2), you should see the following answer for the ten

keys that received the largest number of votes:

82 180 214 20 72 44 109 105 52 174

76

Computer and Network Security by Avi Kak Lecture 8

This answer says that the most likely key used in the second

round is the integer 82, which translates into the binary

01010010. If you examine the logic of encryption in lines (C1)

through (C14) — especially if you focus on how the round key is

set in line (C11) — the answer returned by the script is

incorrect. However, that is not surprising since our

input/output histogram of the differentials is based on just one

round. As explained in the previously mentioned tutorial by

Howard Heys, we would need to construct a more elaborate

model of the differentials propagate through multiple rounds for

the script to do better in those cases.

• That brings us to the subject of linear attacks on block

ciphers. A linear attack on a block cipher is a known plaintext

attack. In such attacks, the adversary has access to a set of

plaintexts and the corresponding ciphertexts. However, unlike

the differential attack, the adversary does not choose any

specific subset of these.

• A linear attack exploits linear relationships between the bits to

the input to the SBox and the bits at the output. Let

(X0, X1, X2, X3, X4, X5, X6, X7) represent the bits at the input to an

SBox and let (Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7) represent the bits at the

output. Should it be the case that there exist bit positions

i1, . . . , im at the input and the bit positions j1, . . . , jn at the output

for some values of m and n so that the following is either often

true or often false: [The phrase ‘often true’ here means ‘significantly above average’ and

77

Computer and Network Security by Avi Kak Lecture 8

the phrase ‘often false’ means ‘significantly below average’. For an ideal SBox, such relationships

would be true (and, therefore, false) with a probability of 0.5 for all sets of bit positions at the input

and the output.]

Xi1 ⊗Xi2 . . .⊗Xim ⊗ Yi1 ⊗ Yi2 . . .⊗ Yin = 0 (5)

that fact can be exploited by a linear attack to make good

estimates for the key bits in at least the last round of a block

cipher.

• As should be obvious to the reader, the linear relationship

shown above can also be expressed as

Xi1 ⊗Xi2 . . .⊗Xim = Yi1 ⊗ Yi2 . . .⊗ Yin (6)

• It is important to realize that such a relationship must hold for

all possible values of 0’s and 1’s at the bit positions in question.

Consider the case when the list of output bit positions is empty.

Now there will be 128 out of 256 different possible bit patterns

at the input for which the linear relationship, as shown in

Equation (5), will be satisfied. For this case, whenever an input

bit pattern has an even number of 1’s, its XOR-sum will be

zero. (And that will happen in 128 out of 256 cases.) The same

would be the case when we consider an empty set of input bits

and all possible variations on the output bits.

78

Computer and Network Security by Avi Kak Lecture 8

• It must be emphasized that the linear attack exploits not only

those bit positions at the input and the output when the linear

relationship is often true, it also exploits those bit positions

when such linear relationships are often false. The inequality

case of the linear relationships of the sort shown above are more

correctly referred to as affine relationships.

• As mentioned earlier, for an ideal SBox, all linear (and affine)

relationships of the sort shown above will hold with a

probability of 0.5. That is, if you feed the 256 possible different

bit patterns into the input of a SBox, you should see such

relationships to hold 128 times for all possible groupings of the

input bit positions and the output bit positions. Any departure

from this average is referred to as linear approximation bias. It

is this bias that is exploited by a linear attack on a block cipher

• So our first order of business is to characterize an SBox with

regard to the prevalence of linear approximation biases. The

two independent variables in a depiction of this bias are the

input bit positions and the output bit positions. We can

obviously express both with integers that range from 0 to 255,

both ends inclusive. We will refer to these two integers as the

bit grouping integers. The bits that are set in the

bit-pattern representations of the two integers tell us which bit

positions are involved in a linear (or an affine) relationship. For

example, when the bit grouping integer for the input bits is 3

and the one for the output bits is 12, we are talking about the

79

Computer and Network Security by Avi Kak Lecture 8

following relationship:

X0 ⊗X1 = Y2 ⊗ Y3

• By scanning through all 256 different possible bit patterns at

the input to an SBox, and through the corresponding 256

different possible output bit patterns, we can count the number

of times the equations of the type shown in Eq. (6) are satisfied.

After we subtract the average value of 128 from these counts, we

get what is referred to as the linear approximation table (LAT).

• What follows is a Perl script that can calculate LAT for two

different choices of the SBox, depending on which of the two

lines, (B4) or (B5), is left uncommented. The statement in line

(B4) gives you an SBox that replaces a byte with its MI in

GF (28) based on the AES modulus. On the other hand, the

statement in line (B5) gives an SBox that is based on the

lookup table defined in line (A8). The LAT itself is calculated

in lines (B1) through (B26) of the script.

#!/usr/bin/perl -w

linear_approximation_table_generator.pl

Avi Kak (March 5, 2015)

This script demonstrates how to generate the Linear Approximation Table that is

needed for mounting a Linear Attack on a block cipher.

use strict;

use Algorithm::BitVector;

80

Computer and Network Security by Avi Kak Lecture 8

use Graphics::GnuplotIF;

$|++;

my $debug = 1;

my $AES_modulus = Algorithm::BitVector->new(bitstring => ’100011011’); #(A1)

Initialize LAT:

my $linear_approximation_table; #(A2)

foreach my $i (0..255) { #(A3)

foreach my $j (0..255) { #(A4)

$linear_approximation_table->[$i][$j] = 0; #(A5)

}

}

When SBox is based on lookup, we will use the "table" created by randomly

permuting the the number from 0 to 255:

#my $lookuptable = shuffle([0..255]); #(A6)

#my @lookuptable = @$lookuptable; #(A7)

my @lookuptable = qw(213 170 104 116 66 14 76 219 200 42 22 17 241 197 41 216 85 140

183 244 235 6 118 208 74 218 99 44 1 89 11 205 195 125 47 236 113

237 131 109 102 9 21 220 59 154 119 148 38 120 13 217 16 100 191 81

240 196 122 83 177 229 142 35 88 48 167 0 29 153 163 146 166 77 79

43 10 194 232 189 238 164 204 111 69 51 126 62 211 242 70 214 247 55

202 78 239 114 184 112 228 84 152 187 45 49 175 58 253 72 95 19 37

73 145 87 198 71 159 34 91 168 250 255 8 121 96 50 141 181 67 26 243

130 68 61 24 105 210 172 139 136 128 157 133 80 93 39 2 143 161 186 33

144 178 30 92 138 169 86 249 252 155 193 63 223 203 245 129 4 171

115 3 40 151 7 188 231 174 25 23 207 180 56 46 206 215 227 162 199

97 147 182 149 108 36 132 5 12 103 110 209 160 137 53 224 185 173

20 222 246 28 179 134 75 254 57 60 234 52 165 225 248 31 230 156

124 233 158 27 18 94 65 32 54 106 192 221 190 101 98 251 212 150

201 117 127 107 176 226 135 123 82 15 64 90); #(A8)

gen_linear_approximation_table(); #(A9)

The call shown below will show that part of the LAT for which both the input and

the output bit grouping integers are in the range (0, 32):

display_portion_of_LAT(0, 32); #(A10)

This call makes a graphical plot for a portion of the LAT. The bit grouping index

ranges for both the input and the output bytes are 32 to 64:

plot_portion_of_LAT($linear_approximation_table, 32, 64); #(A11)

The following call makes a hardcopy of the plot:

plot_portion_of_LAT($linear_approximation_table, 32, 64, 3); #(A12)

You have two choices for the SBox in lines (B4) and (B5). The one is line (B4) is

uses MI in GF(2^8) based on the AES modulus. And the one in line (B5) uses the

lookup table defined above in line (A8). Comment out the one you do not want.

sub gen_linear_approximation_table {

foreach my $x (0 .. 255) { # specify a byte for the input to the SBox #(B1)

print "\input byte = $x\n" if $debug; #(B2)

my $a = Algorithm::BitVector->new(intVal => $x, size => 8); #(B3)

Now get the output byte for the SBox:

my $c = get_sbox_output_MI($a); #(B4)

81

Computer and Network Security by Avi Kak Lecture 8

my $c = get_sbox_output_lookup($a); #(B5)

my $y = int($c); #(B6)

foreach my $bit_group_from_x (0 .. 255) { #(B7)

my @input_bit_positions; #(B8)

foreach my $pos (0..7) { #(B9)

push @input_bit_positions, $pos if ($bit_group_from_x >> $pos) & 1; #(B10)

} #(B11)

my $input_linear_sum = 0; #(B12)

foreach my $pos (@input_bit_positions) { #(B13)

$input_linear_sum ^= (($x >> $pos) & 1); #(B14)

}

foreach my $bit_group_from_y (0 .. 255) { #(B15)

my @output_bit_positions; #(B16)

foreach my $pos (0..7) { #(B17)

push @output_bit_positions, $pos if ($bit_group_from_y >> $pos) & 1; #(B18)

}

my $output_linear_sum = 0; #(B19)

foreach my $pos (@output_bit_positions) { #(B20)

$output_linear_sum ^= (($y >> $pos) & 1); #(B21)

}

$linear_approximation_table->[$bit_group_from_x][$bit_group_from_y]++ #(B22)

if $input_linear_sum == $output_linear_sum; #(B23)

}

}

}

foreach my $i (0 .. 255) { #(B24)

foreach my $j (0 .. 255) { #(B25)

$linear_approximation_table->[$i][$j] -= 128; #(B26)

}

}

}

sub get_sbox_output_MI { #(C1)

my $in = shift; #(C2)

return int($in) != 0 ? $in->gf_MI($AES_modulus, 8) : #(C3)

Algorithm::BitVector->new(intVal => 0); #(C4)

}

sub get_sbox_output_lookup { #(D1)

my $in = shift; #(D2)

return Algorithm::BitVector->new(intVal => $lookuptable[int($in)], size => 8); #(D3)

}

Fisher-Yates shuffle:

sub shuffle { #(E1)

my $arr_ref = shift; #(E2)

my $i = @$arr_ref; #(E3)

while ($i--) { #(E4)

my $j = int rand($i + 1); #(E5)

@$arr_ref[$i, $j] = @$arr_ref[$j, $i]; #(E6)

} #(E7)

return $arr_ref; #(E8)

}

######################### Support Routines for Displaying LAT ##############################

82

Computer and Network Security by Avi Kak Lecture 8

Displays in your terminal window the bin counts (minus 128) in the LAT calculated

in lines (B1) through (B26). You can control the portion of the display by using

the first argument to set the lower bin index and the second argument the upper

bin index along both dimensions. Therefore, what you see is always a square

portion of the LAT.

sub display_portion_of_LAT { #(F1)

my $lower = shift; #(F2)

my $upper = shift; #(F3)

foreach my $i ($lower .. $upper - 1) { #(F4)

print "\n"; #(F5)

foreach my $j ($lower .. $upper - 1) { #(F6)

print "$linear_approximation_table->[$i][$j] "; #(F7)

}

}

}

Displays with a 3-dimensional plot a square portion of the LAT. Along both the X

and the Y directions, the lower bound on the bin index is supplied by the SECOND

argument and the upper bound by the THIRD argument. The last argument is needed

only if you want to make a hardcopy of the plot. The last argument is set to the

number of second the plot will be flashed in the terminal screen before it is

dumped into a ‘.png’ file.

sub plot_portion_of_LAT { #(G1)

my $hist = shift; #(G2)

my $lower = shift; #(G3)

my $upper = shift; #(G4)

my $pause_time = shift; #(G5)

my @plot_points = (); #(G6)

my $bin_width = my $bin_height = 1.0; #(G7)

my ($x_min, $y_min, $x_max, $y_max) = ($lower, $lower, $upper, $upper); #(G8)

foreach my $y ($y_min..$y_max-1) { #(G9)

foreach my $x ($x_min..$x_max-1) { #(G10)

push @plot_points, [$x, $y, $hist->[$y][$x]]; #(G11)

}

}

@plot_points = sort {$a->[0] <=> $b->[0]} @plot_points; #(G12)

@plot_points = sort {$a->[1] <=> $b->[1] if $a->[0] == $b->[0]} @plot_points; #(G13)

my $temp_file = "__temp.dat"; #(G14)

open(OUTFILE , ">$temp_file") or die "Cannot open temporary file: $!"; #(G15)

my ($first, $oldfirst); #(G16)

$oldfirst = $plot_points[0]->[0]; #(G17)

foreach my $sample (@plot_points) { #(G18)

$first = $sample->[0]; #(G19)

if ($first == $oldfirst) { #(G20)

my @out_sample; #(G21)

$out_sample[0] = $sample->[0]; #(G22)

$out_sample[1] = $sample->[1]; #(G23)

$out_sample[2] = $sample->[2]; #(G24)

print OUTFILE "@out_sample\n"; #(G25)

} else { #(G26)

print OUTFILE "\n"; #(G27)

}

$oldfirst = $first; #(G28)

}

83

Computer and Network Security by Avi Kak Lecture 8

print OUTFILE "\n";

close OUTFILE;

my $argstring = <<"END"; #(G29)

set xrange [$x_min:$x_max]

set yrange [$y_min:$y_max]

set view 80,15

set hidden3d

splot "$temp_file" with lines

END

unless (defined $pause_time) { #(G30)

my $hardcopy_name = "LAT.png"; #(G31)

my $plot1 = Graphics::GnuplotIF->new(); #(G32)

$plot1->gnuplot_cmd(’set terminal png’, "set output \"$hardcopy_name\""); #(G33)

$plot1->gnuplot_cmd($argstring); #(G34)

my $plot2 = Graphics::GnuplotIF->new(persist => 1); #(G35)

$plot2->gnuplot_cmd($argstring); #(G36)

} else { #(G37)

my $plot = Graphics::GnuplotIF->new(); #(G38)

$plot->gnuplot_cmd($argstring); #(G39)

$plot->gnuplot_pause($pause_time); #(G40)

}

}

• For the case when you run script with the SBox based on MI

calculations in GF (28), shown below is a small portion of the

LAT constructed by the script. [The portion of the LAT shown below was dictated

by the page width constraints.] In keeping with the explanation provided

earlier, you can see that the topmost row and the leftmost

column values are all zero, as we expect them to be. The entries

at the other locations tell us how much positive and negative

bias there exists in the linear relationships corresponding to

those cells. Looking at the seventh entry (of column index 6) in

the second row (of row index 1), we can say that the

relationship X1 ⊗X2 ⊗ Y1 = 0 is true with a probability of 12/256,

and so on. Note that the full table that is calculated by the Perl

script is 256× 256. Theory dictates that the sum of the entries

in each row or each column must be either 128 or -128.

128 0

84

Computer and Network Security by Avi Kak Lecture 8

0 -6 8 -14 4 6 12 6 -2 12 -2 -4 -6 -8 2 -8 -12 -2 12 -2 -8 -14 0 -6 -2

0 8 12 4 -8 -8 -4 12 -12 -12 8 8 -8 0 12 -12 -14 -6 -6 -6 -6 10 10 2 2

0 -14 4 6 12 -2 -8 2 -2 12 -14 0 -2 -12 10 8 -2 8 -2 8 2 4 -6 4 -12

0 4 -8 12 -12 8 0 12 -6 -6 10 10 2 -6 -2 -2 2 -6 -2 14 14 6 -2 6 -8

0 6 -8 -2 8 6 -12 -14 -4 10 -12 -14 -8 -2 4 -6 -14 4 6 -8 -6 -4 2 4 -2

0 12 -4 -8 0 -12 8 -12 -6 -6 -2 -2 -6 10 -6 -14 12 -12 8 0 12 12 4 -4 14

0 6 12 2 12 -14 -12 10 8 -2 4 -6 -12 -6 4 10 12 -2 0 10 -8 2 8 -6 16

0 -2 -12 -2 -6 -4 -6 8 -8 -6 4 -6 -2 -12 -2 8 8 -10 4 14 -6 12 -14 16 -12

0 12 -12 12 -6 10 -6 -2 -6 -2 6 -2 -8 8 0 12 0 4 4 12 -14 2 2 -2 10

0 -2 8 -14 10 -12 -2 4 4 6 -4 2 -2 12 2 4 -2 12 2 4 0 -6 0 -2 2

0 -4 8 0 10 -14 -2 -6 -6 -2 2 -6 12 4 8 12 6 -14 2 10 0 0 -8 -4 -4

0 -6 -8 -2 2 -8 -6 -12 -2 -8 -2 12 16 14 16 -6 -2 -12 10 -12 0 2 -4 10 12

0 -8 0 -12 -6 -2 10 -6 -12 8 12 4 14 -2 -2 2 -6 14 -2 -2 -4 -12 0 4 -14

0 2 12 10 -2 4 -6 4 -2 0 2 8 16 -2 12 6 -12 10 8 10 10 4 -2 -4 14

0 -8 -12 8 -2 -6 -14 10 8 12 4 12 -6 2 6 -14 -8 12 -12 12 -2 -2 -6 -2 0

0 -12 -14 -2 2 -14 12 12 8 0 -2 6 -2 -6 -12 -8 12 -8 10 6 -2 14 12 -12 -12

0 -2 -6 8 -6 4 -12 -2 -10 4 12 -14 -12 14 10 12 -8 -2 -2 4 10 -4 8 10 -14

0 12 -6 -2 -2 6 8 0 4 4 2 2 10 -2 8 -12 10 -2 -4 -8 0 -8 10 2 2

0 -2 -6 8 14 -8 0 10 14 12 4 10 -12 -2 10 12 6 4 -8 -2 12 -10 14 0 12

0 -8 -6 2 14 -6 12 -8 -6 -14 0 0 0 -4 10 -2 -2 10 0 12 4 -4 2 10 12

0 -14 10 4 6 -4 12 2 12 2 -6 0 2 -12 4 -2 14 -4 -8 -10 -4 -2 10 4 -6

0 0 10 -6 -2 2 4 8 -14 2 0 -8 -4 0 -2 -6 12 8 10 14 2 10 4 -12 6

0 -6 2 4 6 4 -4 -6 16 -2 -2 -4 10 4 -4 -2 -12 10 2 0 10 4 -12 14 8

0 -2 2 -12 -8 -2 14 16 -12 10 2 -4 12 -14 14 0 -12 -14 2 12 12 -6 6 8 -4

0 -12 -6 -6 -12 8 -6 -6 6 14 12 0 -6 -14 4 8 12 8 -6 2 8 4 -6 -14 10

0 6 -6 -12 4 2 -14 -4 -8 -2 -2 -8 8 -2 -6 -4 -10 -4 0 -6 2 -8 -8 10 6

0 -12 -6 -6 8 12 -2 -2 14 -2 -12 0 -14 2 4 0 6 -6 -8 16 6 -6 -4 4 0

• Shown in Figure 8.7 is a plot of a portion of the LAT that was

calculated by the Perl script for the case of SBox based on MI

in GF (28). The portion shown is a 32× 32 portion of the table

starting at the cell located at (32, 32).

• If you comment out line (B3) and uncomment line (B4) so that

the SBox would be based on the lookup table in line (A8), the

portion of the plot shown in Figure 8.7 becomes what is shown

in Figure 8.8. Note that the largest peaks in the LAT of Figure

8.8 are larger than the largest peaks in the LAT of Figure 8.7.

That implies that the SBox based on the lookup table of line

(A8) results in larger biases for some of the linear equations

85

Computer and Network Security by Avi Kak Lecture 8

Figure 7: Shown is a portion of the LAT for an SBox that

calculates MIs in GF (28) using the AES modulus. (This figure

is from Lecture 8 of “Computer and Network Security” by Avi Kak)

compared to the SBox that is based on MI in GF (28).

• Representing an arbitray linear form Xi1 ⊗ . . .⊗Xim ⊗ Yj1 ⊗ . . .⊗ Yjn by

ζ , the cell values in a LAT allow us to write down the following

probabilities: prob(ζ = 0) = p and prob(ζ = 1) = 1− p.

• An important part of the formulation of the linear attack is the

use of Matsui’s piling-up lemma to estimate the joint

probabilities prob(ζ1, ζ2, . . .) = 0 and

prob(ζ1, ζ2, . . .) = 1 with each ζi expressing one of the linear

forms for the ith round.

86

Computer and Network Security by Avi Kak Lecture 8

Figure 8: Shown is a portion of the LAT for an SBox that

carries out byte substitutions by looking up the table sup-

plied in line (A8) of the LAT generator script. (This figure is

from Lecture 8 of “Computer and Network Security” by Avi Kak)

• After constructing a LAT for the SBoxes used in a cipher and

after estimating the join probabilities associated with the linear

equations over multiple rounds, executing a linear attack

involves the following steps: (1) You string together the linear

forms of the type shown earlier across the rounds but not

including the last round and estimate the probabilistic biases

associated with the linear forms (these can also be affine forms).

(2) Considering different possible candidate keys for the last

round, you partially decrypt the ciphertext. For each candidate

key for the last round, this gives you candidate output bits for

the last-round Sbox. (3) Using these candidate output bits for

the last round, you accumulate votes for the different candidates

for the last-round key depending on the extent to which

87

Computer and Network Security by Avi Kak Lecture 8

candidate SBox output bits for the last round are consistent

with the linear forms constructed from the first n− 1 rounds.

• To make the above explanation more specific, assume that the

block size in our cipher is just one byte and that there are no

permutations involved. [See the previously mentioned tutorial by Howard

Heys for a more realistic example that involves both substitutions and

permutations.] Let Pi denote the i
th bit of the plaintext byte

entering the first round. We will assume that each round

consists of a byte substitution by the SBox, followed by the

addition of the round key. In general, we will use Xr,i to denote

the ith input bit to the rth round and let Yr,j denote the j
th

output bit of the SBox in the same round. Additionally, let Kr,k

denote the kth bit of the round key for the rth round. We can

now construct linear relationships of the following sort that

span all of the rounds together:

Pi1 ⊗ Pi2 ⊗ . . .⊗ Y1,j1 ⊗ . . . Y1,j1 ⊗ . . . Y1,jm ⊗ . . .K1 ⊗ Y2,j1 ⊗ . . . Y2,j1 ⊗ . . .

. . .K2 ⊗ Y3,j1 ⊗ . . . Y3,j1 ⊗ Yn−1,j1 . . . Yn−1,jm = 0

where we have used the fact that the output of each SBox, after

the addition of the round key, becomes the input to the next

round. That is, Yr,i ⊗Kr,i becomes Xr+1,i. The above linear

form may be expressed in the following form:

XOR sum of only P and Y variables ⊗

XOR sum of key bits in rounds from 1 through n− 1 = 0

which can be abbreviated to

88

Computer and Network Security by Avi Kak Lecture 8

XOR sum of only P and Y variables ⊗ ΣK = 0

where ΣK is the linear form that involves only the key bits from

the first n− 1 rounds.

• We have only two possibilities for ΣK . Either it is equal to 0 or

to 1. If we assume that both are equiprobable, that eliminates

the influence of ΣK on the bias associated with the rest of the

linear equation shown above. Subsequently, it becomes easy to

decide how much weight to give to a candidate key for the last

round depending on the probability associated with the linear

form that depends only on the inputs and the outputs of the

Sboxes.

• That brings us to the interpolation attack. The

interpolation attack seeks to model the behavior of an SBox

with a polynomial in GF (28). Recall that the SBox is the only

source of nonlinearity in transforming plaintext into ciphertext.

(All of the permutation operations are obviously linear.) We

also recognize that what an SBox does must be invertible on a

one-one basis (in other words, the input/output mapping

provided by an SBox must be bijective).

• Let’s say that it is possible to represent the round operation

that involves an SBox calculation following by key mixing by

the algebraic function fi(ci−1, Ki) where ci−1 is the input to the

round and Ki is the round key. Let’s further say that fi can be

89

Computer and Network Security by Avi Kak Lecture 8

expressed as a polynomial in GF (28) over the input to the

round and that the unknown Ki values can be expressed as the

coefficients of this polynomial. It was shown by Jakobsen and

Knudsen that when such a polynomial is of low degree, its

coefficients can be estimated from a set of plaintext-ciphertext

pairs. Subsequently, an attacker would be able to invert the

polynomial to find the plaintext for a given ciphertext without

having to know the encryption key used.

90

Computer and Network Security by Avi Kak Lecture 8

Back to TOC

8.10 HOMEWORK PROBLEMS

1. With regard to the first step of processing in each round of AES

on the encryption side: How does one look up the 16× 16 S-box

table for byte-by-byte substitutions? In other words, assuming I

want a substitute byte for the byte b7b6b5b4b3b2b1b0, where each

bi is a single bit, how do I use these bits to find the replacement

byte in the S-box table?

2. What are the steps that go into the construction of the

16× 16 S-box lookup table?

3. What is rationale for the bit scrambling step that is used for

finding the replacement byte that goes into each cell of the

S-box table?

4. The second step in each round permutes the bytes in each row of

the state array. What is the permutation formula that is used?

5. Describe the “mix columns” transformation that constitutes the

third step in each round of AES.

6. Let’s now talk about the Key Expansion Algorithm of AES.

91

Computer and Network Security by Avi Kak Lecture 8

This algorithm starts with how many words of the key matrix

and expands that into how many words?

7. Let’s say the first four words of the key schedule are

w0, w1, w2, w3. How do we now obtain the next four words

w4, w5, w6, w7?

8. Going back to the previous question, the formula that yields w4

is

w4 = w0 ⊗ g(w3)

What goes into computing g()?

9. Programming Assignment:

Write a Perl or Python based implementation of AES. As you

know, each round of processing involves the following four steps:

• byte-by-byte substitution

• shifting of the rows of the state array

• mixing of the columns

• the addition of the round key.

Your implementation must include the code for creating the two

16× 16 tables that you need for the byte substitution steps, one

for encryption and the other for decryption. Note that the

lookup table you construct for encryption is also used in the key

expansion algorithm.

92

Computer and Network Security by Avi Kak Lecture 8

The effort that it takes to do this homework is

significantly reduced if you use the BitVector module

in Python and the Algorithm::BitVector module in

Perl. The following method of in these modules should be

particularly useful for constructing the two lookup tables for

byte substitutions:

gf_MI

This method returns the multiplicative inverse of a bit pattern

in GF (2n) with respect to a modulus bit pattern that

corresponds to the irreducible polynomial used. To illustrate

with Python the sort of call you’d need to make, the API

documentation for the BitVector module shows the following

example code on how to call this method:

modulus = BitVector(bitstring = ’100011011’)

n = 8

a = BitVector(bitstring = ’00110011’)

multiplicative_inverse = a.gf_MI(modulus, n)

print multiplicative_inverse # 01101100

Note that the variable modulus is set to the BitVector that

corresponds to the AES irreducible polynomial. The variable a

can be set to any arbitrary BitVector whose multiplicative

inverse you are interested in.

The other BitVector method that should prove particularly

useful for this homework is:

gf_multiply_modular

This method lets you multiply two bit patterns in GF (2n). To

multiply two bit patterns a and b, both instances of the

93

Computer and Network Security by Avi Kak Lecture 8

BitVector class, when the modulus bit pattern is mod, you

invoke

a.gf_multipy_modular(b, mod, n)

where n is the exponent for 2 in GF (2n). For this homework

problem, n is obviously 8.

Your implementation should be for a 128 bit encryption key.

Your script should read a message file for the plaintext and

write out the ciphertext into another file. It should prompt the

user for the encryption key which should consist of at least 16

printable ASCII characters.

94

